1
|
Huang M, Li W, Sun Y, Dong J, Li C, Jia H, Jiao Y, Wang L, Zhang S, Wang F, Chen J. Janus piezoelectric adhesives regulate macrophage TRPV1/Ca 2+/cAMP axis to stimulate tendon-to-bone healing by multi-omics analysis. Bioact Mater 2025; 50:134-151. [PMID: 40242507 PMCID: PMC12002942 DOI: 10.1016/j.bioactmat.2025.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Piezoelectric stimulation has garnered substantial interest as a promising strategy for tissue regeneration. However, studies investigating its impact on tendon-to-bone healing characterized by fibrocartilage remain scarce. Moreover, there are considerable technical challenges in achieving minimally invasive application of piezoelectric stimulation on the irregular tendon-to-bone interface. Herein, we developed Janus asymmetric piezoelectric adhesives by assembling adhesive hydrogel (GAN) and non-adhesive hydrogel (GM) on each side of piezoelectric poly (L-lactic acid) nanofiber. Piezoelectric adhesives exhibited superior anti-inflammatory effects both in vitro and ex vivo. Notably, the transient receptor potential (TRP) ion channels, a class of versatile signaling molecules, are closely associated with the regulation of inflammation. This study demonstrated that piezoelectric stimulation promoted Ca2+ influx through the activation of transient receptor potential vanilloid 1 (TRPV1), further enhancing cAMP signaling pathway in macrophages by RNA sequencing. Additionally, in vivo proteomic analysis revealed Arachidonic acid metabolism and TNF-α signaling pathway downregulation and VEGF signaling pathway upregulation in a rat rotator cuff repair model. Piezoelectric adhesives ultimately achieved inflammation alleviation, angiogenesis enhancement, and fibrocartilage regeneration promotion, improving the biomechanical strength of the enthesis. This study elucidated the mechanism by which piezoelectric stimulation regulated tendon-to-bone healing through multi-omics analysis. The piezoelectric adhesives hold promise as a convenient and effective strategy for enhancing tendon-to-bone healing in clinical practice.
Collapse
Affiliation(s)
- Moran Huang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jize Dong
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chaojing Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Henjie Jia
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yongjie Jiao
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
| | - Shanxing Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Kim K, Min S, Thangam R, Tag KR, Lee HJ, Heo J, Jung H, Swe TT, Zare I, Song G, Najafabadi AH, Lee J, Jung HD, Kim JS, Hur S, Song HC, Park SG, Zhang K, Zhao P, Bian L, Kim SH, Yoon J, Ahn JP, Kim HK, Kang H. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact Mater 2025; 47:121-135. [PMID: 39897585 PMCID: PMC11787691 DOI: 10.1016/j.bioactmat.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Diverse connective tissues exhibit hierarchical anisotropic structures that intricately regulate homeostasis and tissue functions for dynamic immune response modulation. In this study, remotely manipulable hierarchical nanostructures are tailored to exhibit multi-scale ligand anisotropy. Hierarchical nanostructure construction involves coupling liganded nanoscale isotropic/anisotropic Au (comparable to few integrin molecules-scale) to the surface of microscale isotropic/anisotropic magnetic Fe3O4 (comparable to integrin cluster-scale) and then elastically tethering them to a substrate. Systematic independent tailoring of nanoscale or microscale ligand isotropy versus anisotropy in four different hierarchical nanostructures with constant liganded surface area demonstrates similar levels of integrin molecule bridging and macrophage adhesion on the nanoscale ligand isotropy versus anisotropy. Conversely, the levels of integrin cluster bridging across hierarchical nanostructures and macrophage adhesion are significantly promoted by microscale ligand anisotropy compared with microscale ligand isotropy. Furthermore, microscale ligand anisotropy dominantly activates the host macrophage adhesion and pro-regenerative M2 polarization in vivo over the nanoscale ligand anisotropy, which can be cyclically reversed by substrate-proximate versus substrate-distant magnetic manipulation. This unprecedented scale-specific regulation of cells can be diversified by unlimited tuning of the scale, anisotropy, dimension, shape, and magnetism of hierarchical structures to decipher scale-specific dynamic cell-material interactions to advance immunoengineering strategies.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyong-Ryol Tag
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-Jeong Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hwapyung Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Thet Thet Swe
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | | | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Sunghoon Hur
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 51508, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Se Hoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hong-Kyu Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Future Convergence Materials, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Amiri Heydari H, Kazemi Ashtiani M, Mostafaei F, Alipour Choshali M, Shiravandi A, Rajabi S, Daemi H. Functional Efficacy of Tissue-Engineered Small-Diameter Nanofibrous Polyurethane Vascular Grafts Surface-Modified by Methacrylated Sulfated Alginate in the Rat Abdominal Aorta. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67255-67274. [PMID: 39621863 DOI: 10.1021/acsami.4c13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis. Here, we fabricated macroporous and nanofibrous polyurethane (PU) bilayer tissue-engineered vascular grafts (TEVGs) by a salt-leaching method to achieve high porosities up to 30 μm. These grafts have a low porosity on the luminal side and a high porosity on the abluminal side. To enhance their properties, we surface-modified the PU scaffolds using heparin-mimicking methacrylated sulfated alginate (PU-MSA). We then evaluated these tubular scaffolds for their anticoagulation effect, protein adsorption, and cell attachment in vitro. The results revealed that TEVGs modified with sulfated alginate (PU-MSA) exhibited better anticoagulation (25 ± 1 min) and higher VEGF protein adsorption (75 ± 5 ng/mL) compared to other scaffolds. Moving to in vivo testing, we examined the TEVGs in a rat model for either 1 or 5 months. Through ultrasonication and various histological analyses, we assessed the functionality and biocompatibility of the TEVGs. Notably, the PU-MSA scaffold created a microenvironment conducive to cell homing and regeneration in the field of VTE.
Collapse
Affiliation(s)
- Hamid Amiri Heydari
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Farhad Mostafaei
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran 16635-148, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Ayoub Shiravandi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sarah Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamed Daemi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
4
|
Zhou S, Liu Y, Yu X, Wang D, Wang X, Li Q. Bidirectional Elastic PTFE Small Diameter Artificial Blood Vessel Grafts and Surface Antithrombotic Functionalized Construction. ACS APPLIED BIO MATERIALS 2024; 7:6985-6997. [PMID: 39381979 DOI: 10.1021/acsabm.4c01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Expanded polytetrafluoroethylene (ePTFE) failed to achieve clinical application in the field of small-diameter blood vessels due to its lack of elasticity in the circumferential direction and high stiffness. Excellent multidirectional elasticity and dynamic compliance matching with natural blood vessels are important means to solve the problem of acute thrombosis and poor long-term patency. Herein, novel PTFE spinning blood vessels were prepared by the PTFE emulsion electrospinning process, which not only presented good bidirectional elasticity but also promoted the adhesion and proliferation of endothelial cells and induced the contractile expression of SMCs. And, a PTFE-shish and aminated polycaprolactone (PCL)-kebab structure has been developed that converted the chemically inert PTFE surface into a drug-loading platform for the multifunctionalization of PTFE vascular grafts. It provides novel preparation methods for the application of new bidirectional elastic small-diameter artificial blood vessels and their surface functionalization construction.
Collapse
Affiliation(s)
- Siqi Zhou
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yulu Liu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xueke Yu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Dongfang Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Chen J, Zhang T, Liu D, Yang F, Feng Y, Wang A, Wang Y, He X, Luo F, Li J, Tan H, Jiang L. General Semi-Solid Freeze Casting for Uniform Large-Scale Isotropic Porous Scaffolds: An Application for Extensive Oral Mucosal Reconstruction. SMALL METHODS 2024; 8:e2301518. [PMID: 38517272 DOI: 10.1002/smtd.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Ice-templated porous biomaterials possess transformative potential in regenerative medicine; yet, scaling up ice-templating processes for broader applications-owing to inconsistent pore formation-remains challenging. This study reports an innovative semi-solid freeze-casting technique that draws inspiration from semi-solid metal processing (SSMP) combined with ice cream-production routines. This versatile approach allows for the large-scale assembly of various materials, from polymers to inorganic particles, into isotropic 3D scaffolds featuring uniformly equiaxed pores throughout the centimeter scale. Through (cryo-)electron microscopy, X-ray tomography, and finite element modeling, the structural evolution of ice grains/pores is elucidated, demonstrating how the method increases the initial ice nucleus density by pre-fabricating a semi-frozen slurry, which facilitates a transition from columnar to equiaxed grain structures. For a practical demonstration, as-prepared scaffolds are integrated into a bilayer tissue patch using biodegradable waterborne polyurethane (WPU) for large-scale oral mucosal reconstruction in minipigs. Systematic analyses, including histology and RNA sequencing, prove that the patch modulates the healing process toward near-scarless mucosal remodeling via innate and adaptive immunomodulation and activation of pro-healing genes converging on matrix synthesis and epithelialization. This study not only advances the field of ice-templating fabrication but sets a promising precedent for scaffold-based large-scale tissue regeneration.
Collapse
Affiliation(s)
- Jinlin Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Xueling He
- Editorial Board of Journal of Sichuan University (Medical Sciences), Sichuan University, Chengdu, Sichuan, 610000, P. R. China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
6
|
Rodríguez-Soto MA, Riveros-Cortés A, Orjuela-Garzón IC, Fernández-Calderón IM, Rodríguez CF, Vargas NS, Ostos C, Camargo CM, Cruz JC, Kim S, D’Amore A, Wagner WR, Briceño JC. Redefining vascular repair: revealing cellular responses on PEUU-gelatin electrospun vascular grafts for endothelialization and immune responses on in vitro models. Front Bioeng Biotechnol 2024; 12:1410863. [PMID: 38903186 PMCID: PMC11188488 DOI: 10.3389/fbioe.2024.1410863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
7
|
Ding X, Zhang Z, Kluka C, Asim S, Manuel J, Lee BP, Jiang J, Heiden PA, Heldt CL, Rizwan M. Pair of Functional Polyesters That Are Photo-Cross-Linkable and Electrospinnable to Engineer Elastomeric Scaffolds with Tunable Structure and Properties. ACS APPLIED BIO MATERIALS 2024; 7:863-878. [PMID: 38207114 PMCID: PMC10954299 DOI: 10.1021/acsabm.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A pair of alkyne- and thiol-functionalized polyesters are designed to engineer elastomeric scaffolds with a wide range of tunable material properties (e.g., thermal, degradation, and mechanical properties) for different tissues, given their different host responses, mechanics, and regenerative capacities. The two prepolymers are quickly photo-cross-linkable through thiol-yne click chemistry to form robust elastomers with small permanent deformations. The elastic moduli can be easily tuned between 0.96 ± 0.18 and 7.5 ± 2.0 MPa, and in vitro degradation is mediated from hours up to days by adjusting the prepolymer weight ratios. These elastomers bear free hydroxyl and thiol groups with a water contact angle of less than 85.6 ± 3.58 degrees, indicating a hydrophilic nature. The elastomer is compatible with NIH/3T3 fibroblast cells with cell viability reaching 88 ± 8.7% relative to the TCPS control at 48 h incubation. Differing from prior soft elastomers, a mixture of the two prepolymers without a carrying polymer is electrospinnable and UV-cross-linkable to fabricate elastic fibrous scaffolds for soft tissues. The designed prepolymer pair can thus ease the fabrication of elastic fibrous conduits, leading to potential use as a resorbable synthetic graft. The elastomers could find use in other tissue engineering applications as well.
Collapse
Affiliation(s)
- Xiaochu Ding
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Zhongtian Zhang
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Christopher Kluka
- Department of Materials Science and Engineering, Michigan Technological University, 609 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - James Manuel
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Bruce P. Lee
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Jingfeng Jiang
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Patricia A. Heiden
- Department of Chemistry, Michigan Technological University, 609 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Caryn L. Heldt
- Health Research Institute, Michigan Technological University, 202E Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
- Department of Chemical Engineering, Michigan Technological University, 203 Chemical Sciences and Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, 309 Minerals & Materials Engineering Building, 1400 Townsend Drive, Houghton, MI 49931
| |
Collapse
|
8
|
Hao D, Lin J, Liu R, Pivetti C, Yamashiro K, Schutzman LM, Sageshima J, Kwong M, Bahatyrevich N, Farmer DL, Humphries MD, Lam KS, Panitch A, Wang A. A bio-instructive parylene-based conformal coating suppresses thrombosis and intimal hyperplasia of implantable vascular devices. Bioact Mater 2023; 28:467-479. [PMID: 37408799 PMCID: PMC10318457 DOI: 10.1016/j.bioactmat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Implantable vascular devices are widely used in clinical treatments for various vascular diseases. However, current approved clinical implantable vascular devices generally have high failure rates primarily due to their surface lacking inherent functional endothelium. Here, inspired by the pathological mechanisms of vascular device failure and physiological functions of native endothelium, we developed a new generation of bioactive parylene (poly(p-xylylene))-based conformal coating to address these challenges of the vascular devices. This coating used a polyethylene glycol (PEG) linker to introduce an endothelial progenitor cell (EPC) specific binding ligand LXW7 (cGRGDdvc) onto the vascular devices for preventing platelet adhesion and selectively capturing endogenous EPCs. Also, we confirmed the long-term stability and function of this coating in human serum. Using two vascular disease-related large animal models, a porcine carotid artery interposition model and a porcine carotid artery-jugular vein arteriovenous graft model, we demonstrated that this coating enabled rapid generation of self-renewable "living" endothelium on the blood contacting surface of the expanded polytetrafluoroethylene (ePTFE) grafts after implantation. We expect this easy-to-apply conformal coating will present a promising avenue to engineer surface properties of "off-the-shelf" implantable vascular devices for long-lasting performance in the clinical settings.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Jonathan Lin
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Kaeli Yamashiro
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Linda M. Schutzman
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Junichiro Sageshima
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Mimmie Kwong
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
| | - Misty D. Humphries
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
| | - Alyssa Panitch
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
9
|
Di Francesco D, Pigliafreddo A, Casarella S, Di Nunno L, Mantovani D, Boccafoschi F. Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements. Biomolecules 2023; 13:1389. [PMID: 37759789 PMCID: PMC10526356 DOI: 10.3390/biom13091389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Alexa Pigliafreddo
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Luca Di Nunno
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (D.D.F.); (S.C.); (L.D.N.)
| |
Collapse
|
10
|
Shi J, Teng Y, Li D, He J, Midgley AC, Guo X, Wang X, Yang X, Wang S, Feng Y, Lv Q, Hou S. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Mater Today Bio 2023; 21:100709. [PMID: 37455822 PMCID: PMC10339197 DOI: 10.1016/j.mtbio.2023.100709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/20/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Small-diameter vascular grafts (SDVGs) are urgently required for clinical applications. Constructing vascular grafts mimicking the defining features of native arteries is a promising strategy. Here, we constructed a tri-layered vascular graft with a native artery decellularized extracellular matrix (dECM) mimicking the component of arteries. The porcine thoracic aorta was decellularized and milled into dECM powders from the differential layers. The intima and media dECM powders were blended with poly (L-lactide-co-caprolactone) (PLCL) as the inner and middle layers of electrospun vascular grafts, respectively. Pure PLCL was electrospun as a strengthening sheath for the outer layer. Salidroside was loaded into the inner layer of vascular grafts to inhibit thrombus formation. In vitro studies demonstrated that dECM provided a bioactive milieu for human umbilical vein endothelial cell (HUVEC) extension adhesion, proliferation, migration, and tube-forming. The in vivo studies showed that the addition of dECM could promote endothelialization, smooth muscle regeneration, and extracellular matrix deposition. The salidroside could inhibit thrombosis. Our study mimicked the component of the native artery and combined it with the advantages of synthetic polymer and dECM which provided a promising strategy for the design and construction of SDVGs.
Collapse
Affiliation(s)
- Jie Shi
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Yanjiao Teng
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Duo Li
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Ju He
- Vascular Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoqin Guo
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xiudan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinran Yang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, 30072, China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, 30072, China
| | - Qi Lv
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| | - Shike Hou
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, 325026, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Key Laboratory for Disaster Medicine Technology, Tianjin, 300072, China
| |
Collapse
|
11
|
Zhang H, Zhang Q, Du J, Zhu T, Chen D, Liu F, Dong Y. Nanofibers with homogeneous heparin distribution and protracted release profile for vascular tissue engineering. Front Bioeng Biotechnol 2023; 11:1187914. [PMID: 37425354 PMCID: PMC10324977 DOI: 10.3389/fbioe.2023.1187914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
In clinic, controlling acute coagulation after small-diameter vessel grafts transplantation is considered a primary problem. The combination of heparin with high anticoagulant efficiency and polyurethane fiber with good compliance is a good choice for vascular materials. However, blending water-soluble heparin with fat-soluble poly (ester-ether-urethane) urea elastomer (PEEUU) uniformly and preparing nanofibers tubular grafts with uniform morphology is a huge challenge. In this research, we have compounded PEEUU with optimized constant concentration of heparin by homogeneous emulsion blending, then spun into the hybrid PEEUU/heparin nanofibers tubular graft (H-PHNF) for replacing rats' abdominal aorta in situ for comprehensive performance evaluation. The in vitro results demonstrated that H-PHNF was of uniform microstructure, moderate wettability, matched mechanical properties, reliable cytocompatibility, and strongest ability to promote endothelial growth. Replacement of resected abdominal artery with the H-PHNF in rat showed that the graft was capable of homogeneous hybrid heparin and significantly promoted the stabilization of vascular smooth muscle cells (VSMCs) as well as stabilizing the blood microenvironment. This research demonstrates the H-PHNF with substantial patency, indicating their potential for vascular tissue engineering.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Orthopedics Surgery, Shanghai Sixth People’s Hospital Afffliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Qilu Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai, China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Tonghe Zhu
- Department of Orthopedics Surgery, Shanghai Sixth People’s Hospital Afffliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Dian Chen
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiying Liu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yang Dong
- Department of Orthopedics Surgery, Shanghai Sixth People’s Hospital Afffliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Su H, Liu W, Li X, Li G, Guo S, Liu C, Yang T, Ou C, Liu J, Li Y, Wei C, Huang Q, Xu T, Duan C. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci 2023; 11:3197-3213. [PMID: 36928127 DOI: 10.1039/d2bm01338j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rapid endothelialization is extremely essential for the success of small-diameter tissue-engineered vascular graft (TEVG) (<6 mm) transplantation. However, severe inflammation in situ often causes cellular energy decline of endothelial cells. The cellular energy supply involved in vascular graft therapy remains unclear, and whether promoting energy supply would be helpful in the regeneration of vascular grafts needs to be established. In our work, we generated an AMPK activator (5-aminoimidazole-4-carboxamide ribonucleotide, AICAR) immobilized vascular graft. AICAR-modified vascular grafts were successfully generated by the co-electrospinning technique. In vitro results indicated that AICAR could upregulate energy supply in endothelial cells and reprogram macrophages (MΦ) to assume an anti-inflammatory phenotype. Furthermore, endothelial cells (ECs) co-cultured with AICAR achieved higher survival rates, better migration, and angiogenic capacity than the controls. Concurrently, a rabbit carotid artery transplantation model was used to investigate AICAR-modified vascular grafts at different time points. The results showed that AICAR-modified vascular grafts had higher patency rates (92.9% and 85.7% at 6 and 12 weeks, respectively) than those of the untreated group (11.1% and 0%). In conclusion, AICAR strengthened the cellular energy state and attenuated the adverse effects of inflammation. AICAR-modified vascular grafts achieved better vascular remodeling. This study provides a new perspective on promoting the regeneration of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chang Liu
- Department of Orthopedic Surgery, The Lingnan Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jiahui Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuanzhi Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengcong Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Qing Huang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering and Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. .,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
13
|
Li S, Yang L, Zhao Z, Wang J, Lv H, Yang X. Fabrication of mechanical skeleton of small-diameter vascular grafts via rolling on water surface. Biomed Mater 2023; 18. [PMID: 36731137 DOI: 10.1088/1748-605x/acb89a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Mimicking the multilayered structure of blood vessels and constructing a porous inner surface are two effective approaches to achieve mechanical matching and rapid endothelialization to reduce occlusion in small-diameter vascular grafts. However, the fabrication processes are complex and time consuming, thus complicating the fabrication of personalized vascular grafts. A simple and versatile strategy is proposed to prepare the skeleton of vascular grafts by rolling self-adhesive polymer films. These polymer films are directly fabricated by dropping a polymer solution on a water surface. For the tubes, the length and wall thickness are controlled by the rolling number and position of each film, whereas the structure and properties are tailored by regulating the solution composition. Double-layer vascular grafts (DLVGs) with microporous inner layers and impermeable outer layers are constructed; a microporous layer is formed by introducing a hydrophilic polymer into a polyurethane (PU) solution. DLVGs exhibit a J-shaped stress-strain deformation profile and compliance comparable to that of coronary arteries, sufficient suture retention strength and burst pressure, suitable hemocompatibility, significant adhesion, and proliferation of human umbilical vein endothelial cells. Freshly prepared PU tubes exhibit good cytocompatibility. Thus, this strategy demonstrates potential for rapid construction of small-diameter vascular grafts for individual customization.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jie Wang
- Huangpu Institute of Advanced Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
14
|
Liu S, Yao L, Wang Y, Li Y, Jia Y, Yang Y, Li N, Hu Y, Kong D, Dong X, Wang K, Zhu M. Immunomodulatory hybrid micro-nanofiber scaffolds enhance vascular regeneration. Bioact Mater 2023; 21:464-482. [PMID: 36185748 PMCID: PMC9486249 DOI: 10.1016/j.bioactmat.2022.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
The inertness of synthetic polymer materials and the insufficient mechanical strength of reprocessed decellularized extracellular matrix (dECM) limited their promotive efforts on tissue regeneration. Here, we prepared a hybrid scaffold composed of PCL microfibers and human placental extracellular matrix (pECM) nanofibers by co-electrospinning, which was grafted with heparin and further absorbed with IL-4. The hybrid scaffold with improved hemocompatibility firstly switched macrophages to anti-inflammatory phenotype (increased by 18.1%) and then promoted migration, NO production, tube formation of endothelial cells (ECs), and migration and maturation of vascular smooth muscle cells (VSMCs), and ECM deposition in vitro and in vivo. ECs coverage rate increased by 8.6% and the thickness of the smooth muscle layer was 1.8 times more than PCL grafts at 12 wks. Our study realized the complementary advantages of synthetic polymer materials and dECM materials, and opened intriguing perspectives for the design and construction of small-diameter vascular grafts (SDVGs) and immune-regulated materials for other tissue regeneration.
Collapse
Affiliation(s)
- Siyang Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Liying Yao
- Tianjin Central Hospital of Obstetrics and Gynecology/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300199, China
| | - Yumeng Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yi Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yanju Jia
- Tianjin Central Hospital of Obstetrics and Gynecology/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300199, China
| | - Yueyue Yang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Na Li
- Tianjin Central Hospital of Obstetrics and Gynecology/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300199, China
| | - Yuanjing Hu
- Tianjin Central Hospital of Obstetrics and Gynecology/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300199, China
| | - Deling Kong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xianhao Dong
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Kai Wang
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
- Tianjin Central Hospital of Obstetrics and Gynecology/ Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300199, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
15
|
Zhang F, Tao H, Gluck JM, Wang L, Daneshmand MA, King MW. A textile-reinforced composite vascular graft that modulates macrophage polarization and enhances endothelial cell migration, adhesion and proliferation in vitro. SOFT MATTER 2023; 19:1624-1641. [PMID: 36752696 DOI: 10.1039/d2sm01190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
At the present time, there is no successful off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. In this study, we engineer a textile-reinforced hydrogel vascular graft. The textile fibers are circularly knitted into a flexible yet robust conduit to serve as the backbone of the composite vascular graft and provide the primary mechanical support. It is embedded in the hydrogel matrix which seals the open structure of the knitted reinforcement and mediates cellular response toward a faster reendothelialization. The mechanical properties of the composite vascular graft, including bursting strength, suture retention strength and radial compliance, significantly surpass the requirement for the vascular graft application and can be adjusted by altering the structure of the textile reinforcement. The addition of hydrogel matrix, on the other hand, improves the survival, adhesion and proliferation of endothelial cells in vitro. The composite vascular graft also enhances macrophage activation and upregulates M1 and M2 related gene expression, which further improves the endothelial cell migration that might favor the reendothelialization of the vascular graft. Taken together, the textile-reinforced hydrogel shows it potential to be a promising scaffold material to fabricate a tissue engineered vascular graft.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Hui Tao
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Lu Wang
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mani A Daneshmand
- Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
- College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
16
|
Song B, Fang L, Mao X, Ye X, Yan Z, Ma Q, Shi Z, Hu Y, Zhu Y, Cheng Y. Gelatin-grafted tubular asymmetric scaffolds promote ureteral regeneration via activation of the integrin/Erk signaling pathway. Front Bioeng Biotechnol 2023; 10:1092543. [PMID: 36686259 PMCID: PMC9849368 DOI: 10.3389/fbioe.2022.1092543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: The repair of a diseased ureter is an urgent clinical issue that needs to be solved. A tissue-engineered scaffold for ureteral replacement is currently insufficient due to its incompetent bioactivity, especially in long-segment abnormalities. The primary reason is the failure of urothelialization on scaffolds. Methods: In this work, we investigated the ability of gelatin-grafted tubular scaffold in ureteral repairment and its related biological mechanism. We designed various porous asymmetric poly (L-lactic acid) (PLLA)/poly (L-lactide-co-e-caprolactone) (PLCL) tubes with a thermally induced phase separation (TIPS) method via a change in the ratio of solvents (named PP). To regulate the phenotype of urothelial cells and ureteral reconstruction, gelatin was grafted onto the tubular scaffold using ammonolysis and glutaraldehyde crosslinking (named PP-gel). The in vitro and in vivo experiments were performed to test the biological function and the mechanism of the scaffolds. Results and Discussion: The hydrophilicity of the scaffold significantly increased after gelatin grafting, which promoted the adhesion and proliferation of urothelial cells. Through subcutaneous implantation in rats, PP-gel scaffolds demonstrated good biocompatibility. The in vivo replacement showed that PP-gel could improve urothelium regeneration and maintain renal function after the ureter was replaced with an ∼4 cm-long PP-gel tube using New Zealand rabbits as the experimental animals. The related biologic mechanism of ureteral reconstruction was detected in detail. The gelatin-grafted scaffold upgraded the integrin α6/β4 on the urothelial cell membrane, which phosphorylates the focal adhesion kinase (FAK) and enhances urothelialization via the MAPK/Erk signaling pathway. Conclusion: All these results confirmed that the PP46-gel scaffold is a promising candidate for the constitution of an engineered ureter and to repair long-segment ureteral defects.
Collapse
Affiliation(s)
- Baiyang Song
- School of Medicine, Ningbo University, Ningbo, China,Department of Urology, Ningbo First Hospital, Ningbo, China
| | - Li Fang
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Xufeng Mao
- School of Medicine, Ningbo University, Ningbo, China
| | - Xianwang Ye
- Department of Radiology, Ningbo First Hospital, Ningbo, China
| | - Zejun Yan
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Qi Ma
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China
| | - Zewen Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Yiwei Hu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Ningbo, China,Ningbo Clinical Research Center for Urological Disease, Ningbo, China,*Correspondence: Yabin Zhu, ; Yue Cheng,
| |
Collapse
|
17
|
Kamaraj M, Giri PS, Mahapatra S, Pati F, Rath SN. Bioengineering strategies for 3D bioprinting of tubular construct using tissue-specific decellularized extracellular matrix. Int J Biol Macromol 2022; 223:1405-1419. [PMID: 36375675 DOI: 10.1016/j.ijbiomac.2022.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The goal of the current study is to develop an extracellular matrix bioink that could mimic the biochemical components present in natural blood vessels. Here, we have used an innovative approach to recycle the discarded varicose vein for isolation of endothelial cells and decellularization of the same sample to formulate the decellularized extracellular matrix (dECM) bioink. The shift towards dECM bioink observed as varicose vein dECM provides the tissue-specific biochemical factors that will enhance the regeneration capability. Interestingly, the encapsulated umbilical cord mesenchymal stem cells expressed the markers of vascular smooth muscle cells because of the cues present in the vein dECM. Further, in vitro immunological investigation of dECM revealed a predominant M2 polarization which could further aid in tissue remodeling. A novel approach was used to fabricate vascular construct using 3D bioprinting without secondary support. The outcomes suggest that this could be a potential approach for patient- and tissue-specific blood vessel regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Pravin Shankar Giri
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Sandeep Mahapatra
- Vascular & Endovascular Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Falguni Pati
- BioFabTE Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Zang L, Cheng Q, Bai S, Wang K, Yuan X. Electrospun membranes of carboxylated poly(ester urethane)urea/gelatin encapsulating pterostilbene for adaptive and antioxidative purposes. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022:1-24. [PMID: 36541432 DOI: 10.1080/09205063.2022.2161296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress caused by the harsh microenvironment after implantation of an artificial graft with mismatching mechanical properties usually triggers inflammation responses, which have adverse impacts on tissue regeneration. For coping with these problems, in this work, bioactive fibrous scaffolds were developed from specially synthesized carboxylated poly(ester urethane)urea (PEUU) and gelatin (Gel) by encapsulating pterostilbene (Pte) for the first time. The prepared electrospun membranes exhibited self-adaptable mechanical properties with high elasticity owing to the bonded electrospun fibers, cross-linking network between PEUU and Gel, and the inherent flexibility of the PEUU polymer in the fibrous matrix. The PEUU/Gel/Pte electrospun membrane containing 7% Pte could promote in vitro proliferation of human umbilical vein endothelial cells, and regulate vascular smooth muscle cells with excellent antioxidant properties via free radical scavenging. In vivo results in a rat subcutaneous implantation model further demonstrated the positive effect of the specially prepared PEUU/Gel/Pte scaffold on both normal cell growth and anti-inflammatory by promoting cellularization and polarizing macrophages toward the M2 phenotype. These PEUU/Gel/Pte electrospun membranes with adaptability benefit to tissue regeneration by modulating inflammation responses, especially applications in vascular regeneration.
Collapse
Affiliation(s)
- Leilei Zang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Quhan Cheng
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shan Bai
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Durand M, Oger M, Nikovics K, Venant J, Guillope AC, Jouve E, Barbier L, Bégot L, Poirier F, Rousseau C, Pitois O, Mathieu L, Favier AL, Lutomski D, Collombet JM. Influence of the Immune Microenvironment Provided by Implanted Biomaterials on the Biological Properties of Masquelet-Induced Membranes in Rats: Metakaolin as an Alternative Spacer. Biomedicines 2022; 10:biomedicines10123017. [PMID: 36551773 PMCID: PMC9776074 DOI: 10.3390/biomedicines10123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a key role in the inflammatory phase of wound repair and foreign body reactions-two important processes in the Masquelet-induced membrane technique for extremity reconstruction. The macrophage response depends largely on the nature of the biomaterials implanted. However, little is known about the influence of the macrophage microenvironment on the osteogenic properties of the induced membrane or subsequent bone regeneration. We used metakaolin, an immunogenic material, as an alternative spacer to standard polymethylmethacrylate (PMMA) in a Masquelet model in rats. Four weeks after implantation, the PMMA- and metakaolin-induced membranes were harvested, and their osteogenic properties and macrophage microenvironments were investigated by histology, immunohistochemistry, mass spectroscopy and gene expression analysis. The metakaolin spacer induced membranes with higher levels of two potent pro-osteogenic factors, transforming growth factor-β (TGF-β) and bone morphogenic protein-2 (BMP-2). These alternative membranes thus had greater osteogenic activity, which was accompanied by a significant expansion of the total macrophage population, including both the M1-like and M2-like subtypes. Microcomputed tomographic analysis showed that metakaolin-induced membranes supported bone regeneration more effectively than PMMA-induced membranes through better callus properties (+58%), although this difference was not significant. This study provides the first evidence of the influence of the immune microenvironment on the osteogenic properties of the induced membranes.
Collapse
Affiliation(s)
- Marjorie Durand
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Correspondence:
| | - Myriam Oger
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Krisztina Nikovics
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Julien Venant
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Anne-Cecile Guillope
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Eugénie Jouve
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Laure Barbier
- Molecular Biology Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Laurent Bégot
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Florence Poirier
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Catherine Rousseau
- Molecular Biology Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Olivier Pitois
- Laboratoire Navier, Gustave Eiffel University, Ecole des Ponts ParisTech, CNRS, 77447 Marne-la-Vallée, France
| | - Laurent Mathieu
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Department of Surgery, Ecole du Val-de-Grace, French Military Health Service Academy, 1 Place Alphonse Laveran, 75005 Paris, France
| | - Anne-Laure Favier
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Didier Lutomski
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Jean-Marc Collombet
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| |
Collapse
|
20
|
Hao D, Lu L, Song H, Duan Y, Chen J, Carney R, Li JJ, Zhou P, Nolta J, Lam KS, Leach JK, Farmer DL, Panitch A, Wang A. Engineered extracellular vesicles with high collagen-binding affinity present superior in situ retention and therapeutic efficacy in tissue repair. Theranostics 2022; 12:6021-6037. [PMID: 35966577 PMCID: PMC9373818 DOI: 10.7150/thno.70448] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/24/2022] [Indexed: 01/26/2023] Open
Abstract
Although stem cell-derived extracellular vesicles (EVs) have remarkable therapeutic potential for various diseases, the therapeutic efficacy of EVs is limited due to their degradation and rapid diffusion after administration, hindering their translational applications. Here, we developed a new generation of collagen-binding EVs, by chemically conjugating a collagen-binding peptide SILY to EVs (SILY-EVs), which were designed to bind to collagen in the extracellular matrix (ECM) and form an EV-ECM complex to improve EVs' in situ retention and therapeutic efficacy after transplantation. Methods: SILY was conjugated to the surface of mesenchymal stem/stromal cell (MSC)-derived EVs by using click chemistry to construct SILY-EVs. Nanoparticle tracking analysis (NTA), ExoView analysis, cryogenic electron microscopy (cryo-EM) and western-blot analysis were used to characterize the SILY-EVs. Fluorescence imaging (FLI), MTS assay, ELISA and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to evaluate the collagen binding and biological functions of SILY-EVs in vitro. In a mouse hind limb ischemia model, the in vivo imaging system (IVIS), laser doppler perfusion imaging (LDPI), micro-CT, FLI and RT-qPCR were used to determine the SILY-EV retention, inflammatory response, blood perfusion, gene expression, and tissue regeneration. Results:In vitro, the SILY conjugation significantly enhanced EV adhesion to the collagen surface and did not alter the EVs' biological functions. In the mouse hind limb ischemia model, SILY-EVs presented longer in situ retention, suppressed inflammatory responses, and significantly augmented muscle regeneration and vascularization, compared to the unmodified EVs. Conclusion: With the broad distribution of collagen in various tissues and organs, SILY-EVs hold promise to improve the therapeutic efficacy of EV-mediated treatment in a wide range of diseases and disorders. Moreover, SILY-EVs possess the potential to functionalize collagen-based biomaterials and deliver therapeutic agents for regenerative medicine applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Lu Lu
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Hengyue Song
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Yixin Duan
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Jianing Chen
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Randy Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - Ping Zhou
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Jan Nolta
- Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | - Alyssa Panitch
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|