1
|
Shen J, Fang Y, Xu N, Chen H, Zhu M, Li D, Chu Z, Sunagawa M, Liu Y, Wang H, Li G. Exploring the mechanism of triptolide inhibiting the motility of fibroblast-like synoviocytes in rheumatoid arthritis via RhoA/Rho-associated kinase axis, based on network pharmacology, molecular docking and molecular dynamics simulations. Front Pharmacol 2025; 16:1545514. [PMID: 40248103 PMCID: PMC12003270 DOI: 10.3389/fphar.2025.1545514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
Background and objective Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the hyperproliferation and invasive behavior of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), which contributes to the degradation of articular cartilage and bone. Inhibition of RA-FLS proliferation, migration and invasion has become an important therapeutic strategy for RA. Triptolide (TPL), an epoxy diterpene lactone compound from the traditional Chinese medicine Tripterygium wilfordii Hook. f., has significant immunosuppressive and anti-inflammatory effects. However, the specific mechanisms of TPL-regulated effects on RA-FLS cytoskeleton and inhibition of invasive metastasis are not yet fully explored. The aim of this study was to investigate TPL-regulated effects on RA-FLS skeleton and reveal the specific mechanism of TPL-inhibition of RA-FLS migration and invasion. Materials and methods In vitro experiments were performed using RA-FLS cell line. Cell motility was evaluated by wound healing assay and Transwell assay as well as high content cell imaging system. Cytoskeletal remodeling was observed by cytoskeletal immunofluorescence staining and transmission electron microscopy (TEM). Network pharmacology predicted the targets of Triptolide. RhoA/Rho-associated kinase signaling pathway was detected by quantitative real-time PCR and Western blotting. Molecular docking and molecular dynamics simulations were used to validate the interaction of Triptolide with RhoA/Rho-associated kinase. Results TPL significantly inhibited RA-FLS cell motility, and reduced the displacement and cumulative distance of RA-FLS. Cytoskeleton staining assay and TEM observation showed cytoskeleton remodeling after TPL treatment. Network pharmacological prediction screened 45 targets associated with TPL intervention in RA via cytoskeleton, including TNF, KRAS, ESR1, RHOA, MAPK3 and CASP3. In the RhoA/Rho-associated kinase signaling pathway, TPL treatment inhibited protein expression and phosphorylation of RhoA, Rock, and Limk. TPL can enter RhoA, Rock1, and Rock2 target protein binding domains with stable binding activities, and may cause conformational changes of Rock1 related to molecular functions. Conclusion TPL inhibits RA-FLS in motility by regulating actin cytoskeleton remodeling through action on the RhoA/Rho-associated kinase signaling pathway.
Collapse
Affiliation(s)
- Jiacheng Shen
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yuxuan Fang
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Nan Xu
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Hongyi Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Miao Zhu
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Dan Li
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Zewen Chu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yanqing Liu
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Guoqing Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Carreira M, Pires-Santos M, Correia CR, Nadine S, Mano JF. Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering. OPEN RESEARCH EUROPE 2024; 4:94. [PMID: 39279819 PMCID: PMC11393531 DOI: 10.12688/openreseurope.17000.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Background Surface topography has been shown to influence cell behavior and direct stromal cell differentiation into distinct lineages. Whereas this phenomenon has been verified in two-dimensional cultures, there is an urgent need for a thorough investigation of topography's role within a three-dimensional (3D) environment, as it better replicates the natural cellular environment. Methods A co-culture of Wharton's jelly-derived mesenchymal stem/stromal cells (WJ-MSCs) and human umbilical vein endothelial cells (HUVECs) was encapsulated in a 3D system consisting of a permselective liquefied environment containing freely dispersed spherical microparticles (spheres) or nanogrooved microdiscs (microdiscs). Microdiscs presenting 358 ± 23 nm grooves and 944 ± 49 nm ridges were produced via nanoimprinting of spherical polycaprolactone microparticles between water-soluble polyvinyl alcohol counter molds of nanogrooved templates. Spheres and microdiscs were cultured in vitro with umbilical cord-derived cells in a basal or osteogenic medium within liquefied capsules for 21 days. Results WJ-MSCs and HUVECs were successfully encapsulated within liquefied capsules containing spheres and microdiscs, ensuring high cellular viability. Results show an enhanced osteogenic differentiation in microdiscs compared to spheres, even in basal medium, evidenced by alkaline phosphatase activity and osteopontin expression. Conclusions This work suggests that the topographical features present in microdiscs induce the osteogenic differentiation of adhered WJ-MSCs along the contact guidance, without additional differentiation factors. The developed 3D bioencapsulation system comprising topographical features might be suitable for bone tissue engineering approaches with minimum in vitro manipulation.
Collapse
Affiliation(s)
- Mariana Carreira
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Manuel Pires-Santos
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Clara R Correia
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Aveiro District, 3810-193, Portugal
| |
Collapse
|
3
|
Chen Z, Wang B, Yang C, Lv Z, Wei Y, Pan T, Xuan F, Zhou X, Chen H, Shen H, Wang L, Zhang Y. 3D Printed Pedicle Screws with Microarc Oxidation Ceramic Interfaces Enhance Osteointegration and Orthopedic Fixation Feasibility. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31983-31996. [PMID: 38865688 DOI: 10.1021/acsami.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Effective osteointegration is of great importance for pedicle screws in spinal fusion surgeries. However, the lack of osteoinductive activity of current screws diminishes their feasibility for osteointegration and fixation, making screw loosening a common complication worldwide. In this study, Ti-6Al-4V pedicle screws with full through-hole design were fabricated via selective laser melting (SLM) 3D printing and then deposited with porous oxide coatings by microarc oxidation (MAO). The porous surface morphology of the oxide coating and the release of bioactive ions could effectively support cell adhesion, migration, vascularization, and osteogenesis in vitro. Furthermore, an in vivo goat model demonstrated the efficacy of modified screws in improving bone maturation and osseointegration, thus providing a promising method for feasible orthopedic internal fixation.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Binghao Wang
- Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University, Baise, Guangxi 533000, China
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengliang Yang
- Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University, Baise, Guangxi 533000, China
| | - Zhendong Lv
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yu Wei
- Guangxi Zhuang Autonomous Region Engineering Research Center for Biomaterials in Bone and Joint Degenerative Diseases, Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University, Baise, Guangxi 533000, China
| | - Tianming Pan
- Danyang Hospital of Traditional Chinese Medicine, Jiangsu 212300, China
| | - Fuqing Xuan
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Xingdie Zhou
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Hao Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
4
|
Nicoara AI, Alecu AE, Balaceanu GC, Puscasu EM, Vasile BS, Trusca R. Fabrication and Characterization of Porous Diopside/Akermanite Ceramics with Prospective Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5548. [PMID: 37629839 PMCID: PMC10456605 DOI: 10.3390/ma16165548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Tissue engineering requires new materials that can be used to replace damaged bone parts. Since hydroxyapatite, currently widely used, has low mechanical resistance, silicate ceramics can represent an alternative. The aim of this study was to obtain porous ceramics based on diopside (CaMgSi2O6) and akermanite (Ca2MgSi2O7) obtained at low sintering temperatures. The powder synthesized by the sol-gel method was pressed in the presence of a porogenic agent represented by commercial sucrose in order to create the desired porosity. The ceramic bodies obtained after sintering thermal treatment at 1050 °C and 1250 °C, respectively, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) to determine the chemical composition. The open porosity was situated between 32.5 and 34.6%, and the compressive strength had a maximum value of 11.4 MPa for the samples sintered at 1250 °C in the presence of a 20% wt porogenic agent. A cell viability above 70% and the rapid development of an apatitic phase layer make these materials good candidates for use in hard tissue engineering.
Collapse
Affiliation(s)
- Adrian Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.N.); (A.E.A.); (G.-C.B.); (R.T.)
- National R&D Institute for Nonferrous and Rare Metals—IMNR, 077145 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Andrada Elena Alecu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.N.); (A.E.A.); (G.-C.B.); (R.T.)
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Gabriel-Costin Balaceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.N.); (A.E.A.); (G.-C.B.); (R.T.)
| | - Eliza Maria Puscasu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.N.); (A.E.A.); (G.-C.B.); (R.T.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Roxana Trusca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (A.I.N.); (A.E.A.); (G.-C.B.); (R.T.)
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
5
|
Zhu B, Jia E, Zhang Q, Zhang Y, Zhou H, Tan Y, Deng Z. Titanium Surface-Grafted Zwitterionic Polymers with an Anti-Polyelectrolyte Effect Enhances Osteogenesis. Colloids Surf B Biointerfaces 2023; 226:113293. [PMID: 37028232 DOI: 10.1016/j.colsurfb.2023.113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Zwitterionic polymers have attracted considerable attention because of their anti-adsorption and unique anti-polyelectrolyte effects and was widely used in surface modification. In this study, zwitterionic copolymers (poly (sulfobetaine methacrylate-co-butyl acrylate) (pSB) coating on the surface of a hydroxylated titanium sheet using surface-initiated atom transfer radical polymerization (SI-ATRP) was successfully constructed. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Water contact angle (WCA) analysis proved the successful preparation of the coating. The swelling effect caused by the anti-polyelectrolyte effect was reflected in the simulation experiment in vitro, and this coating can promote the proliferation and osteogenesis of MC3T3-E1. Therefore, this study provides a new strategy for designing multifunctional biomaterials for implant surface modifications.
Collapse
Affiliation(s)
- Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Erna Jia
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China.
| | - Qimeng Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yanyan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Hua Zhou
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Ying Tan
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
6
|
Di Pompo G, Liguori A, Carlini M, Avnet S, Boi M, Baldini N, Focarete ML, Bianchi M, Gualandi C, Graziani G. Electrospun fibers coated with nanostructured biomimetic hydroxyapatite: A new platform for regeneration at the bone interfaces. BIOMATERIALS ADVANCES 2022; 144:213231. [PMID: 36495842 DOI: 10.1016/j.bioadv.2022.213231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Reconstruction of gradient organic/inorganic tissues is a challenging task in orthopaedics. Indeed, to mimic tissue characteristics and stimulate bone regeneration at the interface, it is necessary to reproduce both the mineral and organic components of the tissue ECM, as well as the micro/nano-fibrous morphology. To address this goal, we propose here novel biomimetic patches obtained by the combination of electrospinning and nanostructured bone apatite. In particular, we deposited apatite on the electrospun fibers by Ionized Jet Deposition, a plasma-assisted technique that allows conformal deposition and the preservation in the coating of the target's stoichiometry. The damage to the substrate and fibrous morphology is a polymer-dependent aspect, that can be avoided by properly selecting the substrate composition and deposition parameters. In fact, all the tested polymers (poly(l-lactide), poly(D,l-lactide-co-glycolide, poly(ε-caprolactone), collagen) were effectively coated, and the morphological and thermal characterization revealed that poly(ε-caprolactone) suffered the least damage. The coating of collagen fibers, on the other hand, destroyed the fiber morphology and it could only be performed when collagen is blended with a more resistant synthetic polymer in the nanofibers. Due to the biomimetic composition and multiscale morphology from micro to nano, the poly(ε-caprolactone)-collagen biomimetic patches coated with bone apatite supported MSCs adhesion, patch colonization and early differentiation, while allowing optimal viability. The biomimetic coating allowed better scaffold colonization, promoting cell spreading on the fibers.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Martina Carlini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Marco Boi
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, via Massarenti 9, 40138 Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Italy
| | - Michele Bianchi
- Department of Life Sciences, Università di Modena e Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy.
| | - Gabriela Graziani
- Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
7
|
Abstract
Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.
Collapse
|
8
|
Sartori M, Graziani G, Sassoni E, Pagani S, Boi M, Maltarello MC, Baldini N, Fini M. Nanostructure and biomimetics orchestrate mesenchymal stromal cell differentiation: An in vitro bioactivity study on new coatings for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112031. [PMID: 33812646 DOI: 10.1016/j.msec.2021.112031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 02/09/2023]
Abstract
The choice of the appropriate material having suitable compositional and morphological surface characteristics, is a crucial step in the development of orthopedic implants. The purpose of this paper is to elucidate, on this regard, the influence of two important hits, i.e., biogenic apatite with bone-like composition and nanostructured morphology, providing the evidence of the efficacy of nanostructured biogenic apatite coatings in favoring adhesion, growth, proliferation, and in vitro osteogenic differentiation of human mesenchymal stromal cells (hMSCs) isolated from the bone marrow. The specific features of this coating in terms of topographical and biochemical cues, obtained by Ionized Jet Deposition, are perceived by hMSCs, as suggested by changes in different morphologic parameters as Aspect Ratio or Elongation index, suggesting the impact exerted by the nanostructure on early adhesion events, cytoskeleton organization, and cells fate. In addition, the nanostructured CaP coating sustained the metabolic activity of the cells and facilitated the osteogenic differentiation of MSC by supporting the osteogenesis-related gene expression. These findings support the use of a combined approach between technological advancement and instructive surfaces, both from the topographical and the biochemical point of view, in order to manufacture smart biomaterials able to respond to different needs of the orthopedic practice.
Collapse
Affiliation(s)
- Maria Sartori
- IRCCS - Istituto Ortopedico Rizzoli, Surgical Sciences and Technologies Complex Structure, via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Gabriela Graziani
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory of Nanobiotechnology, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Enrico Sassoni
- University of Bologna, Department of Civil, Chemical, Environmental and Materials Engineering, via Terracini 28, 40131 Bologna, Italy
| | - Stefania Pagani
- IRCCS - Istituto Ortopedico Rizzoli, Surgical Sciences and Technologies Complex Structure, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marco Boi
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory of Nanobiotechnology, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maria Cristina Maltarello
- IRCCS - Istituto Ortopedico Rizzoli, BST Biomedical Science and Technologies Laboratory, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Nicola Baldini
- IRCCS - Istituto Ortopedico Rizzoli, Laboratory of Nanobiotechnology, via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS - Istituto Ortopedico Rizzoli, BST Biomedical Science and Technologies Laboratory, via di Barbiano 1/10, 40136 Bologna, Italy; University of Bologna, Department of Biomedical and Neuromotor Sciences, Via Massarenti 9, 40128 Bologna, Italy
| | - Milena Fini
- IRCCS - Istituto Ortopedico Rizzoli, Surgical Sciences and Technologies Complex Structure, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
9
|
Kunrath MF, Diz FM, Magini R, Galárraga-Vinueza ME. Nanointeraction: The profound influence of nanostructured and nano-drug delivery biomedical implant surfaces on cell behavior. Adv Colloid Interface Sci 2020; 284:102265. [PMID: 33007580 DOI: 10.1016/j.cis.2020.102265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Nanostructured surfaces feature promising biological properties on biomaterials attracting large interest at basic research, implant industry development, and bioengineering applications. Thou, nanoscale interactions at a molecular and cellular level are not yet completely understood and its biological and clinical implications need to be further elucidated. As follows, the aim of this comprehensive review was to evaluate nanostructured surfaces at biomedical implants focusing on surface development, nanostructuration, and nanoengineered drug delivery systems that can induce specific cell interactions in all relevant aspects of biological, reparative, anti-bacterial, anti-inflammatory and clinical processes. The methods and the physio-chemical properties involved in nanotopography performance, the main cellular characteristics involved at surface/cell interaction, and a summary of results and outlooks reported in studies applying nanostructured surfaces and nano-drug delivery systems is presented. The future prospects and commercial translation of this developing field, particularly concerning multifunctional nanostructured surfaces and its clinical implications are further discussed. At a cellular level, nanostructured biomedical implant surfaces can enhance osteogenesis by targeting osteoblasts, osteocytes, and mesenchymal cells, stimulate fibroblast/epithelial cells proliferation and adherence, inhibit bacterial cell proliferation and biofilm accumulation, and act as immune-modulating surfaces targeting macrophages and reducing pro-inflammatory cytokine expression. Moreover, several methodological options to create drug-delivery systems on metallic implant surfaces are available, however, the clinical translation is yet incomplete. The efficiency of which nanostructured/nano-delivery surfaces may target specific cell interactions and favor clinical outcomes needs to be further elucidated in pre-clinical and clinical studies, along with engineering solutions for commercial translation and approval of controlling agencies.
Collapse
|
10
|
Ghinassi B, Di Baldassarre A, D’Addazio G, Traini T, Andrisani M, Di Vincenzo G, Gaggi G, Piattelli M, Caputi S, Sinjari B. Gingival Response to Dental Implant: Comparison Study on the Effects of New Nanopored Laser-Treated vs. Traditional Healing Abutments. Int J Mol Sci 2020; 21:ijms21176056. [PMID: 32842709 PMCID: PMC7504205 DOI: 10.3390/ijms21176056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
The health of peri-implant soft tissues is important for the long-term success rate of dental implants and the surface topography is pivotal in influencing it. Thus, the aim of this study was to evaluate, in human patients, the inflammatory mucosal microenvironment in the tissue surrounding a new, nanoscale, laser-treated healing abutment characterized by engineered nanopores versus a standard machined-surface. Analyses of anti- and pro-inflammatory markers, cytokeratins, desmosomal proteins and scanning electron microscopy were performed in 30 soft-tissue biopsies retrieved during second-stage surgery. The results demonstrate that the soft tissue surrounding the laser-treated surface was characterized by a lower grade of inflammation than the one facing the machined-surface, which, in turn, showed a disrupted epithelium and altered desmosomes. Moreover, higher adhesion of the epithelial cells on the laser-treated surface was detected compared to the machined one. In conclusion, the laser-treated surface topography seems to play an important role not only in cell adhesion, but also on the inflammatory makers’ expression of the soft tissue microenvironment. Thus, from a clinical point of view, the use of this kind of topography may be of crucial importance not only on healing abutments but also on prosthetic ones.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Human Anatomy and Cell Differentation Lab, Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (B.G.); (A.D.B.)
| | - Angela Di Baldassarre
- Human Anatomy and Cell Differentation Lab, Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (B.G.); (A.D.B.)
| | - Gianmaria D’Addazio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Tonino Traini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Andrisani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
| | - Giorgio Di Vincenzo
- Department of Periodontics & Implant Dentistry, New York University, E 40th St #508, New York, NY 10016, USA;
| | - Giulia Gaggi
- Human Anatomy and Cell Differentation Lab, Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Maurizio Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Bruna Sinjari
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (G.D.); (T.T.); (M.A.); (M.P.); (S.C.); (B.S.)
- Electron Microscopy Laboratory, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
11
|
Tsamesidis I, Kazeli K, Lymperaki E, Pouroutzidou GK, Oikonomou IM, Komninou P, Zachariadis G, Reybier K, Pantaleo A, Kontonasaki E. Effect of Sintering Temperature of Bioactive Glass Nanoceramics on the Hemolytic Activity and Oxidative Stress Biomarkers in Erythrocytes. Cell Mol Bioeng 2020; 13:201-218. [PMID: 32426058 PMCID: PMC7225217 DOI: 10.1007/s12195-020-00614-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION The nature of the surface is critical in determining the biological activity of silica powders. A novel correlation between toxicity and surface properties of bioactive glass ceramics (BGCs) synthesized via the sol-gel method was attempted in this study. METHODS The behavior of BGCs after their attachment to the surface of red blood cells (RBCs) was evaluated and their toxic effects were determined based on hemolysis, membrane injury via anti-phosphotyrosine immunoblot of Band 3, lipid peroxidation, potential to generate reactive oxygen species, and antioxidant enzyme production. In particular, three BGCs were synthesized and treated at three sintering temperatures (T1 = 835 °C, T2 = 1000 °C and T3 = 1100 °C) to investigate possible relation between surface charge or structure and hemolytic potential. RESULTS Their toxicity based on hemolysis was dose dependent, while BGC-T2 had the best hemocompatibility in compare with the other BGCs.No BGCs in dosages lower than 0.125 mg/mL could damage erythrocytes. On the other hand, all BGCs promoted the production of reactive oxygen species in certain concentrations, with the BGC-T2 producing the lowest ROS and increasing the glutathione levels in RBCs protecting their damage. CONCLUSIONS The results suggest that various factors such as size, a probable different proportion of surface silanols, a balanced mechanism between calcium and magnesium cellular uptake or the different crystalline nature may have contributed to this finding; however, future research is needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Present Address: Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Konstantina Kazeli
- Department of Biomedical Sciences, International Hellenic University, Thessaloníki, Greece
- Department of Medicine, Democritus University of Thrace, Alexandroupoli, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, Thessaloníki, Greece
| | - Georgia K. Pouroutzidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Ilias M. Oikonomou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - Philomela Komninou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| | - George Zachariadis
- Department of Chemistry, Aristotle University, 54124 Thessaloníki, Greece
| | - Karine Reybier
- Present Address: Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, 31400 Toulouse, France
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloníki, Greece
| |
Collapse
|
12
|
Zhang M, Pu X, Chen X, Yin G. In-vivo performance of plasma-sprayed CaO-MgO-SiO 2-based bioactive glass-ceramic coating on Ti-6Al-4V alloy for bone regeneration. Heliyon 2019; 5:e02824. [PMID: 31763479 PMCID: PMC6861571 DOI: 10.1016/j.heliyon.2019.e02824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/17/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The CaO-MgO-SiO2-based bioactive glass-ceramic coating (named M2) on Ti-6Al-4V alloy has been proven to behave well in vitro. But how to make full sense of its performances in terms of osteogenesis and osseointegration in vivo matters very much. For this, the M2-coated Ti-6Al-4V cylinders were prepared by atmospheric plasma spraying (APS) and implanted into New Zealand rabbit for 1, 2 and 3 months, respectively, by setting commercial HA-coated Ti-6Al-4V as the control. It is encouraging that, the two groups bonded with the surrounding tissues stably and newly formed bone grew towards or around the implants after 3-month implantation according to radiographic images. From the histological sections, it is obvious that, compared to the control, the M2-coated implant was more favorable for the osteogenesis and neo-vascularisation in the whole experimental process and demonstrated a better osseointegration with the host bone, indicating the former possessed better osteoconductivity, osteoinductivity and osteogenic ability. The study indicated that the M2-coated Ti-6Al-4V implant exerted a great potential to substitute the commercial HA-coated Ti-6Al-4V implant in repairing load-bearing bone defects.
Collapse
Affiliation(s)
- Mengjiao Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, PR China
| |
Collapse
|
13
|
Fabrication of two distinct hydroxyapatite coatings and their effects on MC3T3-E1 cell behavior. Colloids Surf B Biointerfaces 2018; 171:40-48. [DOI: 10.1016/j.colsurfb.2018.06.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/21/2022]
|
14
|
Arul Xavier S, U V. Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids Surf B Biointerfaces 2018; 171:186-196. [PMID: 30031303 DOI: 10.1016/j.colsurfb.2018.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/28/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023]
Abstract
Coatings using functionalized multi-walled carbon nanotubes (f-MWCNTs)/hydroxyapatite (HAP) on 316 L Stainless Steel by electrodeposition at the parameter of "-1.5 V" for 30 min. with three electrode set-up configuration and optimization of various concentrations of f-MWCNTs from 1 to 5% were done to improve the coating characteristics for future biomedical applications. The obtained coatings were characterized by Fourier Transformed-Infra Red spectroscopy (FT-IR) and X-ray diffractometer (XRD) to reveal the phase formation in the composites. With various additions of f-MWCNTs, the HAP phase was found to be retained. The growth of HAP on f-MWCNTs was analyzed by High-resolution Transmission Electron Microscope (HR-TEM) and the morphology of composite was found to be of the needle and flower-like particles. To understand the corrosion resistance effect of the developed HAP/f-MWCNTs composite in SBF, electrochemical investigations were carried out using Impedance and Tafel polarization analysis. From the results, it was observed that the coatings have enhanced corrosion resistance behavior and bioactivity. In addition, the Vickers Hardness study proved that the prepared HAP/fMWCNTs composite coating was found to have improved hardness value of (Hv) 390.2 ± 8.0. Thus, the electrodeposited composite coating on 316 L SS substrate can be effectively deployed for biomedical applications.
Collapse
Affiliation(s)
- Stango Arul Xavier
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632 014. Tamil Nadu, India
| | - Vijayalakshmi U
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632 014. Tamil Nadu, India.
| |
Collapse
|
15
|
Fathyunes L, Khalil-Allafi J. Effect of employing ultrasonic waves during pulse electrochemical deposition on the characteristics and biocompatibility of calcium phosphate coatings. ULTRASONICS SONOCHEMISTRY 2018; 42:293-302. [PMID: 29429672 DOI: 10.1016/j.ultsonch.2017.11.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 05/15/2023]
Abstract
In the present work, we investigated the effect of employing ultrasonic waves during pulse electrochemical deposition on surface topography, chemical composition and biocompatibility of calcium phosphate (Ca-P) coatings. The SEM and 3D AFM images showed that the anodized titanium surface was covered with the uniform and refined size of plate-like Ca-P crystals, when the ultrasonic treatment of the electrolyte with power of 60 W was carried out during deposition. In contrast, for the Ca-P; 0 W coating applied under only the magnetic stirring of the electrolyte, the microstructure was non-uniform and some Ca-P crystals with the larger size were randomly observed in different regions, causing a rougher surface. The FTIR results also revealed that employing the ultrasound increases the deposition of a coating involved in only the most stable Ca-P phase of carbonated hydroxyapatite (CHA). However, in the absence of ultrasound, besides the prominent phase of CHA, some less stable Ca-P phases like octa calcium phosphate (OCP) and brushite were also formed in the Ca-P; 0 W coating. The Ca-P; 60 W coating showed the higher ability for apatite biomineralization after a 7-day immersion in the simulated body fluid (SBF). This coating also provided a better surface for the cellular activity, as compared to the Ca-P; 0 W coating.
Collapse
Affiliation(s)
- Leila Fathyunes
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran.
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran
| |
Collapse
|
16
|
Zhang Y, Liu X, Li Z, Zhu S, Yuan X, Cui Z, Yang X, Chu PK, Wu S. Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective Infection Prevention and Excellent Osteointegration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1266-1277. [PMID: 29227620 DOI: 10.1021/acsami.7b17351] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interfacial characteristics play an important role in infection prevention and osteointegration of artificial bone implants. In this work, both Ag nanoparticles (AgNPs) and ZnO NPs are incorporated into hydroxyapatite (HA) nanopowders and deposited onto Ti6Al4V (Ti6) implants by laser cladding. The composite coatings possess a hierarchical surface structure with homogeneous distributions of Ag and ZnO. The Ag and ZnO NPs that are immobilized by laser cladding ensure long-term and gradual release of Ag and Zn ions at low cumulative concentrations of 36.2 and 56.4 μg/L after immersion for 21 days. A large concentration of Ag released initially increases the cytotoxicity but the large initial ZnO content enhances the cell viability and osteogenetic ability. The nano Ag/ZnO-embedded HA coating (Ag/ZnO/HA = 7:3:90 wt %, namely Ag7ZnO3HA) exhibits optimal antibacterial efficacy and osteogenetic capability, as exemplified by the broad spectrum antibacterial efficacy of 96.5 and 85.8% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, together with enhanced osteoinductivity with higher alkaline phosphatase (ALP) activity of 134.60 U/g protein compared to 70.79 U/g protein for the untreated implants after culturing for 7 days. The rabbit femoral implant model further confirms that the optimized composite coating accelerates the formation of new bone tissues indicating 87.15% of the newly formed bone area and osteointegration showing 83.75% of the bone-implant contact area even in the presence of injected S. aureus. The laser-cladded Ag7ZnO3HA composite coatings are promising metallic implants with excellent intrinsic antibacterial activity and osteointegration ability.
Collapse
Affiliation(s)
- Yanzhe Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Xubo Yuan
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Xianjin Yang
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University , Wuhan 430062, China
- School of Materials Science & Engineering, Tianjin University , Tianjin 300072, China
| |
Collapse
|