1
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
2
|
Gheorghiu M, Trandafir MF, Savu O, Pasarica D, Bleotu C. Unexpectedly High and Difficult-to-Explain Regenerative Capacity in an 82-Year-Old Patient with Insulin-Requiring Type 2 Diabetes and End-Stage Renal Disease. J Clin Med 2025; 14:2556. [PMID: 40283387 PMCID: PMC12027714 DOI: 10.3390/jcm14082556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The case we present is part of a large study that we conducted on hemodialysis patients with type 2 diabetes mellitus (T2DM) and which set the following objectives: studying changes in the intestinal microbiota, innate and acquired immune response capacity, and tissue regeneration. Methods: (1) For the genetic study of the gut microbiota, special techniques that are not based on cultivation were used since most of the species in the intestinal flora are not cultivable. (2) The immunological study had two targets: innate immunity (inflammation) and adaptive immunity (we chose to address the cellular immune response because, unlike the humoral one, it is insufficiently studied in this category of associated pathologies). As markers for innate immunity (inflammation), the following were determined: IL-6, sIL-6R, IL-1β, TNFα, IL-10, and NGAL. TNFβ/LTα was determined as a marker for adaptive immunity (the cellular immune response). (3) The study of tissue regeneration capacity was performed using NT-3 (this is the first study to do so) and VEGFβ (another marker that is scarce in this category of patients) as markers. All the aforementioned compounds were determined from serum samples, utilizing Merck Millipore ELISA kits for IL-6, IL-1β, IL-10, NT-3, and VEGF β, and Elabscience ELISA kits for IL-6R, TNFα, TNFβ, and NGAL. Results: We were very surprised to find unexpected immunological changes and tissue regenerative capacity in one of the patients studied, an 82-year-old female patient diagnosed with insulin-dependent T2DM with multiple complications, including end-stage renal disease (ESRD). The patient showed a huge capacity for tissue regeneration, combined with amplification of immunological capacity, in comparison to patients in the same group (T2DM and ESRD) and to those in the control group (ESRD). Thus, extremely elevated serum concentrations of IL-1β, IL-6, IL-10, and TNF-β, as well as the tissue regeneration indicators NT-3 and VEGFβ, were obtained in comparison to all other members of the patient group. At the same time, serum levels of the soluble IL-6 receptor (sIL6-R) and TNFα were greatly reduced compared to the test group's mean. Conclusions: All the data obtained during our research were corroborated with those from the specialized literature and entitle us to support the hypothesis that the cause of these unexpected behaviors is the genetically conditioned overproduction (possibly acquired post-infection) of IL-6, along with its predominant anti-inflammatory and pro-regenerative signaling through the membrane-bound receptor IL-6R.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
- Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| |
Collapse
|
3
|
Kao Y, Song W, Zhang R, Gu G, Qiu H, Shen W, Zhu H, Liu Y, Yang Y, Liu H, Zhang Z, Kong X, Feng S. Synergistic restoration of spinal cord injury through hyaluronic acid conjugated hydrogel-polydopamine nanoparticles combined with human mesenchymal stem cell transplantation. Bioact Mater 2025; 46:569-581. [PMID: 40027446 PMCID: PMC11871414 DOI: 10.1016/j.bioactmat.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) is a devastating disease with limited treatment options due to the restricted regenerative capacity of the central nervous system. The accumulation of reactive oxygen species (ROS) and inadequate endogenous neural stem progenitor cells (eNSPCs) in the lesion site exacerbates neurologic deficits and impedes motor function recovery. We have developed a temperature-responsive hyaluronic acid conjugated hydrogel-polydopamine nanoparticles (PDA NPs) combined with human mesenchymal stem cell (hMSCs) transplantation, denoted as H-P-M hydrogel. Microglia cells treated with PDA NPs have been shown to reduce intracellular ROS levels by 65 % and suppress the expression of inflammatory cytokines such as IL-1β (decreased by 35 %) and IL-6 (decreased by 23 %), thus mitigating the microglia's inflammatory response. Additionally, our results have demonstrated that the H-P-M hydrogel combined with hMSCs transplantation can recruit eNSPCs to the injury site as evidenced by utilizing Nestin lineage tracer mice. The RNA-seq has unveiled the potential of the H-P-M hydrogel to facilitate eNSPCs neuronal differentiation through the MAPK pathway. Furthermore, these differentiated neurons are integrated into local neural circuits. Together, it suggests that the H-P-M hydrogel synergistically improves the SCI niche. It serves as catalysts inducing 5-HT axon regeneration and improving BMS score after SCI through the modulation of the ROS milieu and the promotion of neuronal differentiation from eNSPCs, thereby presenting a promising strategy for SCI repair.
Collapse
Affiliation(s)
- Yanbing Kao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Song
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Renjie Zhang
- Department of Orthopedics, Second Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guangjin Gu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Heping Qiu
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenyuan Shen
- Department of Orthopedics, Second Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hanming Zhu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanchun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Yang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoyun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhihao Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohong Kong
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Second Hospital of Shandong University, Jinan, Shandong, China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Ding N, Luo R, Zhang Q, Li H, Zhang S, Chen H, Hu R. Current Status and Progress in Stem Cell Therapy for Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:512-534. [PMID: 38001353 DOI: 10.1007/s12975-023-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Intracerebral hemorrhage is a highly prevalent and prognostically poor disease, imposing immeasurable harm on human life and health. However, the treatment options for intracerebral hemorrhage are severely limited, particularly in terms of improving the microenvironment of the lesion, promoting neuronal cell survival, and enhancing neural function. This review comprehensively discussed the application of stem cell therapy for intracerebral hemorrhage, providing a systematic summary of its developmental history, types of transplants, transplantation routes, and transplantation timing. Moreover, this review presented the latest research progress in enhancing the efficacy of stem cell transplantation, including pretransplantation preconditioning, genetic modification, combined therapy, and other diverse strategies. Furthermore, this review pioneeringly elaborated on the barriers to clinical translation for stem cell therapy. These discussions were of significant importance for promoting stem cell therapy for intracerebral hemorrhage, facilitating its clinical translation, and improving patient prognosis.
Collapse
Affiliation(s)
- Ning Ding
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ran Luo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanran Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Ma W, Li X. Spinal cord injury repair based on drug and cell delivery: From remodeling microenvironment to relay connection formation. Mater Today Bio 2025; 31:101556. [PMID: 40026622 PMCID: PMC11871491 DOI: 10.1016/j.mtbio.2025.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) presents a formidable challenge in clinical settings, resulting in sensory and motor function loss and imposing significant personal and societal burdens. However, owning to the adverse microenvironment and limited regenerative capacity, achieving complete functional recovery after SCI remains elusive. Additionally, traditional interventions including surgery and medication have a series of limitations that restrict the effectiveness of treatment. Recently, tissue engineering (TE) has emerged as a promising approach for promoting neural regeneration and functional recovery in SCI, which can effectively delivery drugs into injury site and delivery cells and improve the survival and differential. Here, we outline the main pathophysiology events of SCI and the adverse microenvironment post injury, further discuss the materials and common assembly strategies used for scaffolds in SCI treatment, expound on the latest advancements in treatment methods based on materials and scaffolds for drug and cell delivery in detail, and propose future directions for SCI repair with TE and highlight potential clinical applications.
Collapse
Affiliation(s)
- Wanrong Ma
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| |
Collapse
|
6
|
Wang S, Xu W, Wang J, Hu X, Wu Z, Li C, Xiao Z, Ma B, Cheng L. Tracing the evolving dynamics and research hotspots of spinal cord injury and surgical decompression from 1975 to 2024: a bibliometric analysis. Front Neurol 2024; 15:1442145. [PMID: 39161868 PMCID: PMC11330800 DOI: 10.3389/fneur.2024.1442145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Exploration of the benefits and timing of surgical decompression in spinal cord injury (SCI) has been a research hotspot. However, despite the higher volume and increasing emphasis on quality there remains no bibliometric view on SCI and surgical decompression. In this study, we aimed to perform bibliometric analysis to reveal the core countries, affiliations, journals, authors, and developmental trends in SCI and surgical decompression across the past 50 years. Methods Articles and reviews were retrieved from web of science core collection between 1975 and 2024. The bibliometrix package in R was used for data analysis and visualizing. Results A total of 8,688 documents were investigated, indicating an ascending trend in annual publications. The USA and China played as the leaders in scientific productivity. The University of Toronto led in institutional productions. Core authors, such as Michael G. Fehlings, showed high productivity, and occasional authors showed widespread interests. Core journals like Spine and Spinal Cord served as beacons in this field. The interaction of core authors and international collaboration accentuated the cross-disciplinary feature of the field. Prominent documents emphasized the clinical significance of early decompression in 24 h post SCI. Conclusion Based on comprehensive bibliometric analysis and literature review, we identified the hotspots and future directions of this field: (1) further investigation into the molecular and cellular mechanisms to provide pre-clinical evidence for biological effects of early surgical decompression in SCI animal models; (2) further evaluation and validation of the optimal time window of surgical decompression based on large cohort, considering the inherent heterogeneity of subpopulations in complicated immune responses post SCI; (3) further exploration on the benefits of early decompression on the neurological, functional, and clinical outcomes in acute SCI; (4) evaluation of the optimal surgical methods and related outcomes; (5) applications of artificial intelligence-based technologies in spinal surgical decompression.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Li K, Chen Z, Chang X, Xue R, Wang H, Guo W. Wnt signaling pathway in spinal cord injury: from mechanisms to potential applications. Front Mol Neurosci 2024; 17:1427054. [PMID: 39114641 PMCID: PMC11303303 DOI: 10.3389/fnmol.2024.1427054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.
Collapse
Affiliation(s)
| | | | | | | | - Huaibo Wang
- Department of Spine Surgery, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
8
|
Chen T, He X, Wang J, Du D, Xu Y. NT-3 Combined with TGF-β Signaling Pathway Enhance the Repair of Spinal Cord Injury by Inhibiting Glial Scar Formation and Promoting Axonal Regeneration. Mol Biotechnol 2024; 66:1484-1495. [PMID: 37318740 PMCID: PMC11101526 DOI: 10.1007/s12033-023-00781-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
This study investigated the mechanism of neurotrophin-3 (NT-3) in promoting spinal cord injury repair through the transforming growth factor-beta (TGF-β) signaling pathway. A mouse model of spinal cord injury was established. Forty C57BL/6J mice were randomized into model, NT-3, NT-3 + TGF-β1 and NT-3 + LY364947 groups. The Basso-Beattie-Bresnahan (BBB) scores of the NT-3 and NT-3 + LY364947 groups were significantly higher than the model group. The BBB score of the NT-3 + TGF-β1 group was significantly lower than NT-3 group. Hematoxylin-eosin staining and transmission electron microscopy showed reduction in myelin sheath injury, more myelinated nerve fibers in the middle section of the catheter, and relatively higher density and more neatly arranged regenerated axons in the NT-3 and NT-3 + LY364947 groups compared with the model and NT-3 + TGF-β1 groups. Immunofluorescence, TUNEL and Western blot analysis showed that compared with model group, the NEUN expression increased, and the apoptosis and Col IV, LN, CSPG, tenascin-C, Sema 3 A, EphB2 and Smad2/3 protein expression decreased significantly in the NT-3 and NT-3 + LY364947 groups; the condition was reversed in the NT-3 + TGF-β1 group compared with the NT-3 group. NT-3 combined with TGF-β signaling pathway promotes astrocyte differentiation, reduces axon regeneration inhibitory molecules, apoptosis and glial scar formation, promotes axon regeneration, and improves spinal cord injury.
Collapse
Affiliation(s)
- Taibang Chen
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China.
| | - Xiaoqing He
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Jing Wang
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Di Du
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China
| | - Yongqing Xu
- Department of Orthopedics, No. 920 Hospital of PLA Joint Logistics Support Force, No. 212 Daguanlu, Kunming, Yunnan, 650000, China.
| |
Collapse
|
9
|
Wu Z, Zhou Y, Hou X, Liu W, Yin W, Wang L, Cao Y, Jiang Z, Guo Y, Chen Q, Xie W, Wang Z, Shi N, Liu Y, Gao X, Luo L, Dai J, Ren C, Jiang X. Construction of functional neural network tissue combining CBD-NT3-modified linear-ordered collagen scaffold and TrkC-modified iPSC-derived neural stem cells for spinal cord injury repair. Bioact Mater 2024; 35:242-258. [PMID: 38333615 PMCID: PMC10850738 DOI: 10.1016/j.bioactmat.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/13/2024] [Indexed: 02/10/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection. RNA sequencing and metabolomic analyses also confirmed the repair effect of this tissue from multiple perspectives and revealed its potential mechanism for treating SCI. Together, we constructed a functional neural network tissue using human iPSCs-derived NSCs as seed cells based on the interaction of receptors and ligands for the first time. This tissue can effectively improve the therapeutic effect of SCI, thus confirming the feasibility of human iPSCs-derived NSCs and LOCS for SCI repair and providing a valuable direction for SCI research.
Collapse
Affiliation(s)
- Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Yi Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Lei Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Zhipeng Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Quan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| | - Wen Xie
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Ziqiang Wang
- College of Biology, Hunan University, Changsha, 410000, China
| | - Ning Shi
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100080, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- School of Basic Medical Science, Central South University, Changsha, Hunan Province, 410078, China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan Province, 410078, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
| |
Collapse
|
10
|
Tao G, Yang S, Xu J, Wang L, Yang B. Global research trends and hotspots of artificial intelligence research in spinal cord neural injury and restoration-a bibliometrics and visualization analysis. Front Neurol 2024; 15:1361235. [PMID: 38628700 PMCID: PMC11018935 DOI: 10.3389/fneur.2024.1361235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Artificial intelligence (AI) technology has made breakthroughs in spinal cord neural injury and restoration in recent years. It has a positive impact on clinical treatment. This study explores AI research's progress and hotspots in spinal cord neural injury and restoration. It also analyzes research shortcomings related to this area and proposes potential solutions. Methods We used CiteSpace 6.1.R6 and VOSviewer 1.6.19 to research WOS articles on AI research in spinal cord neural injury and restoration. Results A total of 1,502 articles were screened, in which the United States dominated; Kadone, Hideki (13 articles, University of Tsukuba, JAPAN) was the author with the highest number of publications; ARCH PHYS MED REHAB (IF = 4.3) was the most cited journal, and topics included molecular biology, immunology, neurology, sports, among other related areas. Conclusion We pinpointed three research hotspots for AI research in spinal cord neural injury and restoration: (1) intelligent robots and limb exoskeletons to assist rehabilitation training; (2) brain-computer interfaces; and (3) neuromodulation and noninvasive electrical stimulation. In addition, many new hotspots were discussed: (1) starting with image segmentation models based on convolutional neural networks; (2) the use of AI to fabricate polymeric biomaterials to provide the microenvironment required for neural stem cell-derived neural network tissues; (3) AI survival prediction tools, and transcription factor regulatory networks in the field of genetics were discussed. Although AI research in spinal cord neural injury and restoration has many benefits, the technology has several limitations (data and ethical issues). The data-gathering problem should be addressed in future research, which requires a significant sample of quality clinical data to build valid AI models. At the same time, research on genomics and other mechanisms in this field is fragile. In the future, machine learning techniques, such as AI survival prediction tools and transcription factor regulatory networks, can be utilized for studies related to the up-regulation of regeneration-related genes and the production of structural proteins for axonal growth.
Collapse
Affiliation(s)
- Guangyi Tao
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shun Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junjie Xu
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Linzi Wang
- College of Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Pain, Henan Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
11
|
Zhang R, Wang J, Deng Q, Xiao X, Zeng X, Lai B, Li G, Ma Y, Ruan J, Han I, Zeng YS, Ding Y. Mesenchymal Stem Cells Combined With Electroacupuncture Treatment Regulate the Subpopulation of Macrophages and Astrocytes to Facilitate Axonal Regeneration in Transected Spinal Cord. Neurospine 2023; 20:1358-1379. [PMID: 38171303 PMCID: PMC10762392 DOI: 10.14245/ns.2346824.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVE Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). METHODS Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. RESULTS The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1β) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. CONCLUSION These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.
Collapse
Affiliation(s)
- Rongyi Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pain Management, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junhua Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qingwen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingru Xiao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Biqin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yuanhuan Ma
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingwen Ruan
- Department of Acupuncture, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Inbo Han
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Korea
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Sun Yat-sen Memorial Hospital, Guangzhou, China
| |
Collapse
|
12
|
Ying C, Zhang J, Zhang H, Gao S, Guo X, Lin J, Wu H, Hong Y. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol 2023; 369:114543. [PMID: 37743001 DOI: 10.1016/j.expneurol.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Central nervous system (CNS) diseases are a leading cause of death and disability. Due to CNS neurons have no self-renewal and regenerative ability as they mature, their loss after injury or disease is irreversible and often leads to functional impairments. Unfortunately, therapeutic options for CNS diseases are still limited, and effective treatments for these notorious diseases are warranted to be explored. At present, stem cell therapy has emerged as a potential therapeutic strategy for improving the prognosis of CNS diseases. Accumulating preclinical and clinical evidences have demonstrated that multiple molecular mechanisms, such as cell replacement, immunoregulation and neurotrophic effect, underlie the use of stem cell therapy for CNS diseases. However, several issues have yet to be addressed to support its clinical application. Thus, this review article aims to summarize the role and underlying mechanisms of stem cell therapy in treating CNS diseases. And it is worthy of further evaluation for the potential therapeutic applications of stem cell treatment in CNS disease.
Collapse
Affiliation(s)
- Caidi Ying
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jun Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Nasiri M, Esmaeili J, Tebyani A, Basati H. A review about the role of additives in nerve tissue engineering: growth factors, vitamins, and drugs. Growth Factors 2023; 41:101-113. [PMID: 37343121 DOI: 10.1080/08977194.2023.2226938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
Notably the integration of additives such as growth factors, vitamins, and drugs with scaffolds promoted nerve tissue engineering. This study tried to provide a concise review of all these additives that facilitates nerve regeneration. An attempt was first made to provide information on the main principle of nerve tissue engineering, and then to shed light on the effectiveness of these additives on nerve tissue engineering. Our research has shown that growth factors accelerate cell proliferation and survival, while vitamins play an effective role in cell signalling, differentiation, and tissue growth. They can also act as hormones, antioxidants, and mediators. Drugs also have an excellent and necessary effect on this process by reducing inflammation and immune responses. This review shows that growth factors were more effective than vitamins and drugs in nerve tissue engineering. Nevertheless, vitamins were the most commonly used additive in the production of nerve tissue.
Collapse
Affiliation(s)
- Mehrsa Nasiri
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Biomedical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Javad Esmaeili
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | - Amir Tebyani
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| | - Hojat Basati
- Tissue Engineering Department, TISSUEHUB Co, Tehran, Iran
- Department of Chemical Engineering, Faculty of Engineering, Tehran University, Tehran, Iran
| |
Collapse
|
14
|
Jia Z, Zeng H, Ye X, Dai M, Tang C, Liu L. Hydrogel-based treatments for spinal cord injuries. Heliyon 2023; 9:e19933. [PMID: 37809859 PMCID: PMC10559361 DOI: 10.1016/j.heliyon.2023.e19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by damage resulting in dysfunction of the spinal cord. Hydrogels are common biomaterials that play an important role in the treatment of SCI. Hydrogels are biocompatible, and some have electrical conductivity that are compatible with spinal cord tissues. Hydrogels have a high drug-carrying capacity, allowing them to be used for SCI treatment through the loading of various types of active substances, drugs, or cells. We first discuss the basic anatomy and physiology of the human spinal cord and briefly discuss SCI and its treatment. Then, we describe different treatment strategies for SCI. We further discuss the crosslinking methods and classification of hydrogels and detail hydrogel biomaterials prepared using different processing methods for the treatment of SCI. Finally, we analyze the future applications and limitations of hydrogels for SCI. The development of biomaterials opens up new possibilities and options for the treatment of SCI. Thus, our findings will inspire scholars in related fields and promote the development of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Huanxuan Zeng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
15
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
16
|
Le Ciclé C, Pacini V, Rama N, Tauszig-Delamasure S, Airaud E, Petit F, de Beco S, Cohen-Tannoudji J, L'hôte D. The Neurod1/4-Ntrk3-Src pathway regulates gonadotrope cell adhesion and motility. Cell Death Discov 2023; 9:327. [PMID: 37658038 PMCID: PMC10474047 DOI: 10.1038/s41420-023-01615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Pituitary gonadotrope cells are essential for the endocrine regulation of reproduction in vertebrates. These cells emerge early during embryogenesis, colonize the pituitary glands and organize in tridimensional networks, which are believed to be crucial to ensure proper regulation of fertility. However, the molecular mechanisms regulating the organization of gonadotrope cell population during embryogenesis remain poorly understood. In this work, we characterized the target genes of NEUROD1 and NEUROD4 transcription factors in the immature gonadotrope αT3-1 cell model by in silico functional genomic analyses. We demonstrated that NEUROD1/4 regulate genes belonging to the focal adhesion pathway. Using CRISPR/Cas9 knock-out approaches, we established a double NEUROD1/4 knock-out αT3-1 cell model and demonstrated that NEUROD1/4 regulate cell adhesion and cell motility. We then characterized, by immuno-fluorescence, focal adhesion number and signaling in the context of NEUROD1/4 insufficiency. We demonstrated that NEUROD1/4 knock-out leads to an increase in the number of focal adhesions associated with signaling abnormalities implicating the c-Src kinase. We further showed that the neurotrophin tyrosine kinase receptor 3 NTRK3, a target of NEUROD1/4, interacts physically with c-Src. Furthermore, using motility rescue experiments and time-lapse video microscopy, we demonstrated that NTRK3 is a major regulator of gonadotrope cell motility. Finally, using a Ntrk3 knock-out mouse model, we showed that NTRK3 regulates gonadotrope cells positioning in the developing pituitary, in vivo. Altogether our study demonstrates that the Neurod1/4-Ntrk3-cSrc pathway is a major actor of gonadotrope cell mobility, and thus provides new insights in the regulation of gonadotrope cell organization within the pituitary gland.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Vincent Pacini
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Nicolas Rama
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, 69008, Lyon, France
| | - Servane Tauszig-Delamasure
- Institut NeuroMyoGène - CNRS UMR 5310 - Inserm U1217 de Lyon - UCBL Lyon 1, Faculté de Médecine et de Pharmacie, Lyon, France
| | - Eloïse Airaud
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - Florence Petit
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Simon de Beco
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France
| | - David L'hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, F-75013, Paris, France.
| |
Collapse
|
17
|
Zeng X, Wei QS, Ye JC, Rao JH, Zheng MG, Ma YH, Peng LZ, Ding Y, Lai BQ, Li G, Cheng SX, Ling EA, Han I, Zeng YS. A biocompatible gelatin sponge scaffold confers robust tissue remodeling after spinal cord injury in a non-human primate model. Biomaterials 2023; 299:122161. [PMID: 37236138 DOI: 10.1016/j.biomaterials.2023.122161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
We previously constructed a three-dimensional gelatin sponge (3D-GS) scaffold as a delivery vehicle for therapeutic cells and trophic factors in the treatment of spinal cord injury (SCI), and this study aimed to assess the biosafety and efficacy of the scaffold in a non-human primate SCI model. However, because it has only been tested in rodent and canine models, the biosafety and efficacy of the scaffold should ideally be assessed in a non-human primate SCI model before its use in the clinic. No adverse reactions were observed over 8 weeks following 3D-GS scaffold implantation into in a Macaca fascicularis with hemisected SCI. Scaffold implantation also did not add to neuroinflammatory or astroglial responses already present at the injured site, suggesting good biocompatibility. Notably, there was a significant reduction in α-smooth muscle actin (αSMA)-positive cells at the injury/implantation interface, leading to alleviation of fibrotic compression of the residual spinal cord tissue. The regenerating tissue in the scaffold showed numerous cells migrating into the implant secreting abundant extracellular matrix, resulting in a pro-regenerative microenvironment. Consequently, nerve fiber regeneration, myelination, vascularization, neurogenesis, and electrophysiological improvements were achieved. These results indicated that the 3D-GS scaffold had good histocompatibility and effectiveness in the structural repair of injured spinal cord tissue in a non-human primate and is suitable for use in the treatment of patients with SCI.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Lab of Stem Cell Biology and Innovative Research of Chinese Medicine; National Institute for Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Shuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji-Chao Ye
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Mei-Guang Zheng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zhi Peng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shi-Xiang Cheng
- Healthina Academy of Biomedicine, Tianjin Economic-Technological Development Area (HAB-TEDA) and XinCheng Hospital of Tianjin University, Tianjin, 301999, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Sha Q, Wang Y, Zhu Z, Wang H, Qiu H, Niu W, Li X, Qian J. A hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold with incorporated neurotrophin-3 for spinal cord injury repair. Acta Biomater 2023:S1742-7061(23)00309-4. [PMID: 37257575 DOI: 10.1016/j.actbio.2023.05.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Bio-factor stimulation is essential for axonal regeneration in the central nervous system. Thus, persistent and efficient factor delivery in the local microenvironment is an ideal strategy for spinal cord injury repair. We developed a biomimetic hydrogel scaffold to load biofactors in situ and release them in a controlled way as a promising therapeutic modality. Hyaluronic acid and silk fibroin were cross-linked as the basement of the scaffolds, and poly-dopamine coating was used to further increase the loading of factors and endow the hydrogel scaffolds with ideal physical and chemical properties and proper biocompatibility. Notably, neurotrophin-3 release from the hydrogel scaffolds was prolonged to 28 days. A spinal cord injury model was constructed for hydrogel scaffold transplantation. After eight weeks, significant NF200-positive nerve fibers were observed extending across the glial scar to the center of the injured area. Due to the release of neurotrophin-3, spinal cord regeneration was enhanced, and the cavity area of the injury graft site and inflammation associated with CD68 positive cells were reduced, which led to a significant improvement in hind limb motor function. The results show that the hyaluronic acid/silk fibroin/poly-dopamine-coated biomimetic hydrogel scaffold achieved locally slow release of neurotrophin-3, thus facilitating the regeneration of injured spinal cord. STATEMENT OF SIGNIFICANCE: Hydrogels have received great attention in spinal cord regeneration. Current research has focused on more efficient and controlled release of bio-factors. Here, we adopted a mussel-inspired strategy to functionalize the hyaluronic acid/silk fibroin hydrogel scaffold to increase the load of neurotrophin-3 and extend the release time. The hydrogel scaffolds have ideal physiochemical properties, proper release rate, and biocompatibility. Owing to the continuous neurotrophin-3 release from implanted scaffolds, cavity formation is reduced, inflammation alleviated, and spinal cord regeneration enhanced, indicating great potential for bio-factor delivery in soft tissue regeneration applications.
Collapse
Affiliation(s)
- Qi Sha
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yankai Wang
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Zhi Zhu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hu Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Hua Qiu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Weirui Niu
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangyang Li
- Stomatologic Hospital and College, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, Anhui 230032, China.
| | - Jun Qian
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
19
|
Yu H, Yang S, Li H, Wu R, Lai B, Zheng Q. Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects. Neurospine 2023; 20:164-180. [PMID: 37016865 PMCID: PMC10080446 DOI: 10.14245/ns.2245184.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 04/03/2023] Open
Abstract
After spinal cord injury (SCI), endogenous neural stem cells are activated and migrate to the injury site where they differentiate into astrocytes, but they rarely differentiate into neurons. It is difficult for brain-derived information to be transmitted through the injury site after SCI because of the lack of neurons that can relay neural information through the injury site, and the functional recovery of adult mammals is difficult to achieve. The development of bioactive materials, tissue engineering, stem cell therapy, and physiotherapy has provided new strategies for the treatment of SCI and shown broad application prospects, such as promoting endogenous neurogenesis after SCI. In this review, we focus on novel approaches including tissue engineering, stem cell technology, and physiotherapy to promote endogenous neurogenesis and their therapeutic effects on SCI. Moreover, we explore the mechanisms and challenges of endogenous neurogenesis for the repair of SCI.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haotao Li
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Co-corresponding Author Biqin Lai Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Southern Medical University, Guangzhou, China
- Corresponding Author Qiujian Zheng Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Ding Y, Li G, Zhang P, Zhang W. Editorial: New advances in functional rehabilitation after central and peripheral nervous system injury. Front Neurol 2023; 14:1160382. [PMID: 37006476 PMCID: PMC10061583 DOI: 10.3389/fneur.2023.1160382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Affiliation(s)
- Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Ying Ding
| | - Ge Li
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Ge Li
| | - Peixun Zhang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China
| | - Wei Zhang
- Research Department, Microbiome & Neuroscience, National Neuroscience Institute (NNI), Singapore, Singapore
| |
Collapse
|
21
|
Jin C, Wu Y, Zhang H, Xu B, Liu W, Ji C, Li P, Chen Z, Chen B, Li J, Wu X, Jiang P, Hu Y, Xiao Z, Zhao Y, Dai J. Spinal cord tissue engineering using human primary neural progenitor cells and astrocytes. Bioeng Transl Med 2023; 8:e10448. [PMID: 36925694 PMCID: PMC10013752 DOI: 10.1002/btm2.10448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising approach for repairing spinal cord injury (SCI). However, cell survival, maturation and integration after transplantation are still major challenges. Here, we produced a novel centimeter-scale human spinal cord neural tissue (hscNT) construct with human spinal cord neural progenitor cells (hscNPCs) and human spinal cord astrocytes (hscAS) on a linearly ordered collagen scaffold (LOCS). The hscAS promoted hscNPC adhesion, survival and neurite outgrowth on the LOCS, to form a linearly ordered spinal cord-like structure consisting of mature neurons and glia cells. When transplanted into rats with SCI, the hscNT created a favorable microenvironment by inhibiting inflammation and glial scar formation, and promoted neural and vascular regeneration. Notably, the hscNT promoted neural circuit reconstruction and motor functional recovery. Engineered human spinal cord implants containing astrocytes and neurons assembled on axon guidance scaffolds may therefore have potential in the treatment of SCI.
Collapse
Affiliation(s)
- Chen Jin
- University of the Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yayu Wu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Bai Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Wenbin Liu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Chunnan Ji
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Panpan Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Zhenni Chen
- University of the Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Bing Chen
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Jiayin Li
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Peipei Jiang
- Department of Obstetrics and GynecologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yali Hu
- Department of Obstetrics and GynecologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Jianwu Dai
- University of the Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Liu W, Xu B, Zhao S, Han S, Quan R, Liu W, Ji C, Chen B, Xiao Z, Yin M, Yin Y, Dai J, Zhao Y. Spinal cord tissue engineering via covalent interaction between biomaterials and cells. SCIENCE ADVANCES 2023; 9:eade8829. [PMID: 36753555 PMCID: PMC9908024 DOI: 10.1126/sciadv.ade8829] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 05/29/2023]
Abstract
Noncovalent interactions between cells and environmental cues have been recognized as fundamental physiological interactions that regulate cell behavior. However, the effects of the covalent interactions between cells and biomaterials on cell behavior have not been examined. Here, we demonstrate a combined strategy based on covalent conjugation between biomaterials (collagen fibers/lipid nanoparticles) and various cells (exogenous neural progenitor cells/astrocytes/endogenous tissue-resident cells) to promote neural regeneration after spinal cord injury (SCI). We found that metabolic azido-labeled human neural progenitor cells conjugated on dibenzocyclooctyne-modified collagen fibers significantly promoted cell adhesion, spreading, and differentiation compared with noncovalent adhesion. In addition, dibenzocyclooctyne-modified lipid nanoparticles containing edaravone, a well-known ROS scavenger, could target azide-labeled spinal cord tissues or transplanted azide-modified astrocytes to improve the SCI microenvironment. The combined application of these covalent conjugation strategies in a rat SCI model boosted neural regeneration, suggesting that the covalent interactions between cells and biomaterials have great potential for tissue regeneration.
Collapse
Affiliation(s)
- Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Bai Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Shuaijing Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shuyu Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenbin Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Chunnan Ji
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
23
|
Wang J, Wei Q, Yang Y, Che M, Ma Y, Peng L, Yu H, Shi H, He G, Wu R, Zeng T, Zeng X, Ma W. Small extracellular vesicles derived from four dimensional-culture of mesenchymal stem cells induce alternatively activated macrophages by upregulating IGFBP2/EGFR to attenuate inflammation in the spinal cord injury of rats. Front Bioeng Biotechnol 2023; 11:1146981. [PMID: 37187882 PMCID: PMC10176095 DOI: 10.3389/fbioe.2023.1146981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Effectively reducing the inflammatory response after spinal cord injury (SCI) is a challenging clinical problem and the subject of active investigation. This study employed a porous scaffold-based three dimensional long-term culture technique to obtain human umbilical cord mesenchymal stem cell (hUC-MSC)-derived Small Extracellular Vesicles (sEVs) (three dimensional culture over time, the "4D-sEVs"). Moreover, the vesicle size, number, and inner protein concentrations of the MSC 4D-sEVs contained altered protein profiles compared with those derived from 2D culture conditions. A proteomics analysis suggested broad changes, especially significant upregulation of Epidermal Growth Factors Receptor (EGFR) and Insulin-like Growth Factor Binding Protein 2 (IGFBP2) in 4D-sEVs compared with 2D-sEVs. The endocytosis of 4D-sEVs allowed for the binding of EGFR and IGFBP2, leading to downstream STAT3 phosphorylation and IL-10 secretion and effective induction of macrophages/microglia polarization from the pro-inflammatory M1 to anti-inflammatory M2 phenotype, both in vitro and in the injured areas of rats with compressive/contusive SCI. The reduction in neuroinflammation after 4D-sEVs delivery to the injury site epicenter led to significant neuroprotection, as evidenced by the number of surviving spinal neurons. Therefore, applying this novel 4D culture-derived Small Extracellular Vesicles could effectively curb the inflammatory response and increase tissue repair after SCI.
Collapse
Affiliation(s)
- Junhua Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingshuai Wei
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yue Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mingtian Che
- Biobank and Pathology Shared Resources, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yuanhuan Ma
- Guangzhou Institute of Clinical Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Lizhi Peng
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Haiyang Yu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huijuan Shi
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Guanheng He
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ting Zeng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Lab of Stem Cell Biology and Innovative Research of Chinese Medicine, National Institute of Stem Cell Clinical Research, Guangdong Provincial Hospital of Chinese Medicine/Guangdong Academy of Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Wenbin Ma, ; Xiang Zeng,
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wenbin Ma, ; Xiang Zeng,
| |
Collapse
|
24
|
Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol 2022; 224:422-436. [DOI: 10.1016/j.ijbiomac.2022.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
25
|
Wireless charging-mediated angiogenesis and nerve repair by adaptable microporous hydrogels from conductive building blocks. Nat Commun 2022; 13:5172. [PMID: 36056007 PMCID: PMC9440098 DOI: 10.1038/s41467-022-32912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/22/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury causes inflammation and glial scarring that impede brain tissue repair, so stimulating angiogenesis and recovery of brain function remain challenging. Here we present an adaptable conductive microporous hydrogel consisting of gold nanoyarn balls-coated injectable building blocks possessing interconnected pores to improve angiogenesis and recovery of brain function in traumatic brain injury. We show that following minimally invasive implantation, the adaptable hydrogel is able to fill defects with complex shapes and regulate the traumatic brain injury environment in a mouse model. We find that placement of this injectable hydrogel at peri-trauma regions enhances mature brain-derived neurotrophic factor by 180% and improves angiogenesis by 250% in vivo within 2 weeks after electromagnetized stimulation, and that these effects facilitate neuron survival and motor function recovery by 50%. We use blood oxygenation level-dependent functional neuroimaging to reveal the successful restoration of functional brain connectivity in the corticostriatal and corticolimbic circuits.
Collapse
|
26
|
Guo W, Zhang X, Zhai J, Xue J. The roles and applications of neural stem cells in spinal cord injury repair. Front Bioeng Biotechnol 2022; 10:966866. [PMID: 36105599 PMCID: PMC9465243 DOI: 10.3389/fbioe.2022.966866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
Spinal cord injury (SCI), which has no current cure, places a severe burden on patients. Stem cell-based therapies are considered promising in attempts to repair injured spinal cords; such options include neural stem cells (NSCs). NSCs are multipotent stem cells that differentiate into neuronal and neuroglial lineages. This feature makes NSCs suitable candidates for regenerating injured spinal cords. Many studies have revealed the therapeutic potential of NSCs. In this review, we discuss from an integrated view how NSCs can help SCI repair. We will discuss the sources and therapeutic potential of NSCs, as well as representative pre-clinical studies and clinical trials of NSC-based therapies for SCI repair.
Collapse
Affiliation(s)
- Wen Guo
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jiliang Zhai
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiliang Zhai, ; Jiajia Xue,
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Jiliang Zhai, ; Jiajia Xue,
| |
Collapse
|
27
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
28
|
Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, Deng Y, Hu H, Liu N, Li Z, Zhu P, Li G. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction. Front Cell Neurosci 2022; 16:865266. [PMID: 35602558 PMCID: PMC9120533 DOI: 10.3389/fncel.2022.865266] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Compared with the central nervous system, the adult peripheral nervous system possesses a remarkable regenerative capacity, which is due to the strong plasticity of Schwann cells (SCs) in peripheral nerves. After peripheral nervous injury, SCs de-differentiate and transform into repair phenotypes, and play a critical role in axonal regeneration, myelin formation, and clearance of axonal and myelin debris. In view of the limited self-repair capability of SCs for long segment defects of peripheral nerve defects, it is of great clinical value to supplement SCs in necrotic areas through gene modification or stem cell transplantation or to construct tissue-engineered nerve combined with bioactive scaffolds to repair such tissue defects. Based on the developmental lineage of SCs and the gene regulation network after peripheral nerve injury (PNI), this review summarizes the possibility of using SCs constructed by the latest gene modification technology to repair PNI. The therapeutic effects of tissue-engineered nerve constructed by materials combined with Schwann cells resembles autologous transplantation, which is the gold standard for PNI repair. Therefore, this review generalizes the research progress of biomaterials combined with Schwann cells for PNI repair. Based on the difficulty of donor sources, this review also discusses the potential of “unlimited” provision of pluripotent stem cells capable of directing differentiation or transforming existing somatic cells into induced SCs. The summary of these concepts and therapeutic strategies makes it possible for SCs to be used more effectively in the repair of PNI.
Collapse
Affiliation(s)
- Qisong Su
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Moussa Ide Nasser
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
| | - Jiaming He
- School of Basic Medical Science, Shandong University, Jinan, China
| | - Gang Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qing Ouyang
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Donglin Zhuang
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuzhi Deng
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Haoyun Hu
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Nanbo Liu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhetao Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhu
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- *Correspondence: Ping Zhu,
| | - Ge Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial People’s Hospital, Guangdong Cardiovascular Institute, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Structural Heart Disease, Guangzhou, China
- Ge Li,
| |
Collapse
|
29
|
Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurol 2022; 21:659-670. [DOI: 10.1016/s1474-4422(21)00464-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
|
30
|
Ge X, Wu S, Shen W, Chen L, Zheng Y, Ao F, Ning Y, Mao Y, Chen Z. Preparation of Polyvinylidene Fluoride-Gold Nanoparticles Electrospinning Nanofiber Membranes. Bioengineering (Basel) 2022; 9:130. [PMID: 35447690 PMCID: PMC9027547 DOI: 10.3390/bioengineering9040130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, gold nanoparticles (AuNPs) and curcumin drug were incorporated in polyvinylidene fluoride (PVDF) nanofibers by electrospinning as a novel tissue engineering scaffold in nerve regeneration. The influence of AuNPs on the morphology, crystallinity, and drug release behavior of nanofiber membranes was characterized. A successful composite nanofiber membrane sample was observed by scanning electron microscopy (SEM). The addition of AuNPs showed the improved as well as prolonged cumulative release of the drug. The results indicated that PVDF-AuNPs nanofiber membrane could potentially be applied for nerve regeneration.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.G.); (L.C.)
| | - Shang Wu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Wen Shen
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (X.G.); (L.C.)
| | - Yan Zheng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Fen Ao
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Yuanlan Ning
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Yueyang Mao
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (S.W.); (Y.Z.); (F.A.); (Y.N.); (Y.M.)
| | - Zhong Chen
- College of Biological and Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Xinyang 464000, China;
| |
Collapse
|
31
|
Chen C, Xu HH, Liu XY, Zhang YS, Zhong L, Wang YW, Xu L, Wei P, Chen YX, Liu P, Hao CR, Jia XL, Hu N, Wu XY, Gu XS, Chen LQ, Li XH. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats. Regen Biomater 2022; 9:rbac014. [PMID: 35480857 PMCID: PMC9036898 DOI: 10.1093/rb/rbac014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Abstract
Although implantation of biomaterials carrying mesenchymal stem cells (MSCs) is considered as a promising strategy for ameliorating neural function after spinal cord injury (SCI), there are still some challenges including poor cell survival rate, tumorigenicity and ethics concerns. The performance of the secretome derived from MSCs was more stable, and its clinical transformation was more operable. Cytokine antibody array demonstrated that the secretome of MSCs contained 79 proteins among the 174 proteins analyzed. 3D printed collagen/silk fibroin scaffolds carrying MSCs secretome improved hindlimb locomotor function according to the BBB scores, the inclined-grid climbing test and electrophysiological analysis. Parallel with locomotor function recovery, 3D printed collagen/silk fibroin scaffolds carrying MSCs secretome could further facilitate nerve fiber regeneration, enhance remyelination and accelerate the establishment of synaptic connections at the injury site compared to 3D printed collagen/silk fibroin scaffolds alone group according to magnetic resonance imaging (MRI), diffusion Tensor imaging (DTI), hematoxylin and eosin (HE) staining, Bielschowsky’s silver staining immunofluorescence staining and transmission electron microscopy (TEM). These results indicated the implantation of 3D printed collagen/silk fibroin scaffolds carrying MSCs secretome might be a potential treatment for SCI.
Collapse
Affiliation(s)
- Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162, China
| | - Xiao-Yin Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yu-Sheng Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Lin Zhong
- Department of Hematology, the first affiliated hospital of Chengdu medical college, Chengdu, Sichuan, 610500, China
| | - You-Wei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lin Xu
- Medical Psychology Section, Hubei General Hospital of Armed Police Force, Wuhan, Hubei, 430071, China
| | - Pan Wei
- Department of Neurosurgery, The First People's Hospital Of Long Quan yi District, Cheng Du 610000, Si Chuan, China
| | - Ya-Xing Chen
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peng Liu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Ru Hao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Li Jia
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Yang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiao-Song Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Li-Qun Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
32
|
Lai BQ, Bai YR, Han WT, Zhang B, Liu S, Sun JH, Liu JL, Li G, Zeng X, Ding Y, Ma YH, Zhang L, Chen ZH, Wang J, Xiong Y, Wu JH, Quan Q, Xing LY, Zhang HB, Zeng YS. Construction of a niche-specific spinal white matter-like tissue to promote directional axon regeneration and myelination for rat spinal cord injury repair. Bioact Mater 2021; 11:15-31. [PMID: 34938909 DOI: 10.1016/j.bioactmat.2021.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Directional axon regeneration and remyelination are crucial for repair of spinal cord injury (SCI), but existing treatments do not effectively promote those processes. Here, we propose a strategy for construction of niche-specific spinal white matter-like tissue (WMLT) using decellularized optic nerve (DON) loaded with neurotrophin-3 (NT-3)-overexpressing oligodendrocyte precursor cells. A rat model with a white matter defect in the dorsal spinal cord of the T10 segment was used. The WMLT transplantation group showed significant improvement in coordinated motor functions compared with the control groups. WMLT transplants integrated well with host spinal cord white matter, effectively addressing several barriers to directional axonal regeneration and myelination during SCI repair. In WMLT, laminin was found to promote development of oligodendroglial lineage (OL) cells by binding to laminin receptors. Interestingly, laminin could also guide linear axon regeneration via interactions with specific integrins on the axon surface. The WMLT developed here utilizes the unique microstructure and bioactive matrix of DON to create a niche rich in laminin, NT-3 and OL cells to achieve significant structural repair of SCI. Our protocol can help to promote research on repair of nerve injury and construction of neural tissues and organoids that form specific cell niches.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu-Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China
| | - Bao Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China
| | - Shu Liu
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Jia-Lin Liu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ling Zhang
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zheng-Hong Chen
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Wang
- Physiotherapy Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Yuan Xiong
- Physiotherapy Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Jin-Hua Wu
- Physiotherapy Department, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Qi Quan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma &War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, The 4th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ling-Yan Xing
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Bo Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, SunYat-sen University, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
33
|
Yang B, Liang C, Chen D, Cheng F, Zhang Y, Wang S, Shu J, Huang X, Wang J, Xia K, Ying L, Shi K, Wang C, Wang X, Li F, Zhao Q, Chen Q. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater 2021; 15:103-119. [PMID: 35386356 PMCID: PMC8941182 DOI: 10.1016/j.bioactmat.2021.11.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
The current effective method for treatment of spinal cord injury (SCI) is to reconstruct the biological microenvironment by filling the injured cavity area and increasing neuronal differentiation of neural stem cells (NSCs) to repair SCI. However, the method is characterized by several challenges including irregular wounds, and mechanical and electrical mismatch of the material-tissue interface. In the current study, a unique and facile agarose/gelatin/polypyrrole (Aga/Gel/PPy, AGP3) hydrogel with similar conductivity and modulus as the spinal cord was developed by altering the concentration of Aga and PPy. The gelation occurred through non-covalent interactions, and the physically crosslinked features made the AGP3 hydrogels injectable. In vitro cultures showed that AGP3 hydrogel exhibited excellent biocompatibility, and promoted differentiation of NSCs toward neurons whereas it inhibited over-proliferation of astrocytes. The in vivo implanted AGP3 hydrogel completely covered the tissue defects and reduced injured cavity areas. In vivo studies further showed that the AGP3 hydrogel provided a biocompatible microenvironment for promoting endogenous neurogenesis rather than glial fibrosis formation, resulting in significant functional recovery. RNA sequencing analysis further indicated that AGP3 hydrogel significantly modulated expression of neurogenesis-related genes through intracellular Ca2+ signaling cascades. Overall, this supramolecular strategy produces AGP3 hydrogel that can be used as favorable biomaterials for SCI repair by filling the cavity and imitating the physiological properties of the spinal cord. A facile strategy was developed to fabricate AGP3 hydrogel satisfying physiological requirements. AGP3 hydrogel promoted the differentiation of NSCs into neurons in vitro. AGP3 hydrogel could activate endogenous neurogenesis to repair spinal cord injury. AGP3 hydrogel modulated expression of neurogenesis-related genes in vitro.
Collapse
|