1
|
Quan Y, Shao H, Wang N, Gao Z, Jin M. Microenvironment-sensitive hydrogels as promising drug delivery systems for co-encapsulating microbial homeostasis probiotics and anti-inflammatory drugs to treat periodontitis. Mater Today Bio 2025; 32:101711. [PMID: 40230648 PMCID: PMC11994392 DOI: 10.1016/j.mtbio.2025.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Developing and utilizing effective local antimicrobial agents can help treat periodontitis while minimizing the risks associated with systemic antibiotic use. Recent studies have shown that the mucosal adhesion properties of hydrogels can play a potential role in the treatment of periodontitis. The hydrogel can improve the contact and retention time of drugs in the periodontal pocket. Through the adhesion of mucosa, it interacts with the mucin coating surface of epithelium and teeth to form a specific interface force. The hydrogel exhibits strong mucosal adhesion (adhesion strength: 5-6 N/cm2) and prolonged retention in periodontal pockets (≥6 h), enabling sustained drug release through dynamic sol-gel transitions triggered by pH and reactive oxygen species (ROS). This design overcomes the limitations of poor mechanical stability in conventional formulations. The dynamic balance of oral microbiota plays an important role in maintaining oral health. Probiotics, by colonizing the oral cavity, transform the infected site from an environment rich in inflammatory cytokines to a more benign environment, inhibit harmful pathogenic microorganisms, and contribute to overall health. Microenvironment sensitive hydrogels can perform dynamic sol gel transformation in situ, and can accurately control drug release when exposed to various stimuli (such as temperature change, light, pH change, reactive oxygen species, etc.). Oral probiotics and anti-inflammatory drugs are encapsulated in hydrogels to inhibit the proliferation and adhesion of oral pathogens by planting in the mouth and producing metabolites, effectively preventing and treating oral diseases.
Collapse
Affiliation(s)
- Yi Quan
- Peking University People's Hospital, Beijing, 100044, China
| | - Huihui Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Li J, Xu Z, Ayre WN, Liu X. AMY-101 as complement C3 inhibitor for periodontitis therapy: mechanisms, efficacy, and clinical translation. Front Immunol 2025; 16:1587126. [PMID: 40364839 PMCID: PMC12069041 DOI: 10.3389/fimmu.2025.1587126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by gingival inflammation, alveolar bone resorption, and periodontal tissue destruction. Complement activation, particularly through the C3 component, plays a critical role in the inflammatory processes underlying periodontitis. AMY-101, a selective inhibitor of complement C3, has demonstrated significant potential in modulating complement activity and mitigating periodontal inflammation. This study comprehensively evaluates AMY-101's effects through in vitro, preclinical, and clinical studies. Mechanistic investigations revealed that AMY-101 effectively suppresses pro-inflammatory cytokines and matrix metalloproteinases (MMPs), reducing tissue destruction. Preclinical models confirmed AMY-101's ability to improve clinical parameters such as probing pocket depth, attachment loss, and bone preservation. Moreover, clinical trials demonstrated AMY-101's safety and efficacy in reducing gingival inflammation and bleeding without serious adverse events. These findings highlight AMY-101's therapeutic potential for periodontitis and broader applicability in other complement-driven inflammatory diseases.
Collapse
Affiliation(s)
- Jialun Li
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Zhi Xu
- Department of Otolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | | | - Xiaohan Liu
- Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Yang Z, You J, Zhai S, Zhou J, Quni S, Liu M, Zhang L, Ma R, Qin Q, Huangfu H, Zhang Y, Zhou Y. pH-responsive molybdenum disulphide composite nanomaterials for skin wound healing using "ROS leveraging" synergistic immunomodulation. Mater Today Bio 2025; 31:101481. [PMID: 39925719 PMCID: PMC11804827 DOI: 10.1016/j.mtbio.2025.101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/25/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
With the increasing prevalence of drug-resistant bacterial infections, wound bacterial infections have evolved into an escalating medical problem that poses a threat to the individual health as well as global public health. Traditional drug therapy not only suffers from a single treatment method, low drug utilisation and limited therapeutic effect, but long-term antibiotic abuse has significantly increased bacterial resistance. It is imperative to develop an antibiotic-free biomaterial with antibacterial and anti-inflammatory properties. The current use of photothermal therapy (PTT) and photodynamic therapy (PDT) relies on the generation of massive reactive oxygen species (ROS), which inevitably aggravates the inflammatory response. Herein, we developed AuAg bimetallic nanoparticles based on PDA modification and prepared a novel MoS2-based composite nanomaterials (AuAg@PDA-MoS2 NPs) with multiple mechanisms of antibacterial and anti-inflammatory potentials through the adhesion of PDA. In the early phase, PDT and PTT generated a large amount of ROS for rapid sterilisation. While in the later stage, MoS2 mimicked the peroxidase activity to leverage the ROS, balancing the generation of ROS in the infected environment to achieve the long-term anti-inflammatory. In vitro experiments showed that the killing efficiency of AuAg@PDA-MoS2 NPs was nearly 99 % under the irradiation of 808 nm near-infrared light for 10 min, which demonstrated excellent antibacterial activity. In vivo experiments showed that 808 nm NIR-assisted AuAg@PDA-MoS2 NPs to effectively inhibit infection, alleviated the inflammation, and accelerated the wound healing process. Therefore, AuAg@PDA-MoS2 NPs as a novel biomaterial could achieve programmed antimicrobial and anti-inflammatory effects, which has a promising potential for future application in the treatment of infected wounds.
Collapse
Affiliation(s)
- Zhen Yang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
- No. 10 East Zangda Road, Chengguan District, Tibet University, Lhasa, 850000, Tibet Autonomous Region, China
| | - Jiaqian You
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, China
| | - Shaobo Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jing Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Qiuyue Qin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Huimin Huangfu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| |
Collapse
|
4
|
Wang L, Yu C, You T, Zhang X, Su H, Cao B, Anwaier S, Xiang H, Dai C, Long X, Han L, Zhang D, Wang J, Zhu P, Yan X, Liang J, Chen Z, Huang H, Zhu S, Sun T, Chen J, Zhu P. Injection of ROS-Responsive Hydrogel Loaded with IL-1β-targeted nanobody for ameliorating myocardial infarction. Bioact Mater 2025; 46:273-284. [PMID: 39811465 PMCID: PMC11732248 DOI: 10.1016/j.bioactmat.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration. In mouse and rat models of myocardial infarction, the therapeutic gel was injected into the pericardial cavity, effectively disseminated over the heart surface, forming an in situ epicardial patch. The IL-1β-VHH released from the hydrogel exhibited penetrative potential into the myocardium. Our results imply that this infarct-targeting gel can adhere to the damaged cardiac tissue and augment the quantity of anti-IL-1β antibodies. Moreover, the anti-IL-1β hydrogel safeguards cardiomyocytes from apoptosis by neutralizing IL-1β and inducing M2-type polarization within the myocardial infarction regions, thereby facilitating therapeutic cardiac repair. Our results emphasize the effectiveness of this synergistic comprehensive treatment modality in the management of MI and showcase its considerable potential for promoting recovery in infarcted hearts.
Collapse
Affiliation(s)
- Lu Wang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Changjiang Yu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ting You
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, China
| | - Xinkui Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Haotao Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Bihui Cao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Sainiwaer Anwaier
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Hongmo Xiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Chengming Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiang Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Linjiang Han
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Dengfeng Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Junwei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinjian Yan
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jialiang Liang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Zerui Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Huanlei Huang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| | - Shuoji Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Tucheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jimei Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ping Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| |
Collapse
|
5
|
Zheng F, Wan X, Zhang Y, Yue Y, Li Q, Zhang Z, Li S, Xu H, Su Q, Chen X, Tong L, Zhao L, Cao J, Tang X, Yang X, Wu J, Li J, Lv X, Zhou Z, Wang D. A multimodal defect-rich nanoreactor triggers sono-piezoelectric tandem catalysis and iron metabolism disruption for implant infections. SCIENCE ADVANCES 2025; 11:eads8694. [PMID: 40085709 PMCID: PMC11908489 DOI: 10.1126/sciadv.ads8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/21/2025] [Indexed: 03/16/2025]
Abstract
Tracking and eradicating drug-resistant bacteria are critical for combating implant-associated infections, yet effective antibacterial therapies remain elusive. Herein, we propose an oxygen vacancy-rich (BiFe)0.9(BaTi)0.1O3-x nanoreactor as a piezoelectric sonosensitizer by spatiotemporal ultrasound-driven sono- and chemodynamic tandem catalysis to amplify antibacterial efficacy. The piezoelectric charge carriers under a built-in electric field synchronize the reaction of O2 and H2O, efficiently generating H2O2. The electron-rich oxygen vacancies modulate the local electronic structure of an Fe site. It facilitates reactive oxygen species generation by piezoelectric electrons and accelerates valence state cycles of Fe(III)/Fe(II) to achieve the sustained maintenance of hydroxyl radicals via H2O2/Fe(II)-catalyzed chemodynamic reactions, which lead to bacterial membrane damage. Transcriptomics analysis revealed that intracellular Fe overload induced by excessive Fe(II)-mediated dysregulation of the two-component system disrupts bacterial metabolism, triggering bacterial ferroptosis-like death. Thus, the porous titanium scaffold, engineered with a piezoelectric nanoreactor, demonstrates superior antibacterial efficacy under ultrasound and facilitates osteogenesis via piezoelectric immunomodulation-activated therapy.
Collapse
Affiliation(s)
- Fuyuan Zheng
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xufeng Wan
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangming Zhang
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Yue
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaochu Li
- Department of Orthopedics, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhuang Zhang
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuoyuan Li
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Su
- Department of Orthopedics, Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Le Tong
- Department of Emergency Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
- Disaster Medical Center, Sichuan University, Chengdu 610041, China
| | - Long Zhao
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Cao
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Tang
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Li
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Lv
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zongke Zhou
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Duan Wang
- Orthopedic Research Institute and Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhu Y, Xiu Z, Jiang X, Zhang H, Li X, Feng Y, Li B, Cai R, Li C, Tao G. Injectable hydrogels with ROS-triggered drug release enable the co-delivery of antibacterial agent and anti-inflammatory nanoparticle for periodontitis treatment. J Nanobiotechnology 2025; 23:205. [PMID: 40075491 PMCID: PMC11900060 DOI: 10.1186/s12951-025-03275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Periodontitis, a chronic inflammatory disease caused by bacteria, is characterized by localized reactive oxygen species (ROS) accumulation, leading to an inflammatory response, which in turn leads to the destruction of periodontal supporting tissues. Therefore, antibacterial, scavenging ROS, reducing the inflammatory response, regulating periodontal microenvironment, and alleviating alveolar bone resorption are effective methods to treat periodontitis. In this study, we developed a ROS-responsive injectable hydrogel by modifying hyaluronic acid with 3-amino phenylboronic acid (PBA) and reacting it with poly(vinyl alcohol) (PVA) to form a borate bond. In addition, the ROS-responsive hydrogel encapsulated the antibacterial agent minocycline hydrochloride (MH) and Fe-Quercetin anti-inflammatory nanoparticles (Fe-Que NPs) for on-demand drug release in response to the periodontitis microenvironment. This hydrogel (HP-PVA@MH/Fe-Que) exhibited highly effective antibacterial properties. Moreover, by modulating the Nrf2/NF-κB pathway, it effectively eliminated ROS and promoted macrophage polarization to the M2 phenotype, reducing inflammation and enhancing the osteogenic differentiation potential of human periodontal ligament stem cells (hPDLSCs) in the periodontal microenvironment. Animal studies showed that HP-PVA@MH/Fe-Que significantly reduced alveolar bone loss and enhanced osteogenic factor expression by killing bacteria and inhibiting inflammation. Thus, HP-PVA@MH/Fe-Que hydrogel had efficient antibacterial, ROS-scavenging, anti-inflammatory, and alveolar bone resorption-alleviation abilities, showing excellent application potential for periodontitis healing.
Collapse
Affiliation(s)
- Yujing Zhu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ziliang Xiu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxi Jiang
- Department of Periodontics & Oral Mucosal Diseases, Deyang Stomatological Hospital, Deyang, 618000, China
| | - Huifang Zhang
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaofeng Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yunru Feng
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Bojiang Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Chunhui Li
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| | - Gang Tao
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Shi G, Wu Z, Hao Z, Zhu M, Shu F, Yang Z, Wang J, Wang C, Chen R, Li Z, Wei R, Li J. Microenvironment-Responsive Hydrogels Comprising Engineering Zeolitic Imidazolate Framework-8-Anchored Parathyroid Hormone-Related Peptide-1 for Osteoarthritis Therapy. ACS NANO 2025; 19:6529-6553. [PMID: 39899451 DOI: 10.1021/acsnano.4c17852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Intra-articular drug injections are effective for osteoarthritis (OA), but challenges such as the complex microenvironment and rapid drug diffusion require frequent injections. Herein, we propose a biofunctional hydrogel-based strategy for prolonged drug delivery and microenvironment remodeling. We propose a strategy to functionalize zeolitic imidazolate framework-8 with tannic acid (TA-ZIF), anchor PTH-related peptide-1 (PTHrP-1) within this framework (TA-ZIF@P1) and incorporate a phenylboronic acid-modified gelatin-based hydrogel (GP hydrogel) drug delivery system (GP@TA-ZIF@P1, GPTP hydrogel) with responsive release properties that respond to the pathological microenvironments of OA. The GPTP hydrogel facilitated controlled, sustained release of PTHrP-1 via dynamic boronic esters, with in vitro and in vivo studies showing continuous release for over 28 days. It not only promotes chondrocyte proliferation but also exhibits significant cytoprotective effects under hyperactive ROS and IL-1β-induced conditions. Notably, transcriptome sequencing confirms that the GPTP hydrogel facilitates both chondrocyte proliferation and chondrogenesis under inflammatory conditions by deactivating Wnt/β-Catenin signaling pathways and enhancing the PI3K/AKT signaling pathway. Additionally, the GPTP hydrogel delays the catabolic metabolism of cartilage explants from mice in inflammatory environments. In a surgical model of mouse OA, we show that the intra-articular injection of GPTP hydrogels reduced periarticular bone remodeling and promoted the production of glycosaminoglycans while offering chondroprotection against cartilage degeneration. To sum up, this pioneering research on PTHrP-1 as a treatment for OA, combined with the GPTP hydrogel system, offers valuable insights and a paradigm for the controlled and sustained release of PTHrP-1, representing a significant advancement in OA treatment strategies.
Collapse
Affiliation(s)
- Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zijian Wu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mengyue Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feihong Shu
- Department of Endoscopy and Digestive System, Guizhou Provincial People's Hospital, Guiyang 550499, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chenglong Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zouwei Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Renxiong Wei
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Chen J, Dong S. Polymer-based antimicrobial strategies for periodontitis. Front Pharmacol 2025; 15:1533964. [PMID: 39834832 PMCID: PMC11743519 DOI: 10.3389/fphar.2024.1533964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Periodontitis is a chronic inflammatory condition driven by plaque-associated microorganisms, where uncontrolled bacterial invasion and proliferation impair host immune responses, leading to localized periodontal tissue inflammation and bone destruction. Conventional periodontal therapies face challenges, including incomplete microbial clearance and the rise of antibiotic resistance, limiting their precision and effectiveness in managing periodontitis. Recently, nanotherapies based on polymeric materials have introduced advanced approaches to periodontal antimicrobial therapy through diverse antimicrobial mechanisms. This review explored specific mechanisms, emphasizing the design of polymer-based agents that employ individual or synergistic antimicrobial actions, and evaluated the innovations and limitations of current strategies while forecasting future trends in antimicrobial development for periodontitis.
Collapse
Affiliation(s)
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
9
|
Liu X, Qian R, Li B, Zhang Y, Han Y. Sono-Catalytic Tooth Whitening and Oral Health Enhancement with Oxygen Vacancies-Enriched Mesoporous TiO 2 Nanospheres: A Nondestructive Approach for Daily Tooth Care. ACS Biomater Sci Eng 2024; 10:6634-6647. [PMID: 39348292 DOI: 10.1021/acsbiomaterials.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.
Collapse
Affiliation(s)
- Xiaoqi Liu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runliu Qian
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Li
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingang Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
10
|
Gao T, Xu G, Ma T, Lu X, Chen K, Luo H, Chen G, Song J, Ma X, Fu W, Zheng C, Xia X, Jiang J. ROS-Responsive Injectable Hydrogel Loaded with SLC7A11-modRNA Inhibits Ferroptosis and Mitigates Intervertebral Disc Degeneration in Rats. Adv Healthc Mater 2024; 13:e2401103. [PMID: 38691848 DOI: 10.1002/adhm.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain, with oxidative stress being a recognized factor that causes its development. Presently, low back pain imposes a significant global economic burden. However, the effectiveness of treatments for IVDD remains extremely limited. Therefore, this study aims to explore innovative and effective IVDD treatments by focusing on oxidative stress as a starting point. In this study, an injectable reactive oxygen species-responsive hydrogel (PVA-tsPBA@SLC7A11 modRNA) is developed, designed to achieve rapid loading and selective release of chemically synthesized modified mRNA (modRNA). SLC7A11 modRNA is specifically used to upregulate the expression of the ferroptosis marker SLC7A11. The local injection of PVA-tsPBA@SLC7A11 modRNA into the degenerated intervertebral disc (IVD) results in the cleavage of PVA-tsPBA, leading to the release of enclosed SLC7A11 modRNA. The extent of SLC7A11 modRNA release is directly proportional to the severity of IVDD, ultimately ameliorating IVDD by inhibiting ferroptosis in nucleus pulposus cells (NPCs). This study proposes an innovative system of PVA-tsPBA hydrogel-encapsulated modRNA, representing a potential novel treatment strategy for patients with early-stage IVDD.
Collapse
Affiliation(s)
- Tian Gao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Tiancong Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Kaiwen Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Huanhuan Luo
- Department of Orthopaedics, The Second Hospital of Jiaxing, Jiaxing, Zhejiang Province, 314000, P. R. China
| | - Gang Chen
- Department of Orthopaedics, The Second Hospital of Jiaxing, Jiaxing, Zhejiang Province, 314000, P. R. China
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chaojun Zheng
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Fudan University, Shanghai, 200082, P. R. China
| |
Collapse
|
11
|
Xia Y, Chen Z, Zheng Z, Chen H, Chen Y. Nanomaterial-integrated injectable hydrogels for craniofacial bone reconstruction. J Nanobiotechnology 2024; 22:525. [PMID: 39217329 PMCID: PMC11365286 DOI: 10.1186/s12951-024-02801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
The complex anatomy and biology of craniofacial bones pose difficulties in their effective and precise reconstruction. Injectable hydrogels (IHs) with water-swollen networks are emerging as a shape-adaptive alternative for noninvasively rebuilding craniofacial bones. The advent of versatile nanomaterials (NMs) customizes IHs with strengthened mechanical properties and therapeutically favorable performance, presenting excellent contenders over traditional substitutes. Structurally, NM-reinforced IHs are energy dissipative and covalently crosslinked, providing the mechanics necessary to support craniofacial structures and physiological functions. Biofunctionally, incorporating unique NMs into IH expands a plethora of biological activities, including immunomodulatory, osteogenic, angiogenic, and antibacterial effects, further favoring controllable dynamic tissue regeneration. Mechanistically, NM-engineered IHs optimize the physical traits to direct cell responses, regulate intracellular signaling pathways, and control the release of biomolecules, collectively bestowing structure-induced features and multifunctionality. By encompassing state-of-the-art advances in NM-integrated IHs, this review offers a foundation for future clinical translation of craniofacial bone reconstruction.
Collapse
Affiliation(s)
- Yong Xia
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zihan Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Zebin Zheng
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Huimin Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yuming Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
12
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
13
|
Ran S, Xue L, Wei X, Huang J, Yan X, He TC, Tang Z, Zhang H, Gu M. Recent advances in injectable hydrogel therapies for periodontitis. J Mater Chem B 2024; 12:6005-6032. [PMID: 38869470 DOI: 10.1039/d3tb03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.
Collapse
Affiliation(s)
- Shidian Ran
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Linyu Xue
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xiaorui Wei
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Jindie Huang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xingrui Yan
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhurong Tang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Mengqin Gu
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
14
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Hao Z, Li X, Zhang R, Zhang L. Stimuli‐Responsive Hydrogels for Antibacterial Applications. Adv Healthc Mater 2024:e2400513. [PMID: 38723248 DOI: 10.1002/adhm.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the field of antibacterial therapeutics, due to their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of stimuli-responsive functions into antibacterial hydrogels holds the potential to enhance their antibacterial properties and therapeutic efficacy, dynamically responding to different external or internal stimuli, such as pH, temperature, enzymes, and light. Therefore, this review describes the applications of hydrogel dressings responsive to different stimuli in antibacterial therapy. The collaborative interaction between stimuli-responsive hydrogels and antibacterial materials is discussed. This synergistic approach, in contrast to conventional antibacterial materials, not only amplifies the antibacterial effect but also alleviates adverse side effects and diminishes the incidence of multiple infections and drug resistance. The review provides a comprehensive overview of the current challenges and outlines future research directions for stimuli-responsive antibacterial hydrogels. It underscores the imperative for ongoing interdisciplinary research aimed at unraveling the mechanisms of wound healing. This understanding is crucial for optimizing the design and implementation of stimuli-responsive antibacterial hydrogels. Ultimately, this review aims to offer scientific guidance for the development and practical clinical application of stimuli-responsive antibacterial hydrogel dressings.
Collapse
Affiliation(s)
- Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin, 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
16
|
Qi Y, Xu C, Zhang Z, Zhang Q, Xu Z, Zhao X, Zhao Y, Cui C, Liu W. Wet environment-induced adhesion and softening of coenzyme-based polymer elastic patch for treating periodontitis. Bioact Mater 2024; 35:259-273. [PMID: 38356924 PMCID: PMC10864166 DOI: 10.1016/j.bioactmat.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Periodontitis, a common chronic inflammatory disease caused by pathogenic bacteria, can be treated with diverse biomaterials by loading drugs, cytokines or proteins. However, these biomaterials often show unsatisfactory therapeutic efficiency due to their poor adhesion, short residence time in the wet and dynamic oral cavity and emerging drug resistance. Here we report a wet-responsive methacrylated gelatin (GelMA)-stabilized co-enzyme polymer poly(α-lipoic acid) (PolyLA)-based elastic patch with water-induced adhesion and softening features. In PolyLA-GelMA, the multiple covalent and hydrogen-bonding crosslinking between PolyLA and GelMA prevent PolyLA depolymerization and slow down the dissociation of PolyLA in water, allowing durable adhesion to oral periodontal tissue and continuous release of LA-based bioactive small molecule in periodontitis wound without resorting external drugs. Compared with the undifferentiated adhesion behavior of traditional adhesives, this wet-responsive patch demonstrates a favorable periodontal pocket insertion ability due to its non-adhesion and rigidity in dry environment. In vitro studies reveal that PolyLA-GelMA patch exhibits satisfactory wet tissue adhesion, antibacterial, blood compatibility and ROS scavenging abilities. In the model of rat periodontitis, the PolyLA-GelMA patch inhibits alveolar bone resorption and accelerates the periodontitis healing by regulating the inflammatory microenvironment. This biomacromolecule-stabilized coenzyme polymer patch provides a new option to promote periodontitis treatment.
Collapse
Affiliation(s)
- Ying Qi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chenyu Xu
- School and Hospital of Stomatology, Department of Orthodontics, Tianjin Medical University, Tianjin, 300070, China
| | - Zhuodan Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Qian Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xinrui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yanhong Zhao
- School and Hospital of Stomatology, Department of Orthodontics, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
17
|
Deng Y, Li J, Tao R, Zhang K, Yang R, Qu Z, Zhang Y, Huang J. Molecular Engineering of Electrosprayed Hydrogel Microspheres to Achieve Synergistic Anti-Tumor Chemo-Immunotherapy with ACEA Cargo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308051. [PMID: 38350727 PMCID: PMC11077688 DOI: 10.1002/advs.202308051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Indexed: 02/15/2024]
Abstract
Molecular engineering of drug delivering platforms to provide collaborative biological effects with loaded drugs is of great medical significance. Herein, cannabinoid receptor 1 (CB1)- and reactive oxygen species (ROS)-targeting electrosprayed microspheres (MSs) are fabricated by loading with the CB1 agonist arachidonoyl 2'-chloroethylamide (ACEA) and producing ROS in a photoresponsive manner. The synergistic anti-tumor effects of ACEA and ROS released from the MSs are assessed. ACEA inhibits epidermal growth factor receptor signaling and altered tumor microenvironment (TME) by activating CB1 to induce tumor cell death. The MSs are composed of glycidyl methacrylate-conjugated xanthan gum (XGMA) and Fe3+, which form dual molecular networks based on a Fe3+-(COO-)3 network and a C═C addition reaction network. Interestingly, the Fe3+-(COO-)3 network can be disassembled instantly under the conditions of lactate sodium and ultraviolet exposure, and the disassembly is accompanied by massive ROS production, which directly injures tumor cells. Meanwhile, the transition of dual networks to a single network boosts the ACEA release. Together, the activities of the ACEA and MSs promote immunogenic tumor cell death and create a tumor-suppressive TME by increasing M1-like tumor-associated macrophages and CD8+ T cells. In summation, this study demonstrates strong prospects of improving anti-tumor effects of drug delivering platforms through molecular design.
Collapse
Affiliation(s)
- Youming Deng
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Jiayang Li
- Research Institute of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjing210002China
| | - Ran Tao
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Ke Zhang
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Rong Yang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Zhan Qu
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of General SurgeryXiangya HospitalInternational Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and StandardsCentral South UniversityChangsha410008China
| | - Jinjian Huang
- Research Institute of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjing210002China
| |
Collapse
|
18
|
Guo W, Dong H, Wang X. Emerging roles of hydrogel in promoting periodontal tissue regeneration and repairing bone defect. Front Bioeng Biotechnol 2024; 12:1380528. [PMID: 38720879 PMCID: PMC11076768 DOI: 10.3389/fbioe.2024.1380528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Periodontal disease is the most common type of oral disease. Periodontal bone defect is the clinical outcome of advanced periodontal disease, which seriously affects the quality of life of patients. Promoting periodontal tissue regeneration and repairing periodontal bone defects is the ultimate treatment goal for periodontal disease, but the means and methods are very limited. Hydrogels are a class of highly hydrophilic polymer networks, and their good biocompatibility has made them a popular research material in the field of oral medicine in recent years. This paper reviews the current mainstream types and characteristics of hydrogels, and summarizes the relevant basic research on hydrogels in promoting periodontal tissue regeneration and bone defect repair in recent years. The possible mechanisms of action and efficacy evaluation are discussed in depth, and the application prospects are also discussed.
Collapse
Affiliation(s)
- Wendi Guo
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hongbin Dong
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xing Wang
- Department of Prosthodontics and Implant Dentistry, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Affiliated Stomatological Hospital of Xinjiang Medical University, Urumqi, China
- Stomatology Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
19
|
Geng C, He S, Yu S, Johnson HM, Shi H, Chen Y, Chan YK, He W, Qin M, Li X, Deng Y. Achieving Clearance of Drug-Resistant Bacterial Infection and Rapid Cutaneous Wound Regeneration Using an ROS-Balancing-Engineered Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310599. [PMID: 38300795 DOI: 10.1002/adma.202310599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Indexed: 02/03/2024]
Abstract
Intractable infected microenvironments caused by drug-resistant bacteria stalls the normal course of wound healing. Sono-piezodynamic therapy (SPT) is harnessed to combat pathogenic bacteria, but the superabundant reactive oxygen species (ROS) generated during SPT inevitably provoke severe inflammatory response, hindering tissue regeneration. Consequently, an intelligent nanocatalytic membrane composed of poly(lactic-co-glycolic acid) (PLGA) and black phosphorus /V2C MXene bio-heterojunctions (2D2-bioHJs) is devised. Under ultrasonication, 2D2-bioHJs effectively eliminate drug-resistant bacteria by disrupting metabolism and electron transport chain (ETC). When ultrasonication ceases, they enable the elimination of SPT-generated ROS. The 2D2-bioHJs act as a "lever" that effectively achieves a balance between ROS generation and annihilation, delivering both antibacterial and anti-inflammatory properties to the engineered membrane. More importantly, in vivo assays corroborate that the nanocatalytic membranes transform the stalled chronic wound environment into a regenerative one by eradicating the bacterial population, dampening the NF-κB inflammatory pathway and promoting angiogenesis. As envisaged, this work demonstrates a novel tactic to arm membranes with programmed antibacterial and anti-inflammatory effects to remedy refractory infected wounds from drug-fast bacteria.
Collapse
Affiliation(s)
- Chong Geng
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Shuai He
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hongxing Shi
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yanbai Chen
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Wenxuan He
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Miao Qin
- Department of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- Laboratory of Gastroenterology and Hepatology & Department of Gastroenterology, West China Hospital, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
20
|
Yu Y, You Z, Li X, Lou F, Xiong D, Ye L, Wang Z. Injectable Nanocomposite Hydrogels with Strong Antibacterial, Osteoinductive, and ROS-Scavenging Capabilities for Periodontitis Treatment. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497587 DOI: 10.1021/acsami.3c16577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Injectable antibacterial and osteoinductive hydrogels have received considerable attention for promoting bone regeneration owing to their versatile functionalities. However, a current hydrogel with antibacterial, osteoinductive, and antioxidant properties by a facile method for periodontitis treatment is still missing. To overcome this issue, we designed an injectable hydrogel system (GPM) composed of gelatin, Ti3C2Tx MXene nanosheets, and poly-l-lysine using a simple enzymatic cross-linking technique. Physicochemical characterization demonstrated that the GPM hydrogel matrix exhibited excellent stability, moderate tissue adhesion ability, and good mechanical behavior. The GPM hydrogels significantly inhibited the growth of Porphyromonas gingivalis, scavenged reactive oxygen species, attenuated inflammatory responses, and enhanced bone tissue regeneration. Intriguingly, the arrangement of the junctional epithelium, alveolar bone volume, and alveolar bone height in the GPM-treated periodontal disease group recovered to that of the healthy group. Therefore, our injectable hydrogel system with versatile functions may serve as an excellent tissue scaffold for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziying You
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Lou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
21
|
Yang J, Huang Z, Tan J, Pan J, Chen S, Wan W. Copper ion/gallic acid MOFs-laden adhesive pomelo peel sponge effectively treats biofilm-infected skin wounds and improves healing quality. Bioact Mater 2024; 32:260-276. [PMID: 37869725 PMCID: PMC10589730 DOI: 10.1016/j.bioactmat.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Bacterial infection and scar formation remain primary challenges in wound healing. To address these issues, we developed a decellularized pomelo peel (DPP) functionalized with an adhesive PVA-TSPBA hydrogel and antibacterial gallic acid/copper MOFs. The hybrid wound dressing demonstrates favorable biocompatibility. It does not impede the proliferation of fibroblasts or immune cells and can stimulate fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, the dressing can scavenge reactive oxygen species (ROS) and provide antioxidant effects. Furthermore, DPP + MOF@Gel effectively inhibits the viability of S. aureus and E. coli in vitro and in vivo. The histological observations revealed enhanced granulation tissue formation, re-epithelialization, and angiogenesis in the DPP + MOF@Gel group compared to other groups. The local immune response also shifted from a pro-inflammatory to a pro-regenerative status with DPP + MOF@Gel treatment. The skin incision stitching experiment further exhibits DPP + MOF@Gel could reduce scar formation during wound healing. Taken together, the hybrid DPP + MOF@Gel holds great promise for treating bacteria-infected skin wounds and inhibiting scar formation during wound healing.
Collapse
Affiliation(s)
- Jianqiu Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Zhenzhen Huang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jiang Tan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jingye Pan
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenbing Wan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
22
|
Chi T, Sang T, Wang Y, Ye Z. Cleavage and Noncleavage Chemistry in Reactive Oxygen Species (ROS)-Responsive Materials for Smart Drug Delivery. Bioconjug Chem 2024; 35:1-21. [PMID: 38118277 DOI: 10.1021/acs.bioconjchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The design and development of advanced drug delivery systems targeting reactive oxygen species (ROS) have gained significant interest in recent years for treating various diseases, including cancer, psychiatric diseases, cardiovascular diseases, neurological diseases, metabolic diseases, and chronic inflammations. Integrating specific chemical bonds capable of effectively responding to ROS and triggering drug release into the delivery system is crucial. In this Review, we discuss commonly used conjugation linkers (chemical bonds) and categorize them into two groups: cleavable linkers and noncleavable linkers. Our goal is to clarify their unique drug release mechanisms from a chemical perspective and provide practical organic synthesis approaches for their efficient production. We showcase numerous significant examples to demonstrate their synthesis routes and diverse applications. Ultimately, we strive to present a comprehensive overview of cleavage and noncleavage chemistry, offering insights into the development of smart drug delivery systems that respond to ROS.
Collapse
Affiliation(s)
- Teng Chi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting Sang
- School of Stomatology of Nanchang University & Jiangxi Province Clinical Research Center for Oral Diseases & The Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Yanjing Wang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| |
Collapse
|
23
|
Hu S, Wang L, Li J, Li D, Zeng H, Chen T, Li L, Xiang X. Catechol-Modified and MnO 2-Nanozyme-Reinforced Hydrogel with Improved Antioxidant and Antibacterial Capacity for Periodontitis Treatment. ACS Biomater Sci Eng 2023; 9:5332-5346. [PMID: 37642176 DOI: 10.1021/acsbiomaterials.3c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.
Collapse
Affiliation(s)
- Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Liping Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Huan Zeng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Xuerong Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
24
|
曾 欣, 刘 帆. [Latest Findings on Hydrogel Drug Delivery Systems in the Treatment of Periodontitis]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:721-725. [PMID: 37545063 PMCID: PMC10442618 DOI: 10.12182/20230760203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 08/08/2023]
Abstract
Hydrogel drug delivery systems possess unique structures and properties and hence can be injected and retained in the periodontal pocket for slow and controlled release of medications with antibacterial, anti-inflammatory, and periodontal tissue regeneration-promotional effects. Due to their safety, practicability, and effectiveness, they show great potential in the treatment of periodontitis. In this paper, we gave an overview of hydrogel drug delivery systems in the treatment of periodontitis, summing up the classification and forms of the drugs delivered and the strengths and weaknesses of common types of hydrogel matrixes. In addition, we discussed properties required for hydrogel drug delivery systems applicable in the treatment of periodontitis, including a certain level of viscosity, suitable degradation cycle, and temperature sensitivity. Finally, we summarized the stimulus responsiveness types of hydrogel drug delivery systems applicable in the treatment of periodontitis, including pH-responsiveness, enzyme-responsiveness, reactive oxygen species-responsiveness, light-responsiveness, and sugar-responsiveness. In the future, researchers should make further investigation into the clinical efficacy of hydrogel drug delivery systems and promote their translation into clinical applications. Additionally, hydrogel drug delivery systems carrying biologic drugs could be further investigated to promote advancement in the field of periodontal tissue regeneration. Furthermore, the response sources, realization strategies, and safe preparation methods of smart hydrogel drug delivery systems should also be further clarified and explored to achieve drug delivery of better efficiency and safety. In addition to drug delivery, hydrogel matrixes with medicinal values also show great promises.
Collapse
Affiliation(s)
- 欣 曾
- 四川大学华西护理学院 (成都 610041)West China School of Nursing, Sichuan University, Chengdu 610041, China
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 帆 刘
- 四川大学华西护理学院 (成都 610041)West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Mensah A, Rodgers AM, Larrañeta E, McMullan L, Tambuwala M, Callan JF, Courtenay AJ. Treatment of Periodontal Infections, the Possible Role of Hydrogels as Antibiotic Drug-Delivery Systems. Antibiotics (Basel) 2023; 12:1073. [PMID: 37370392 DOI: 10.3390/antibiotics12061073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
With the advancement of biomedical research into antimicrobial treatments for various diseases, the source and delivery of antibiotics have attracted attention. In periodontal diseases, antibiotics are integral in positive treatment outcomes; however, the use of antibiotics is with caution as the potential for the emergence of resistant strains is of concern. Over the years, conventional routes of drug administration have been proven to be effective for the treatment of PD, yet the problem of antibiotic resistance to conventional therapies continues to remain a setback in future treatments. Hydrogels fabricated from natural and synthetic polymers have been extensively applied in biomedical sciences for the delivery of potent biological compounds. These polymeric materials either have intrinsic antibacterial properties or serve as good carriers for the delivery of antibacterial agents. The biocompatibility, low toxicity and biodegradability of some hydrogels have favoured their consideration as prospective carriers for antibacterial drug delivery in PD. This article reviews PD and its antibiotic treatment options, the role of bacteria in PD and the potential of hydrogels as antibacterial agents and for antibiotic drug delivery in PD. Finally, potential challenges and future directions of hydrogels for use in PD treatment and diagnosis are also highlighted.
Collapse
Affiliation(s)
- Adelaide Mensah
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Aoife M Rodgers
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 96 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 96 Lisburn Road, Belfast BT9 7BL, UK
| | - Lyndsey McMullan
- DJ Maguire and Associates, Floor 1, Molesworth Place, Molesworth Street, Cookstown BT80 8NX, UK
| | - Murtaza Tambuwala
- Lincoln Medical School, Universities of Nottingham and Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - John F Callan
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Aaron J Courtenay
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|