1
|
Li J, Zeng Y, Liu F, Liao X, Zhong C, Dong S, Cai Y, Yang P. Erythrocyte Membrane-Camouflaged Xanthohumol Nanoparticles Mitigate Doxorubicin-Induced Cardiotoxicity by Inhibiting Ferroptosis. ACS Biomater Sci Eng 2025; 11:2727-2738. [PMID: 40305843 DOI: 10.1021/acsbiomaterials.4c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Doxorubicin (DOX) chemotherapy is a cornerstone of cancer treatment, but its clinical application and effectiveness are severely restricted due to its life-threatening cardiotoxicity. Xanthohumol (XH), a compound from traditional Chinese medicine, is noted for its antioxidant properties and the potential to mitigate DOX-induced cardiotoxicity (DIC). However, its poor water solubility results in low biocompatibility, making it susceptible to immune system clearance, which severely restricts its application in vivo. In this study, we first identified and demonstrated that XH can effectively mitigate DIC by inhibiting ferroptosis. We designed a biomimetic nanodelivery system encapsulating XH within porous poly(lactic-co-glycolic acid) (PLGA) nanoparticles, further coated with an erythrocyte membrane (XH-NPs@RBCm). This system offers several advantages, including evasion of macrophage phagocytosis and prolonged circulation time, thereby enhancing the stability and bioavailability of XH in vivo. Treatment with XH-NPs@RBCm significantly reduced reactive oxygen species-dependent ferroptosis, improving the DOX-induced myocardial atrophy and cardiac dysfunction. Our study underscores the therapeutic promise of XH-NPs@RBCm in treating DIC through ferroptosis inhibition, offering key insights into biomimetic nanodelivery system development for DIC management.
Collapse
Affiliation(s)
- Jingchao Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yinghua Zeng
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chongbin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shujuan Dong
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
2
|
Li X, Hou X, Zhang S, Xiong J, Li Y, Miao W. Long-Circulating Nanoemulsion with Oxygen and Drug Co-Delivery for Potent Photodynamic/Antibiotic Therapy Against Multidrug-Resistant Gram-Negative Bacterial Infection. Int J Nanomedicine 2024; 19:12205-12219. [PMID: 39588256 PMCID: PMC11587793 DOI: 10.2147/ijn.s477278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose Compared to conventional photodynamic therapy (PDT), oxygen-affording PDT represents a promising strategy for treating multidrug-resistant (MDR) gram-negative bacterial infections due to its enhanced sensitization ability towards bacteria and amplified therapeutic efficacy. Over the last decade, various nanoplatforms for the co-delivery of oxygen and photosensitizers have been developed. However, their application in the treatment of infectious diseases is hampered by their poor stability and easy clearance by the reticuloendothelial system (RES). Methods To address these obstacles, we reported an erythrocyte membrane (EM) camouflaged nanoemulsion containing chlorin e6 (Ce6) and perfluorocarbon (FDC), named ECF, showing good colloidal stability and long-circulating potential, making it suitable for fighting against MDR Gram-negative bacterial infections. The nanoemulsion was fabricated and characterized. The oxygen loading and release performance, photodynamic activity, and bactericidal performance of ECF against Acinetobacter baumannii (A. baumannii) were evaluated. Furthermore, the antiphagocytosis profile was tested in vitro using Raw 264.7 cells. In addition, the pharmacokinetic behavior and therapeutic efficiency of ECF were studied in vivo. Results ECF exhibited superior oxygen loading and release behavior, potent photodynamic activity, and negligible toxicity to mammalian cells. Upon light irradiation, the antibacterial rate of preoxygenated-ECF reached 98% at 40 μg mL-1 of Ce6 and the bactericidal activity of preoxygenated-ECF and Gen was 3.3 folds higher than that of Gen. Furthermore, ECF could effectively inhibit uptake by phagocytes and circulate in the blood 1.5-fold longer than that of nanoemulsion without EM modification (CF) following intravenous administration. In addition, preoxygenated-ECF combined with antibiotic plus light irradiation showed prominent therapeutic efficacy in treating A. baumannii-induced acute peritonitis, accompanied by good biocompatibility in vivo. Conclusion Our results provide a novel paradigm for evading immune clearance, prolonging retention time and improving synergetic bactericidal capacity in combination with PDT and antibiotic therapy against planktonic bacteria and gram-negative bacterial infections.
Collapse
Affiliation(s)
- Xiaolong Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People’s Republic of China
| | - Xinyi Hou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Siqin Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People’s Republic of China
| | - Jianming Xiong
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People’s Republic of China
| | - Yuanyuan Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People’s Republic of China
| |
Collapse
|
3
|
Chen X, Sun Z, Peng X, Meng N, Ma L, Fu J, Chen J, Liu Y, Yang Y, Zhou C. Graphene Oxide/Black Phosphorus Functionalized Collagen Scaffolds with Enhanced Near-Infrared Controlled In Situ Biomineralization for Promoting Infectious Bone Defect Repair through PI3K/Akt Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50369-50388. [PMID: 39264653 PMCID: PMC11441399 DOI: 10.1021/acsami.4c10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infectious bone defects resulting from surgery, infection, or trauma are a prevalent clinical issue. Current treatments commonly used include systemic antibiotics and autografts or allografts. Nevertheless, therapies come with various disadvantages, including multidrug-resistant bacteria, complications arising from the donor site, and immune rejection, which makes artificial implants desirable. However, artificial implants can fail due to bacterial infections and inadequate bone fusion after implantation. Thus, the development of multifunctional bone substitutes that are biocompatible, antibacterial, osteoconductive, and osteoinductive would be of great clinical importance. This study designs and prepares 2D graphene oxide (GO) and black phosphorus (BP) reinforced porous collagen (Col) scaffolds as a viable strategy for treating infectious bone defects. The fabricated Col-GO@BP scaffold exhibited an efficient photothermal antibacterial effect under near-infrared (NIR) irradiation. A further benefit of the NIR-controlled degradation of BP was to promote biomineralization by phosphorus-driven and calcium-extracted phosphorus in situ. The abundant functional groups in GO could synergistically capture the ions and enhance the in situ biomineralization. The Col-GO@BP scaffold facilitated osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSC) by leveraging its mild photothermal effect and biomineralization process, which upregulated heat shock proteins (HSPs) and activated PI3K/Akt pathways. Additionally, systematic in vivo experiments demonstrated that the Col-GO@BP scaffold obviously promotes infectious bone repair through admirable photothermal antibacterial performance and enhanced vascularization. As a result of this study, we provide new insights into the photothermal activity of GO@BP nanosheets, their degradation, and a new biological application for them.
Collapse
Affiliation(s)
- Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Jie Fu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Junwei Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yuanhang Liu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| |
Collapse
|
4
|
Liu H, Tang L, Yin Y, Cao Y, Fu C, Feng J, Shen Y, Wang W. Photoresponsive Multirole Nanoweapon Camouflaged by Hybrid Cell Membrane Vesicles for Efficient Antibacterial Therapy of Pseudomonas aeruginosa-Infected Pneumonia and Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403101. [PMID: 39007186 PMCID: PMC11425291 DOI: 10.1002/advs.202403101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Indexed: 07/16/2024]
Abstract
Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Hening Liu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Lu Tang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yue Yin
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Cong Fu
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Yan Shen
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Wei Wang
- State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsSchool of PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
- NMPA Key Laboratory for Research and Evaluation of CosmeticsChina Pharmaceutical UniversityNanjing211198P. R. China
| |
Collapse
|
5
|
Sun Z, Chen X, Miao F, Meng N, Hu K, Xiong S, Peng X, Ma L, Zhou C, Yang Y. Engineering Ag-Decorated Graphene Oxide Nano-Photothermal Platforms with Enhanced Antibacterial Properties for Promoting Infectious Wound Healing. Int J Nanomedicine 2024; 19:8901-8927. [PMID: 39233743 PMCID: PMC11372703 DOI: 10.2147/ijn.s474536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Graphene oxide (GO) nanoparticles have emerged as a compelling photothermal agent (PHTA) in the realm of photothermal antibacterial therapy, owing to their cost-effectiveness, facile synthesis, and remarkable photostability. Nevertheless, the therapeutic efficacy of GO nanoparticles is commonly hindered by their inherent drawback of low photothermal conversion efficiency (PCE). Methods Herein, we engineer the Ag/GO-GelMA platform by growing the Ag on the surface of GO and encapsulating the Ag/GO nanoparticles into the GelMA hydrogels. Results The resulting Ag/GO-GelMA platform demonstrates a significantly enhanced PCE (47.6%), surpassing that of pure GO (11.8%) by more than fourfold. As expected, the Ag/GO-GelMA platform, which was designed to integrate the benefits of Ag/GO nanoparticles (high PCE) and hydrogel (slowly releasing Ag+ to exert an inherent antibacterial effect), has been shown to exhibit exceptional antibacterial efficacy. Furthermore, transcriptome analyses demonstrated that the Ag/GO-GelMA platform could significantly down-regulate pathways linked to inflammation (the MAPK and PI3K-Akt pathways) and had the ability to promote cell migration. Discussion Taken together, this study presents the design of a potent photothermal antibacterial platform (Ag/GO-GelMA) aimed at enhancing the healing of infectious wounds. The platform utilizes a handy method to enhance the PCE of GO, thereby making notable progress in the utilization of GO nano-PHTAs.
Collapse
Affiliation(s)
- Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Na Meng
- Department of Cardiovascular Medicine, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Keqiang Hu
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Shaotang Xiong
- The Second People's Hospital of China Three Gorges University·the Second People's Hospital of Yichang, Hubei, People's Republic of China
| | - Ximing Peng
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Liya Ma
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, 430060, People's Republic of China
| |
Collapse
|
6
|
Li D, Dong X, Liu X, Lin H, Yang D, Shi X, Chen C, Tao F, Jiang L, Deng H. Cellulose nanofibers embedded chitosan/tannin hydrogel with high antibacterial activity and hemostatic ability for drug-resistant bacterial infected wound healing. Carbohydr Polym 2024; 329:121687. [PMID: 38286563 DOI: 10.1016/j.carbpol.2023.121687] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/31/2024]
Abstract
Millions of patients annually suffer life-threatening illnesses caused by bacterial infections of skin wounds. However, the treatment of wounds infected with bacteria is a thorny issue in clinical medicine, especially with drug-resistant bacteria infections. Therefore, there is an increasing interest in developing wound dressings that can efficiently fight against drug-resistant bacterial infections and promote wound healing. In this work, an anti-drug-resistant bacterial chitosan/cellulose nanofiber/tannic acid (CS/CNF/TA) hydrogel with excellent wound management ability was developed by electrospinning and fiber breakage-recombination. The hydrogel exhibited an outstanding antibacterial property exceeding 99.9 %, even for drug-resistant bacteria. This hydrogel could adhere to the tissue surface due to its abundant catechol groups, which avoided the shedding of hydrogel during the movement. Besides, it exhibited extraordinary hemostatic ability during the bleeding phase of the wound and then regulated the wound microenvironment by absorbing water and moisturizing. Moreover, the CS/CNF/TA also promoted the regrowth of vessels and follicles, accelerating the healing of infected wound tissue, with a healing rate exceeding 95 % within a 14-day timeframe. Therefore, the CS/CNF/TA hydrogel opens a new approach for the healing of drug-resistant bacterial infected wounds.
Collapse
Affiliation(s)
- Dangwei Li
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xia Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Heng Lin
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Di Yang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Linbin Jiang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Deng S, Huang Y, Hu E, Ning LJ, Xie R, Yu K, Lu F, Lan G, Lu B. Chitosan/silk fibroin nanofibers-based hierarchical sponges accelerate infected diabetic wound healing via a HClO self-producing cascade catalytic reaction. Carbohydr Polym 2023; 321:121340. [PMID: 37739514 DOI: 10.1016/j.carbpol.2023.121340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023]
Abstract
The diabetic chronic wound healing is extremely restricted by issues such as hyperglycemia, excessive exudate and reactive oxygen species (ROS), and bacterial infection, causing significant disability and fatality rate. Herein, the chitosan/silk fibroin nanofibers-based hierarchical 3D sponge (CSSF-P/AuGCs) with effective exudate transfer and wound microenvironment modulation are produced by integrating cascade reactor (AuGC) into sponge substrates with parallel-arranged microchannels. When applied to diabetic wounds, the uniformly parallel-arranged microchannels endow CSSF-P/AuGCs with exceptional exudate absorption capacity, keeping the wound clean and moist; additionally, AuGCs efficiently depletes glucose in wounds to generate H2O2, which is then converted into HClO via cascade catalytic reaction to eliminate bacterial infection and reduce inflammation. Experiments in vitro demonstrated that the antibacterial activity of CSSF-P/AuGCs against S. aureus and E. coli was 92.7 and 94.27 %, respectively. Experiments on animals indicated that CSSF-P/AuGC could cure wounds in 11 days, displaying superior wound-healing abilities when compared to the commercial medication Tegaderm™. This versatile CSSF-P/AuGCs dressing may be an attractive choice for expediting diabetic wound healing with little cytotoxicity, providing a novel therapeutic method for establishing a favorable pathological microenvironment for tissue repair.
Collapse
Affiliation(s)
- Suya Deng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yinggui Huang
- Southwest University (Changshu) Research Institute, Changshu, Suzhou 215500, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Liang-Ju Ning
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
8
|
Zhou X, Dong L, Zhao B, Hu G, Huang C, Liu T, Lu Y, Zheng M, Yu Y, Yang Z, Cheng S, Xiong Y, Luo G, Qian W, Yin R. A photoactivatable and phenylboronic acid-functionalized nanoassembly for combating multidrug-resistant gram-negative bacteria and their biofilms. BURNS & TRAUMA 2023; 11:tkad041. [PMID: 37849944 PMCID: PMC10578387 DOI: 10.1093/burnst/tkad041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 07/19/2023] [Indexed: 10/19/2023]
Abstract
Background Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Lanlan Dong
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Baohua Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Guangyun Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Can Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Tengfei Liu
- Department of Burn and Plastic Sugery, No. 906 Hospital of Joint Logistic Support Force of PLA, No. 377 Zhongshan East Road, Yinzhou District, Ningbo 315100, China
| | - Yifei Lu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Mengxue Zheng
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Yanlan Yu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Zengjun Yang
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Shaowen Cheng
- Department of Wound Repair, the First Affiliated Hospital of Hainan Medical University, No. 31 Longhua Road, Haikou 570102, China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Key Laboratory of Disease Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| | - Rui Yin
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), No. 29 Gaotanyan Road, Shapingba District, Chongqing 400038, China
| |
Collapse
|
9
|
Kheradmandi M, Farnoud AM, Burdick MM. Development of Cell-Derived Plasma Membrane Vesicles as a Nanoparticle Encapsulation and Delivery System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552132. [PMID: 37609185 PMCID: PMC10441347 DOI: 10.1101/2023.08.06.552132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Developing non-invasive delivery platforms with a high level of structural and/or functional similarity to biological membranes is highly desirable to reduce toxicity and improve targeting capacity of nanoparticles. Numerous studies have investigated the impacts of physicochemical properties of engineered biomimetic nanoparticles on their interaction with cells, yet technical difficulties have led to the search for better biomimetics, including vesicles isolated directly from live cells. Cell-derived giant plasma membrane vesicles (GPMVs), in particular, offer a close approximation of the intact cell plasma membrane by maintaining the latter's compositional complexity, protein positioning in a fluid-mosaic pattern, and physical and mechanical properties. Thus, to overcome technical barriers of prior nanoparticle delivery approaches, we aimed to develop a novel method using GPMVs to encapsulate a variety of engineered nanoparticles, then use these core-shell, nanoparticle-GPMV vesicle structures to deliver cargo to other cells. Results The GPMV system in this study was generated by chemically inducing vesiculation in A549 cells, a model human alveolar epithelial line. These cell-derived GPMVs retained encapsulated silica nanoparticles (50 nm diameter) for at least 48 hours at 37 °C. GPMVs showed nearly identical lipid and protein membrane profiles as the parental cell plasma membrane, with or without encapsulation of nanoparticles. Notably, GPMVs were readily endocytosed in the parental A549 cell line as well as the human monocytic THP-1 cell line. Higher cellular uptake levels were observed for GPMV-encapsulated nanoparticles compared to control groups, including free nanoparticles. Further, GPMVs delivered a variety of nanoparticles to parental cells with reduced cytotoxicity compared to free nanoparticles at concentrations that were otherwise significantly toxic. Conclusions We have introduced a novel technique to load nanoparticles within the cell plasma membrane during the GPMV vesiculation process. These GPMVs are capable of (a) encapsulating different types of nanoparticles (including larger and not highly-positively charged bodies that have been technically challenging cargoes) using a parental cell uptake technique, and (b) improving delivery of nanoparticles to cells without significant cytotoxicity. Ultimately, endogenous surface membrane proteins and lipids can optimize the physicochemical properties of cell membrane-derived vesicles, which could lead to highly effective cell membrane-based nanoparticle/drug delivery systems.
Collapse
|
10
|
Cao X, Deng T, Zhu Q, Wang J, Shi W, Liu Q, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Photothermal Therapy Mediated Hybrid Membrane Derived Nano-formulation for Enhanced Cancer Therapy. AAPS PharmSciTech 2023; 24:146. [PMID: 37380936 DOI: 10.1208/s12249-023-02594-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023] Open
Abstract
Emodin is applied as an antitumor drug in many tumor therapies. However, its pharmacology performances are limited due to its low solubility. Herein, we fused erythrocyte and macrophage to form a hybrid membrane (EMHM) and encapsulated emodin to form hybrid membrane-coated nanoparticles. We employed glycyrrhizin to increase the solubility of emodin first and prepared the hybrid membrane nanoparticle-coated emodin and glycyrrhizin (EG@EMHM NPs) which exhibited an average particle size of 170 ± 20 nm and encapsulation efficiency of 98.13 ± 0.67%. The half-inhibitory concentrations (IC50) of EG@EMHM NPs were 1.166 μg/mL, which is half of the free emodin. Based on the photosensitivity of emodin, the reactive oxygen species (ROS) results disclosed that ROS levels of the photodynamic therapy (PDT) section were higher than the normal section (P < 0.05). Compared to the normal section, PDT-mediated EG@EMHM NPs could induce an early stage of apoptosis of B16. The western blot and flow cytometry results verified that PDT-mediated EG@EMHM NPs can significantly improve the solubility of emodin and perform a remarkably antitumor effect on melanoma via BAX and BCL-2 pathway. The application of the combined chemical and PDT therapy could provide an improving target therapy for cutaneous melanoma and also may offer an idea for other insoluble components sources of traditional Chinese medicine. Schematic of EG@EMHM NPs formulation.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qin Zhu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Guo K, Ren S, Zhang H, Cao Y, Zhao Y, Wang Y, Qiu W, Tian Y, Song L, Wang Z. Biomimetic Gold Nanorods Modified with Erythrocyte Membranes for Imaging-Guided Photothermal/Gene Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25285-25299. [PMID: 37207282 DOI: 10.1021/acsami.3c00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pancreatic cancer (PC) is one of the most malignant cancers that develops rapidly and carries a poor prognosis. Synergistic cancer therapy strategy could enhance the clinical efficacy compared to either treatment alone. In this study, gold nanorods (AuNRs) were used as siRNA delivery vehicles to interfere with the oncogenes of KRAS. In addition, AuNRs were one of anisotropic nanomaterials that can absorb near-infrared (NIR) laser and achieve rapid photothermal therapy for malignant cancer cells. Modification of the erythrocyte membrane and antibody Plectin-1 occurred on the surface of the AuNRs, making them a promising target nanocarrier for enhancing antitumor effects. As a result, biomimetic nanoprobes presented advantages in biocompatibility, targeting capability, and drug-loading efficiency. Moreover, excellent antitumor effects have been achieved by synergistic photothermal/gene treatment. Therefore, our study would provide a general strategy to construct a multifunctional biomimetic theranostic multifunctional nanoplatform for preclinical studies of PC.
Collapse
Affiliation(s)
- Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Huifeng Zhang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yingying Cao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yatong Zhao
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yajie Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Lina Song
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
12
|
Kou Q, Huang Y, Su Y, Lu L, Li X, Jiang H, Huang R, Li J, Nie X. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. NANOSCALE 2023. [PMID: 37161583 DOI: 10.1039/d3nr00542a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A synergistic combination of treatment with immunogenic cell death (ICD) inducers and immunoadjuvants may be a practical way to boost the anticancer response and successfully induce an immune response. The use of HR@UCNPs/CpG-Apt/DOX, new biomimetic drug delivery nanoparticles generated to combat breast cancer, is reported here as a unique strategy to produce immunogenicity and boost cancer immunotherapy. HR@UCNPs/CpG-Apt/DOX (HR-UCAD) consists of two parts. The core is composed of an immunoadjuvant CpG (a toll-like receptor 9 agonist) fused with a dendritic cell-specific aptamer sequence (CpG-Apt) to decorate upconversion nanoparticles (UCNPs) with the successful intercalation of doxorubicin (DOX) into the consecutive base pairs of Apt-CpG to construct an immune nanodrug UCNPs@CpG-Apt/DOX. The targeting molecule hyaluronic acid (HA) was inserted into a red blood cell membrane (RBCm) to form the shell (HR). HR-UCAD possessed a strong capacity to specifically induce ICD. Following DOX-induced ICD of cancer cells, sufficient exposure to tumor antigens and UCNPs@CpG-Apt (UCA) activated the tumor-specific immune response and reversed the immunosuppressive tumor microenvironment. In addition, HR-UCAD has good biocompatibility and increases the active tumor-targeting effect. Furthermore, HR-UCAD exhibits excellent near-infrared upconversion luminescence emission at 804 nm under irradiation with a 980 nm laser, which has great potential in biomedical imaging. Thus, the RBCm-camouflaged drug delivery system is a promising targeted chemotherapy and immunotherapy nanocomplex that could be used for effective targeted breast cancer treatment.
Collapse
Affiliation(s)
- Qinjie Kou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yufen Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yanrong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| |
Collapse
|
13
|
Xing H, Song Y, Xu H, Chen S, Li K, Dong L, Wang B, Xue J, Lu Y. A Magneto-Heated Silk Fibroin Scaffold for Anti-Biofouling Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206189. [PMID: 36720800 DOI: 10.1002/smll.202206189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Indexed: 05/04/2023]
Abstract
Macroscopic 3D porous materials are ideal solar evaporators for water purification. However, the limited sunlight intensity and penetrating depth during solar-driven evaporation cannot prevent the biofouling formation by photothermal effect, thus leading to the deterioration of evaporation rate. Herein, a magnetic heating strategy is reported for anti-biofouling solar steam generation based on a magnetic silk fibroin (SF) scaffold with bi-heating property. Under one sun, the solar-heated top surface of magnetic SF scaffolds accelerates water evaporation at 2.03 kg m-2 h-1 , while the unheated inner channels suffer from the formation of biofilm. When exposed to alternating magnetic field (AMF), the magnetic SF scaffold can be integrally heated, leading to an efficient inner temperature to prevent biofouling in channels for water transportation. Accordingly, magneto-heated scaffolds show steady water evaporation rates after exposure to S. aureus and E. coli, which maintained 93.6-94.6% of original performance. In contrast, the evaporation rates of the scaffolds without AMF treatment are reduced to 1.31 (S. aureus) and 1.32 (E. coli) kg m-2 h-1 , decreased by 35.5% and 35.0%, respectively. In addition, the magneto-heated scaffold inhibits biofouling formation in natural lake water, maintaining 99.5% original performance.
Collapse
Affiliation(s)
- Hanye Xing
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yonghong Song
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Xu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangkang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingzhe Xue
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
14
|
Wang W, Gao Y, Zhang M, Li Y, Tang BZ. Neutrophil-like Biomimic AIE Nanoparticles with High-Efficiency Inflammatory Cytokine Targeting Enable Precise Photothermal Therapy and Alleviation of Inflammation. ACS NANO 2023; 17:7394-7405. [PMID: 37009988 DOI: 10.1021/acsnano.2c11762] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Although photothermal therapy (PTT) has thrived as a promising treatment for drug-resistant bacterial infections by avoiding the abuse of antibiotics, the remaining challenges that limit the treatment efficiency are the poor targeting properties of infected lesions and low penetration to the cell membrane of Gram-negative bacteria. Herein, we developed a biomimetic neutrophil-like aggregation-induced emission (AIE) nanorobot (CM@AIE NPs) for precise inflammatory site homing and efficient PTT effects. Due to their surface-loaded neutrophil membranes, CM@AIE NPs can mimic the source cell and thus interact with immunomodulatory molecules that would otherwise target endogenous neutrophils. Coupled with the secondary near-infrared region absorption and excellent photothermal properties of AIE luminogens (AIEgens), precise localization, and treatment in inflammatory sites can be achieved, thereby minimizing damage to surrounding normal tissues. Moreover, CM@AIE NP-mediated PTT was stimulated in vivo by a 980 nm laser irradiation, which contributed to the extent of the therapeutic depth and limited the damage to skin tissues. The good biocompatibility and excellent in vitro and in vivo antibacterial effects prove that CM@AIE NPs can provide a strategy for broad-spectrum antibacterial applications.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Yumeng Gao
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Yuanyuan Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
15
|
Li B, Wang W, Zhao L, Yan D, Li X, Gao Q, Zheng J, Zhou S, Lai S, Feng Y, Zhang J, Jiang H, Long C, Gan W, Chen X, Wang D, Tang BZ, Liao Y. Multifunctional AIE Nanosphere-Based "Nanobomb" for Trimodal Imaging-Guided Photothermal/Photodynamic/Pharmacological Therapy of Drug-Resistant Bacterial Infections. ACS NANO 2023; 17:4601-4618. [PMID: 36826229 DOI: 10.1021/acsnano.2c10694] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Injudicious or inappropriate use of antibiotics has led to the prevalence of drug-resistant bacteria, posing a huge menace to global health. Here, a self-assembled aggregation-induced emission (AIE) nanosphere (AIE-PEG1000 NPs) that simultaneously possesses near-infrared region II (NIR-II) fluorescence emissive, photothermal, and photodynamic properties is prepared using a multifunctional AIE luminogen (AIE-4COOH). The AIE-PEG1000 NPs were encapsulated with teicoplanin (Tei) and ammonium bicarbonate (AB) into lipid nanovesicles to form a laser-activated "nanobomb" (AIE-Tei@AB NVs) for the multimodal theranostics of drug-resistant bacterial infections. In vivo experiments validate that the "nanobomb" enables high-performance NIR-II fluorescence, infrared thermal, and ultrasound (AB decomposition during the photothermal process to produce numerous CO2/NH3 bubbles, which is an efficient ultrasound contrast agent) imaging of multidrug-resistant bacteria-infected foci after intravenous administration of AIE-Tei@AB NVs followed by 660 nm laser stimulation. The highly efficient photothermal and photodynamic features of AIE-Tei@AB NVs, combined with the excellent pharmacological property of rapidly released Tei during bubble generation and NV disintegration, collectively promote broad-spectrum eradication of three clinically isolated multidrug-resistant bacteria strains and rapid healing of infected wounds. This multimodal imaging-guided synergistic therapeutic strategy can be extended for the theranostics of superbugs.
Collapse
Affiliation(s)
- Bin Li
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Lu Zhao
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Qiuxia Gao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Sitong Zhou
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Shanshan Lai
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Jie Zhang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Hang Jiang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
| | - Chengmin Long
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Wenjun Gan
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Xiaodong Chen
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
| | - Yuhui Liao
- Department of Burn Surgery & Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, Guangdong, China
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, China
| |
Collapse
|
16
|
Wu J, Zhang B, Lin N, Gao J. Recent nanotechnology-based strategies for interfering with the life cycle of bacterial biofilms. Biomater Sci 2023; 11:1648-1664. [PMID: 36723075 DOI: 10.1039/d2bm01783k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Biofilm formation plays an important role in the resistance development in bacteria to conventional antibiotics. Different properties of the bacterial strains within biofilms compared with their planktonic states and the protective effect of extracellular polymeric substances contribute to the insusceptibility of bacterial cells to conventional antimicrobials. Although great effort has been devoted to developing novel antibiotics or synthetic antibacterial compounds, their efficiency is overshadowed by the growth of drug resistance. Developments in nanotechnology have brought various feasible strategies to combat biofilms by interfering with the biofilm life cycle. In this review, recent nanotechnology-based strategies for interfering with the biofilm life cycle according to the requirements of different stages are summarized. Additionally, the importance of strategies that modulate the bacterial biofilm microenvironment is also illustrated with specific examples. Lastly, we discussed the remaining challenges and future perspectives on nanotechnology-based strategies for the treatment of bacterial infection.
Collapse
Affiliation(s)
- Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China. .,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
17
|
Xu N, Huang Q, Shi L, Wang J, Li X, Guo W, Yan D, Ni T, Yang Z, Yan Y. A bioinspired polydopamine-FeS nanocomposite with high antimicrobial efficiency via NIR-mediated Fenton reaction. Dalton Trans 2023; 52:1687-1701. [PMID: 36649112 DOI: 10.1039/d2dt03765c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ferrous and sulfur ions are essential elements for the human body, which play an active role in maintaining the body's normal physiology. Meanwhile, mussel-inspired polydopamine (PDA) possesses good hydrophilicity and biocompatibility. In the present work, ferrous sulfide embedded into polydopamine nanoparticles (PDA@FeS NPs) was designed and synthesized via a simple predoping polymerization-coprecipitation strategy and the intelligent PDA matrix successfully prevented the oxidation and agglomeration of FeS nanoparticles. Importantly, there was an obvious synergistic enhancement of the photothermal effect between polydopamine and ferrous sulfide. The PDA@FeS NPs exhibited excellent photothermal antibacterial effects against both E. coli and S. aureus. The near-infrared (NIR) light-mediated release of ferrous ions could reach about 26.5% under weakly acidic conditions, further triggering the Fenton reaction to produce toxic hydroxyl radicals (·OH) in the presence of hydrogen peroxide. The antibacterial mechanism could be attributed to cell membrane damage and cellular content leakage with the synergistic effect of PTT and CDT. This study highlighted the germicidal efficacy of PDA@FeS NPs and provided a new strategy for designing and developing next-generation antibacterial platforms.
Collapse
Affiliation(s)
- Na Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Qianqian Huang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Li Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Xiangrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Wei Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Dong Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Tianjun Ni
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Zhijun Yang
- Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China. .,Xinxiang Engineering Research Center for Functional Nanomedicine Materials, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| |
Collapse
|
18
|
Zhang L, Yang Y, Xiong YH, Zhao YQ, Xiu Z, Ren HM, Zhang K, Duan S, Chen Y, Xu FJ. Infection-responsive long-term antibacterial bone plates for open fracture therapy. Bioact Mater 2023; 25:1-12. [PMID: 36713134 PMCID: PMC9860072 DOI: 10.1016/j.bioactmat.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The infections in open fracture induce high morbidity worldwide. Thus, developing efficient anti-infective orthopedic devices is of great significance. In this work, we designed a kind of infection-responsive long-term antibacterial bone plates. Through a facile and flexible volatilization method, a multi-aldehyde polysaccharide derivative, oxidized sodium alginate, was crosslinked with multi-amino compounds, gentamycin and gelatin, to fabricate a uniform coating on Ti bone plates via Schiff base reaction, which was followed by a secondary crosslinking process by glutaraldehyde. The double-crosslinked coating was stable under normal condition, and could responsively release gentamycin by the triggering of the acidic microenvironment caused by bacterial metabolism, owning to the pH-responsiveness of imine structure. The thickness of the coating was ranging from 22.0 μm to 63.6 μm. The coated bone plates (Ti-GOGs) showed infection-triggered antibacterial properties (>99%) and high biocompatibility. After being soaked for five months, it still possessed efficient antibacterial ability, showing its sustainable antibacterial performance. The in vivo anti-infection ability was demonstrated by an animal model of infection after fracture fixation (IAFF). At the early stage of IAFF, Ti-GOGs could inhibit the bacterial infection (>99%). Subsequently, Ti-GOGs could promote recovery of fracture of IAFF. This work provides a convenient and universal strategy for fabrication of various antibacterial orthopedic devices, which is promising to prevent and treat IAFF.
Collapse
Affiliation(s)
- Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yurun Yang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yan-Hua Xiong
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui-Min Ren
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Corresponding author.
| | - Ying Chen
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
- Corresponding author.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Corresponding author.
| |
Collapse
|
19
|
Wang S, Liu Z, Wang L, Xu J, Mo R, Jiang Y, Wen C, Zhang Z, Ren L. Superhydrophobic Mechano-Bactericidal Surface with Photodynamic Antibacterial Capability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:723-735. [PMID: 36573916 DOI: 10.1021/acsami.2c21310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Bacterial invasion and proliferation on various surfaces pose a serious threat to public health worldwide. Conventional antibacterial strategies that mainly rely on bactericides exhibit high bacteria-killing efficiency but might trigger the well-known risk of antibiotic resistance. Here, we report a superhydrophobic mechano-bactericidal surface with photodynamically enhanced antibacterial capability. First, bioinspired nanopillars with polycarbonate as the bulk material were replicated from anodized alumina oxide templates via a simple hot-pressing molding method. Subsequently, a facile bovine serum albumin phase-transition method was used to introduce chlorin e6 onto the nanopillar-patterned surface, which was then perfluorinated to render the surface superhydrophobic. Benefiting from its strong liquid super-repellency and photodynamically enhanced mechano-bactericidal properties, the superhydrophobic nanopillar-patterned surface exhibits 100% antibacterial efficiency after 30 min visible light irradiation (650 nm, 20 mW cm-2). More strikingly, the surface exhibited impressive long-lasting antimicrobial performance, maintaining a very high bactericidal efficiency (≥99%) even after 10 cycles of bacterial contamination tests. Also, the superhydrophobic nanopillar-patterned surface displays good hemocompatibility with a much lower than the 5% hemolysis rate. Overall, this work offers a new method for significantly enhancing the antibacterial efficiency of structural antimicrobial surfaces without involving any bactericidal agents, and this functional surface shows great potential in the field of advanced medical materials and hospital surfaces.
Collapse
Affiliation(s)
- Shujin Wang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ziting Liu
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Li Wang
- College of Chemistry, Jilin University, Changchun130022, China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun130022, China
| | - Ru Mo
- Jilin Province People's Hospital, Changchun130021, China
| | - Yue Jiang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria3001, Australia
| | - Zhihui Zhang
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering of Ministry of Education & College of Biological and Agricultural, Jilin University, Changchun130022, China
| |
Collapse
|
20
|
Song Y, Zheng X, Hu J, Ma S, Li K, Chen J, Xu X, Lu X, Wang X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front Microbiol 2023; 14:1083007. [PMID: 36876074 PMCID: PMC9981803 DOI: 10.3389/fmicb.2023.1083007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
The rapid evolution of antibiotic resistance and the complicated bacterial infection microenvironments are serious obstacles to traditional antibiotic therapy. Developing novel antibacterial agents or strategy to prevent the occurrence of antibiotic resistance and enhance antibacterial efficiency is of the utmost importance. Cell membrane-coated nanoparticles (CM-NPs) combine the characteristics of the naturally occurring membranes with those of the synthetic core materials. CM-NPs have shown considerable promise in neutralizing toxins, evading clearance by the immune system, targeting specific bacteria, delivering antibiotics, achieving responsive antibiotic released to the microenvironments, and eradicating biofilms. Additionally, CM-NPs can be utilized in conjunction with photodynamic, sonodynamic, and photothermal therapies. In this review, the process for preparing CM-NPs is briefly described. We focus on the functions and the recent advances in applications of several types of CM-NPs in bacterial infection, including CM-NPs derived from red blood cells, white blood cells, platelet, bacteria. CM-NPs derived from other cells, such as dendritic cells, genetically engineered cells, gastric epithelial cells and plant-derived extracellular vesicles are introduced as well. Finally, we place a novel perspective on CM-NPs' applications in bacterial infection, and list the challenges encountered in this field from the preparation and application standpoint. We believe that advances in this technology will reduce threats posed by bacteria resistance and save lives from infectious diseases in the future.
Collapse
Affiliation(s)
- Yue Song
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Xia Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Hu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Subo Ma
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junyao Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyang Lu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojuan Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Mutalik C, Lin IH, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo, Hsiao YC, Kuo TR. Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview. Int J Nanomedicine 2022; 17:6821-6842. [PMID: 36605560 PMCID: PMC9809169 DOI: 10.2147/ijn.s392081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Across the planet, outbreaks of bacterial illnesses pose major health risks and raise concerns. Photodynamic, photothermal, and metal ion release effects of transition metal-based nanocomposites (TMNs) were recently shown to be highly effective in reducing bacterial resistance and upsurges in outbreaks. Surface plasmonic resonance, photonics, crystal structures, and optical properties of TMNs have been used to regulate metal ion release, produce oxidative stress, and generate heat for bactericidal applications. The superior properties of TMNs provide a chance to investigate and improve their antimicrobial actions, perhaps leading to therapeutic interventions. In this review, we discuss three alternative antibacterial strategies based on TMNs of photodynamic therapy, photothermal therapy, and metal ion release and their mechanistic actions. The scientific community has made significant efforts to address the safety, effectiveness, toxicity, and biocompatibility of these metallic nanostructures; significant achievements and trends have been highlighted in this review. The combination of therapies together has borne significant results to counter antimicrobial resistance (4-log reduction). These three antimicrobial pathways are separated into subcategories based on recent successes, highlighting potential needs and challenges in medical, environmental, and allied industries.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | | | - Siti Khaerunnisa
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhamad Khafid
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, East Java, Indonesia
| | - Widodo
- College of Information System, Universitas Nusantara PGRI, Kediri, Indonesia
| | - Yu-Cheng Hsiao
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,Stanford Byers Center for Biodesign, Stanford University, Stanford, CA, USA,Correspondence: Yu-Cheng Hsiao; Tsung-Rong Kuo, Tel +886-2-66382736 ext. 1359; +886-2-27361661 ext. 7706, Email ;
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
23
|
Guo J, Wei W, Zhao Y, Dai H. Iron oxide Nanoparticles (IONPs) with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Regen Biomater 2022; 9:rbac041. [PMID: 35812348 PMCID: PMC9258688 DOI: 10.1093/rb/rbac041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Metal-based nanomaterials usually have broad-spectrum antibacterial properties, low biological toxicity, and no drug resistance due to their intrinsic enzyme-like catalytic properties and external field (magnetic, thermal, acoustic, optical, electrical) responsiveness. Herein, Iron oxide (Fe3O4) nanoparticles (IONPs) synthesized by us have good biosafety, excellent photothermal conversion ability, and peroxidase-like catalytic activity, which can be used to construct a photothermal-enzymes combined antibacterial treatment platform. IONPs with peroxide-like catalytic activity can induce H2O2 to catalyze the production of •OH in a slightly acidic environment, thus achieving certain bactericidal effects and increasing the sensitivity of bacteria to heat. When stimulated by NIR light, the photothermal effect could destroy bacterial cell membranes, resulting in cleavage and inactivation of bacterial protein, DNA, or RNA. Meanwhile, it can also improve the catalytic activity of peroxidase-like, and promote IONPs to catalyze the production of more •OH for killing bacteria. After IONPs synergistic treatment, the antibacterial rate of Escherichia coli and Staphylococcus aureus reached nearly 100%. It also has an obvious killing effect on bacteria in infected wounds of mice, and can effectively promote the healing of S. aureus-infected wounds, which has great application potential in clinical anti-infection treatment.
Collapse
Affiliation(s)
- Jiaxin Guo
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
| | - Wenying Wei
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
| | - Yanan Zhao
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
| | - Honglian Dai
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, , Wuhan 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory , Xianhu hydrogen Valley, Foshan 528200, China
- Shenzhen Research Institute of Wuhan University of Technology , Shenzhen 518000, China
| |
Collapse
|
24
|
Dai J, Chen Z, Wang S, Xia F, Lou X. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Mater Today Bio 2022; 15:100279. [PMID: 35601893 PMCID: PMC9119842 DOI: 10.1016/j.mtbio.2022.100279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
|
25
|
Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J. Engineering Robust Ag-Decorated Polydopamine Nano-Photothermal Platforms to Combat Bacterial Infection and Prompt Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106015. [PMID: 35191211 PMCID: PMC9008420 DOI: 10.1002/advs.202106015] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 05/02/2023]
Abstract
Polydopamine (PDA) nanoparticles have emerged as an attractive biomimetic photothermal agent in photothermal antibacterial therapy due to their ease of synthesis, good biodegradability, long-term safety, and excellent photostability. However, the therapeutic effects of PDA nanoparticles are generally limited by the low photothermal conversion efficiency (PCE). Herein, PDA@Ag nanoparticles are synthesized via growing Ag on the surface of PDA nanoparticles and then encapsulated into a cationic guar gum (CG) hydrogel network. The optimized CG/PDA@Ag platform exhibits a high PCE (38.2%), which is more than two times higher than that of pure PDA (16.6%). More importantly, the formulated CG/PDA@Ag hydrogel with many active groups can capture and kill bacteria through effective interactions between hydrogel and bacteria, thereby benefiting the antibacterial effect. As anticipated, the designed CG/PDA@Ag system combined the advantages of PDA@Ag nanoparticles (high PCE) and hydrogel (preventing aggregation of PDA@Ag nanoparticles and possessing inherent antibacterial ability) is demonstrated to have superior antibacterial efficacy both in vitro and in vivo. This study develops a facile approach to boost the PCE of PDA for photothermal antibacterial therapy, providing a significant step forward in advancing the application of PDA nano-photothermal agents.
Collapse
Affiliation(s)
- Xiaoliang Qi
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yijing Huang
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Shengye You
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Yajing Xiang
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Erya Cai
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Ruiting Mao
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wenhao Pan
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Xianqin Tong
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Wei Dong
- School of Chemical EngineeringNanjing University of Science and TechnologyNanjingJiangsu210094China
| | - Fangfu Ye
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Jianliang Shen
- State Key Laboratory of OphthalmologyOptometry and Vision ScienceSchool of Ophthalmology and OptometrySchool of Biomedical EngineeringWenzhou Medical UniversityWenzhouZhejiang325027China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiang325001China
| |
Collapse
|
26
|
Li G, Li L, Wang Z, Zhong S, Li M, Wang H, Yuan L. The construct of triple responsive nanocomposite and its antibacterial effect. Colloids Surf B Biointerfaces 2022; 212:112378. [PMID: 35121427 DOI: 10.1016/j.colsurfb.2022.112378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
The current serious mismatch between the increasing severity of bacterial infections and antibiotic production capacity urgently requires the emergence of novel antimicrobial materials. In this paper, dopamine methacrylamide (DMA) and N-isopropylacrylamide (NIPAM) were polymerized as the monomers into a block copolymer poly(dopamine methacrylamide-block-N-isopropylacrylamide) (P(DA-NIP)) and then encapsulated with polydopamine-coated magnetic nanoparticle clusters (MNC) to produce an antibacterial nanocomposite (MNC@P(DA-NIP)). This nanocomposite has triple responses respectively to light, heat and magnetism, which endow MNC@P(DA-NIP) with the abilities to kill bacteria effectively and capture/release bacteria conveniently. Under near-infrared (NIR) light irradiation, MNC@P(DA-NIP) could significantly elevate the temperature through photothermal conversion. The increased temperature favored both the capture of bacteria on MNC@P(DA-NIP), and the damage of bacterial cells, causing bacterial death almost completely. While low temperatures could promote the release of dead bacteria from the nanocomposites, might through the recovery of the hydrophilic state of the outlayer PNIPAM. Moreover, thanks to the magnetic responsibility, MNC@P(DA-NIP) could be easily separated from the bacterial cells and perform better biofilm penetration. The results showed that the antibacterial effect of MNC@P(DA-NIP) was 3.5 times higher than that of MNC, and the recycling capacity of MNC@P(DA-NIP) was better than MNC@PDA. What's more, MNC@P(DA-NIP) possessed the excellent anti-biofilm properties under magnetic field (MF) and NIR. The most important features of the triple-responsive nanocomposites are excellent antibacterial effect, good recyclability and easy preparation, which provide the nanocomposites with great potential in eliminating harmful bacterial cells.
Collapse
Affiliation(s)
- Guize Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Luohuizi Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhiqiang Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Siqing Zhong
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Mingkang Li
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hongwei Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Lin Yuan
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
28
|
Yougbaré S, Mutalik C, Okoro G, Lin IH, Krisnawati DI, Jazidie A, Nuh M, Chang CC, Kuo TR. Emerging Trends in Nanomaterials for Antibacterial Applications. Int J Nanomedicine 2021; 16:5831-5867. [PMID: 34475754 PMCID: PMC8405884 DOI: 10.2147/ijn.s328767] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Around the globe, surges of bacterial diseases are causing serious health threats and related concerns. Recently, the metal ion release and photodynamic and photothermal effects of nanomaterials were demonstrated to have substantial efficiency in eliminating resistance and surges of bacteria. Nanomaterials with characteristics such as surface plasmonic resonance, photocatalysis, structural complexities, and optical features have been utilized to control metal ion release, generate reactive oxygen species, and produce heat for antibacterial applications. The superior characteristics of nanomaterials present an opportunity to explore and enhance their antibacterial activities leading to clinical applications. In this review, we comprehensively list three different antibacterial mechanisms of metal ion release, photodynamic therapy, and photothermal therapy based on nanomaterials. These three different antibacterial mechanisms are divided into their respective subgroups in accordance with recent achievements, showcasing prospective challenges and opportunities in clinical, environmental, and related fields.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, Ouagadougou, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
| | - Mohammad Nuh
- Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237, Indonesia
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| |
Collapse
|
29
|
Lan D, Liu Z, Zhou J, Xu M, Li Z, Dai F. Preparation and characterization of silk fibroin/polyethylene oxide nanofiber membranes with antibacterial activity. J Biomed Mater Res A 2021; 110:287-297. [PMID: 34369644 DOI: 10.1002/jbm.a.37285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023]
Abstract
Bacterial infection is among the most common diseases that threaten human health. Antibiotics are effective in treating bacterial infections. However, the overuse of antibiotics will lead to an increase in bacterial resistance. To reduce the overuse of antibiotics and improve the effective use of antibiotics through slow release, silk fibroin (SF)/polyethylene oxide (PEO) nanofiber membranes with different SF and PEO proportions were prepared by electrospinning. The ecofriendly solvent ethanol solution was used for electrospinning for better protection of antibiotic activity. The SEM showed that the surface of SF/PEO (2:8) and SF/PEO (3:7) was smoother and more uniform. With the increase of SF content, the thermal stability and hydrophilicity of SF/PEO nanofiber membranes were improved. The SF/PEO (3:7) nanofiber membrane had the best mechanical property and its maximum stress and strain were 4.6 1 ± 0.24 MPa and 16.36 ± 0.41%, respectively. Based on these good properties, SF/PEO (3:7) nanofiber membrane was chosen for loading and releasing gentamicin sulfate (GS). The fabricated (GS)/SF/PEO (3:7) nanofiber membrane exhibited good release efficiency and showed the good antibacterial activity against Staphylococcus aureus and Escherichia coli. These investigations indicated the GS/SF/PEO (3:7) nanofiber membrane (GS/SF/PEO) has a great potential for application in antibacterial materials.
Collapse
Affiliation(s)
- Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, textile and biomass sciences, Southwest University, Chongqing, China
| | - Zulan Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, textile and biomass sciences, Southwest University, Chongqing, China
| | - Jiale Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, textile and biomass sciences, Southwest University, Chongqing, China
| | - Mengting Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, textile and biomass sciences, Southwest University, Chongqing, China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, textile and biomass sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, textile and biomass sciences, Southwest University, Chongqing, China.,Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| |
Collapse
|