1
|
Gao Y, Li Q, Du Z, Yao Q, Jiang G, Huang W, Gao X, Li J, Dou T, Chen F, Li X, Wang A, Peng J. HAMA-SBMA hydrogel with anti-inflammatory properties delivers cartilage organoids, boosting cartilage regeneration. J Nanobiotechnology 2025; 23:401. [PMID: 40448111 DOI: 10.1186/s12951-025-03475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
Cartilage tissue lacks blood supply, which limits its ability to self-repair. Cartilage organoid (CO) technology, which replicates the structure and function of cartilage, holds significant promise. However, it is essential to maintain cellular function and ensure secure fixation at the site of injury. Therefore, we loaded allogeneic bone marrow mesenchymal stem cells (BMSCs) onto decellularized extracellular matrix microparticles of porcine articular cartilage (CEP) to construct CO-CCO, which demonstrated characteristics of articular cartilage. Additionally, betaine sulfonate methacrylate (SBMA) was incorporated into hyaluronic acid methacrylate (HAMA) to synthesize a novel hydrogel, HAMA-SBMA (HS), characterized by its adhesive properties, promotion of chondrogenesis, and inhibition of inflammation. In Vivo studies revealed that the combination of HS and CCO (HS + CCO) exhibited excellent repair efficacy in both rat and sheep models of cartilage defects. Mechanistically, we found that HS + CCO promoted cartilage repair by activating the Frizzled-related protein (Frzb), which inhibited inflammatory factors and enhanced the expression of the adhesion factor integrin ɑ5β1. This strategy, which combines hydrogels and organoids, enhances cartilage repair, offering substantial potential for clinical applications in cartilage regeneration.
Collapse
Affiliation(s)
- Yuyang Gao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Qingshan Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- , 1Med Sch Chinese PLA, Beijing, 100853, China
| | - Zhangzhen Du
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
- Chengdu Fifth People's Hospital, Chengdu, 611100, China
| | - Qianru Yao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Gehan Jiang
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Wenxing Huang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiang Gao
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Tianxu Dou
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China.
| | - Aiyuan Wang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jiang Peng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
2
|
Zhang B, Bai M, Yang M, Wang Y, Chen X, Liu B, Shi G. Injectable nanocomposite hydrogel for localized precision delivery of dexamethasone after traumatic brain injury: dual modulation of neuroinflammation and blood-brain barrier restoration. J Transl Med 2025; 23:579. [PMID: 40410771 PMCID: PMC12102805 DOI: 10.1186/s12967-025-06528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Glucocorticoids (GCs) have been widely used in the treatment of severe traumatic brain injury (TBI) to inhibit neuroinflammation and alleviating brain edema and cannot be replaced by other drugs. However, their systemic application still faces many obstacles, such as the poor blood-brain-barrier (BBB) penetration and severe side effects. Therefore, new treatment strategy or compounds are urgently needed in clinic. METHODS Herein, an injectable nanocomposite hydrogel is developed as a biofunctionalized delivery platform for intraoperative administration of dexamethasone (DEX) after TBI. By using a mice TBI model, the safety and efficacy of the nanohydrogels in treating BBB disruption, brain edema and nerve injury were evaluated after TBI. RESULTS The hydrogel is composed of polysaccharide matrix (carboxymethyl chitosan and oxidized dextran) and mesoporous polydopamine (MPDA) nanoparticles loaded with DEX (MPDA@DEX@gel) that could realize in situ injection, self-assembly, a high DEX loading rate and sustained release around the lesion. The MPDA@DEX@gel exhibits excellent antibacterial and hemostatic properties, good biocompatibility and antioxidation, and self-healing capability in vitro. These in vitro and in vivo results show that local application of MPDA@DEX@gel not only alleviates brain edema, promotes neuronal survival, and improves neurological function by restoring the integrity of BBB and inhibiting neuroinflammation after TBI, but also effectively avoids the peripheral and central side effects. CONCLUSION Our study provides a promising treatment strategy for the rational use of GCs in patients with severe TBI.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Miao Bai
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, China
| | - Mengshi Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yumei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiyu Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baiyun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Guangzhi Shi
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Chen Z, Chan K, Li X, Gong L, Ma Y, Huang C, Lu Y, Wang L, Piao C. Polymeric Nanomedicines in Diabetic Wound Healing: Applications and Future Perspectives. Int J Nanomedicine 2025; 20:6423-6446. [PMID: 40420911 PMCID: PMC12105632 DOI: 10.2147/ijn.s514000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
The management of diabetic wound continues to pose significant clinical obstacles, primarily attributed to bacterial infections, excessive inflammation, oxidative stress, and impaired angiogenesis. These pathological factors not only severely affect patient well-being but also create considerable burden on medical services. Current managements often show limited efficacy, necessitating the exploration of alternative therapeutic strategies. Polymeric nanomedicines (PNs), owing to their nanoscale properties, enhanced cellular uptake, stability, bioavailability, and biocompatibility, have been broadly utilized for diabetic wound treatment. PNs demonstrate remarkable capabilities in microbial inhibition, inflammation regulation, oxidative stress mitigation, and vascular network formation, particularly when combined with various agents, including organic substances (eg, exosomes), inorganic substances (eg, metals), and biomaterials (eg, chitosan, hyaluronic acid, and hydrogels). This article systematically examines recent progress in PN-based interventions for diabetic wound recovery, highlighting the pivotal role of PNs in mitigating bacterial infection, modulating inflammatory responses, and promoting cellular regeneration. Additionally, we provide a novel perspective on the multifunctionality of PNs and their potential for overcoming the limitations of conventional therapies. Overall, PNs represent an innovative and promising approach to diabetic wound management, outperforming conventional therapies in stability, targeted delivery, and multifunctionality. In the future, investigations should concentrate on refining PNs formulations and administration strategies so as to enhance biocompatibility, and conducting well-designed clinical trials to validate their therapeutic efficacy.
Collapse
Affiliation(s)
- Zeyao Chen
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Kakei Chan
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Xin Li
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Department of Gynecology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Li Gong
- Department of Diabetes, Shenzhen Bao’an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Chiwen Huang
- Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Yan Lu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese, Guangzhou, People’s Republic of China
| | - Li Wang
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Chunli Piao
- Department of Endocrinology, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
He L, Xing S, Zhang W, Wang Y, Li Y, Chen J, Zhang J, Wang S, Zhao Q. Multifunctional dynamic chitosan-guar gum nanocomposite hydrogels in infection and diabetic wound healing. Carbohydr Polym 2025; 354:123316. [PMID: 39978920 DOI: 10.1016/j.carbpol.2025.123316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Traditional wound care methods are less effective for infectious and diabetic wounds, highlighting an urgent need for effective strategies. The study aimed to design a self-healing hydrogel with antibacterial, antioxidant, and photothermal capabilities to treat infectious and diabetic wounds. Silver nanoparticles (AgNPs) were loaded into mesoporous polydopamine (MPDA) nanoparticles to form Ag@MPDA nanoparticles. Ag@MPDA was incorporated into the cationic guar gum-chitosan-boric acid (CCB) hydrogel to obtain the PA-CCB hydrogel. PA-CCB hydrogel exhibited excellent self-healing and adhesive properties, adapting well to the dynamic wound environment. PA-CCB hydrogel combined with photothermal therapy (PTT) could effectively eradicated E. coli (99.9 %) and S. aureus (99.7 %). The PA-CCB hydrogel reduced excessive reactive oxygen species and promoted the migration of fibroblasts in vitro. In the infected mouse wound models, the PA-CCB hydrogel effectively inhibited bacteria. After combining with PTT, the antibacterial ability of the PA-CCB hydrogel was further enhanced. In the diabetic mouse wound models, the PA-CCB hydrogel reduced the inflammatory level of wound tissue. In both models, after combining with PTT, the PA-CCB hydrogel exhibited further improvements in angiogenesis, collagen deposition, and re-epithelialization. By integrating multifunctional hydrogel with PTT, the PA-CCB hydrogel exhibited broad application potential for infectious and diabetic wounds.
Collapse
Affiliation(s)
- Luning He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuyi Xing
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Weikang Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ying Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Jinghao Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
5
|
Li D, Wang Y, Zhao W, Li L, Zhang P. Gold@Mesoporous Polydopamine Nanocomposite Hydrogel Loaded with Estrogen for the Treatment of Skin Photoaging. Int J Nanomedicine 2025; 20:4571-4587. [PMID: 40242609 PMCID: PMC12002076 DOI: 10.2147/ijn.s511388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Topical application of 17β-estradiol (E2) has been shown to improve various hallmark features of skin aging, including enhancing skin elasticity and hydration, reducing wrinkles, and promoting collagen synthesis. However, the role of estrogen in UVB-induced photoaging of the skin remains unclear. Furthermore, E2's clinical application is limited by issues such as bioavailability and potential adverse effects. Therefore, this study aims to explore the role of E2 in UVB-induced skin photoaging and to prepare a gold (Au)@mesoporous polydopamine (mPDA)-hyaluronic acid (HA)/carboxymethyl chitosan (CMCS) nanoparticle composite hydrogel (Au/E2@mPDA-HCG) for the treatment of skin photoaging. Methods This study successfully fabricated mPDA with a well-defined mesoporous structure and incorporated Au NPs into the mesopores of mPDA using an in situ growth method, thereby constructing Au@mPDA NPs loaded with E2. Subsequently, the Au/E2@mPDA NPs were embedded into a HA/CMCS hydrogel to develop the Au/E2@mPDA-HCG nanoparticle composite hydrogel. The composite hydrogel was characterized through in vitro and in vivo experiments, and its efficacy in improving skin photoaging was evaluated. Results This study revealed that estrogen deficiency significantly exacerbates UVB-induced skin photoaging, likely through mechanisms closely associated with increased oxidative stress and reduced collagen production. Moreover, the Au/E2@mPDA-HCG nanoparticle composite hydrogel demonstrated favorable morphological characteristics and biocompatibility. In vitro and in vivo experimental results indicated that this composite hydrogel effectively enhanced the therapeutic efficacy of E2 in treating skin photoaging, as evidenced by its significant mitigation of oxidative stress and inflammatory responses, along with the promotion of collagen synthesis. Conclusion In conclusion, this study suggests that the combination of E2 with Au@mPDA@HCG nanocomposite hydrogel offers a promising therapeutic strategy for UVB-induced skin photoaging.
Collapse
Affiliation(s)
- Dashuai Li
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Yonghua Wang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Wanyi Zhao
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| | - Pan Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, People’s Republic of China
| |
Collapse
|
6
|
Zhang Q, Zheng J, Li L, Yeh JM, Xie X, Zhao Y, Li C, Hou G, Yan H. Bioinspired conductive oriented nanofiber felt with efficient ROS clearance and anti-inflammation for inducing M2 macrophage polarization and accelerating spinal cord injury repair. Bioact Mater 2025; 46:173-194. [PMID: 39760065 PMCID: PMC11699466 DOI: 10.1016/j.bioactmat.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Complete spinal cord injury (SCI) causes permanent locomotor, sensory and neurological dysfunctions. Targeting complex immunopathological microenvironment at SCI sites comprising inflammatory cytokines infiltration, oxidative stress and massive neuronal apoptosis, the conductive oriented nanofiber felt with efficient ROS clearance, anti-inflammatory effect and accelerating neural regeneration is constructed by step-growth addition polymerization and electrostatic spinning technique for SCI repair. The formation of innovative Fe3+-PDA-PAT chelate in nanofiber felt enhances hydrophilic, antioxidant, antibacterial, hemostatic and binding factor capacities, thereby regulating immune microenvironment of SCI. With the capabilities of up-regulating COX5A and STAT6 expressions, down-regulating the expressions of IL1β, CD36, p-ERK, NFκB2 and NFκB signaling pathway proteins, the nanofiber felt attenuates oxidative stress injury, promotes M2 macrophage polarization and down-regulates inflammatory response. After implantation into complete transection SCI rats, the nanofiber felt is revealed to recruit endogenous NSCs, induce the differentiation of NSCs into neurons while inhibit astrocytes formation and inflammation, reduces glia scar, and promotes angiogenesis, remyelination and neurological functional recovery. Overall, this innovative strategy provides a facile immune regulatory system to inhibit inflammatory response and accelerate nerve regeneration after SCI, and its targeted proteins and mechanisms are first elucidated, which holds great application promise in clinical treatment of complete SCI.
Collapse
Affiliation(s)
- Qingxia Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Jiahe Zheng
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Jui-Ming Yeh
- Department of Chemistry and Center for Nanotechnology, Chung-Yuan Christian University (CYCU), Chung Li, 32023, Taiwan, Republic of China
| | - Xianrui Xie
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Yuqing Zhao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Chengbo Li
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Guige Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| | - Huanhuan Yan
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, PR China
| |
Collapse
|
7
|
Liu H, Ai R, Liu BZ, He L. Recent advances in hyaluronic acid-based hydrogels for diabetic wound healing. Int J Biol Macromol 2025; 304:140797. [PMID: 39924018 DOI: 10.1016/j.ijbiomac.2025.140797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Diabetic wound healing represents a complex biological challenge, often impeded by disrupted cellular processes and dysregulated inflammation, which can lead to chronic and non-healing wounds. Given the significant burden on patients and the healthcare system, there is an urgent need for advanced therapeutic strategies. Hyaluronic acid (HA)-based hydrogels have emerged as a promising solution due to their biocompatibility, biodegradability, and unique physiological functions. This review aims to provide a comprehensive overview of recent advances in HA-based hydrogels, highlighting their potential in addressing diabetic wound complications. Specifically, it examines challenges such as hyperglycemia-induced oxidative stress and impaired cellular signaling within the intricate diabetic wound microenvironment. Moreover, the review explores the composition and properties of HA, including its adhesive capabilities and role in reducing surgical trauma. Various crosslinking strategies and functional modifications are also discussed to endow HA-based hydrogels with antioxidant, antimicrobial, and growth factor-releasing capabilities. By summarizing the latest research and identifying areas for further exploration, this review contributes to the development of more effective HA-based hydrogel formulations for diabetic wound healing.
Collapse
Affiliation(s)
- Huan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Ronger Ai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Bi-Zhi Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Li He
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
8
|
Wang Z, Wang L, Wang S, Chen H, Wang D, Li A, Huang Y, Pu Y, Xiong X, Lui X, Huang Y, Guo L. The Extracellular Matrix Promotes Diabetic Oral Wound Healing by Modulating the Microenvironment. Biomater Res 2025; 29:0169. [PMID: 40110050 PMCID: PMC11922533 DOI: 10.34133/bmr.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Oral wounds in diabetes mellitus (DM) often delay healing due to reduced angiogenesis and increased inflammatory response in the local microenvironment, even leading to graft necrosis and implant failure. Therefore, developing an effective program to promote healing is of great clinical value. Much of the current research is focused on promoting wound healing through surface adhesive materials that exert a pro-angiogenic, anti-inflammatory effect. However, the application of surface bonding materials in the oral cavity is very limited due to the humid and friction-prone environment. Decellularized extracellular adipose tissue (DAT) is an easily accessible and biocompatible material derived from adipose tissue. To further explore the potential of DAT, we used multi-omics to analyze its composition and possible mechanisms. Proteomic studies revealed that DAT contains anti-inflammatory, pro-angiogenic proteins that promote DM tissue regeneration. To adapt to the moist and chewing friction environment of the mouth, we modified DAT into a temperature-sensitive hydrogel material that can be injected intramucosally. DAT hydrogel has been verified to promote angiogenesis and exert anti-inflammatory effects through macrophage phenotypic transformation. Meanwhile, transcriptome analysis suggested that the inhibitory effect of DAT on the interleukin 17 signaling pathway might be a key factor in promoting DM oral wound healing. In conclusion, after multi-omic analysis, DAT hydrogel can exert good pro-angiogenic and anti-inflammatory effects through the interleukin 17 signaling pathway and can be adapted to the specific environment of the oral cavity. This provides a potential way to promote DM oral wound healing in a clinical setting.
Collapse
Affiliation(s)
- Zhongke Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Li Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Sihan Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Hongmei Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Danni Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Aodi Li
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Ying Huang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Yifan Pu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Xinlei Xiong
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Xiangrui Lui
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Yuwen Huang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Ling Guo
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| |
Collapse
|
9
|
Zhu C, Diao Z, Yang Y, Liao J, Wang C, Li Y, Liang Z, Xu P, Liu X, Zhang Q, Gong L, Ma Q, Liang L, Lin Z. Recent advances and challenges in metal-based antimicrobial materials: a review of strategies to combat antibiotic resistance. J Nanobiotechnology 2025; 23:193. [PMID: 40059157 PMCID: PMC11892188 DOI: 10.1186/s12951-025-03249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Despite the availability of a series of classical antibiotic drugs, bacterial infections continue to represent a significant and urgent threat to global human health. The emergence of drug-resistant bacteria and the slow pace of antibiotic development have rendered current treatment methods inadequate in meeting the clinical demands of bacterial infections. Consequently, there is an increasingly urgent and vital need for the development of safe, efficient, and alternative novel antimicrobial agents in the medical and healthcare field. Over the past five years, there has been a notable expansion in the field of nanomedicine with regard to the prevention and control of infectious diseases. The objective of this article is to provide a comprehensive review of the latest research developments in the field of metal nanomaterials for medical antimicrobial therapy. We begin by delineating the gravity of the bacterial infection crisis, subsequently undertaking a comprehensive examination of the potential mechanisms through which nanoparticles may combat bacterial infections and the specific applications of these nanomaterials in the treatment of diverse infectious diseases. In conclusion, we eagerly anticipate the future development directions of metal nanomaterials in the field of antimicrobial therapy. We believe that with continuous technological advancements and innovations, this field will make even more outstanding contributions to safeguarding human health and well-being.
Collapse
Affiliation(s)
- Chuanda Zhu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenli Diao
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100043, China
| | - Yuanyuan Yang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jun Liao
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chao Wang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yanglonghao Li
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zichao Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Pengcheng Xu
- School of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Xinyu Liu
- Beijing Life Science Academy, Beijing, 102200, China
| | - Qiang Zhang
- School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Qiang Ma
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan City, 063210, Hebei Province, China.
| | - Ling Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Zhiqiang Lin
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
10
|
Li L, Qin W, Ye T, Wang C, Qin Z, Ma Y, Mu Z, Jiao K, Tay FR, Niu W, Niu L. Bioactive Zn-V-Si-Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis. ACS NANO 2025; 19:7981-7995. [PMID: 39960072 DOI: 10.1021/acsnano.4c15227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Periodontitis is a chronic inflammatory condition affecting the periodontal tissue. This condition worsens in diabetic patients due to oxidative stress and inflammation. Herein, we investigated a treatment using bioactive Zn-V-Si-Ca glass nanoparticle hydrogel microneedles. The microneedles contain bioactive glass nanoparticles codoped with zinc and vanadium ions. They also include gallic acid and oxidized methacrylated hyaluronic acid. These microneedles address bacterial dysbiosis and oxidative stress in diabetic periodontitis. They provide antibacterial and antioxidant effects. The microneedles deliver therapeutic agents directly into the gingival tissue. This enhances drug retention and absorption by penetrating the mucosal barrier. In vitro studies demonstrated biocompatibility, excellent antioxidant properties, and acceptable mechanical properties. Meanwhile, the microneedle patches demonstrated antibacterial properties effective against a Gram-negative periodontal pathogen as well as a Gram-positive oral bacterium. In vivo experiments were performed using a diabetic rat model with periodontitis. Results showed significant improvement in alveolar bone regeneration. The hydrogel modulated the inflammatory microenvironment effectively. Ribonucleic acid sequencing revealed downregulation of JAK-STAT and NF-κB inflammation signaling pathways. This work presents a distinctive approach to suppressing the inflammatory response and modulate immune responses for the purpose of treating diabetic periodontitis early.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tao Ye
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Chenyu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zixuan Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuxuan Ma
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Wen Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
11
|
Zhang X, Yang H, He Y, Zhang D, Lu G, Ren M, Lyu Y, Yuan Z, He S. Yeast-Inspired Orally-Administered Nanocomposite Scavenges Oxidative Stress and Restores Gut Immune Homeostasis for Inflammatory Bowel Disease Treatment. ACS NANO 2025; 19:7350-7369. [PMID: 39943645 DOI: 10.1021/acsnano.4c18099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Excessive oxidative stress, dysregulated immune homeostasis, and disruption of the intestinal epithelial barrier are crucial features of inflammatory bowel disease (IBD). Traditional treatments focusing solely on inflammation resolution remain unsatisfactory. Herein, a yeast-inspired orally administered nanocomposite was developed. First, the MD@MPDA core was fabricated by integrating manganese dioxide (MnO2) nanozymes onto diallyl trisulfide (H2S prodrug)-loaded mesoporous polydopamine nanoparticles (MPDA). Then, yeast cell wall (YCW) was chosen to encapsulate MD@MPDA, namely, YMD@MPDA. The β-glucan embedded in the YCW shell not only protected the nanocomposite from the harsh gastrointestinal environment but also allowed the targeting enrichment in the inflamed colon. Furthermore, M1 macrophages triggered the intracellular GSH-responsive H2S release in the pathological microenvironment. MD@MPDA effectively alleviated inflammatory responses by MnO2-mediated ROS-scavenging and H2S-participated immunomodulation. The synergistic action contributed to macrophage mitochondrial function restoration and M2 polarization by suppressing NOX4 signaling and p38 MAPK pro-inflammatory signaling. In the mice model of dextran sulfate sodium (DSS)-induced IBD, the multipronged manner of scavenging oxidative stress, remodeling innate and adaptive immune homeostasis, and reshaping gut microbiota caused by YMD@MPDA effectively ameliorated inflammation and restored intestinal barrier functions. Overall, the YMD@MPDA nanocomposite provides a promising codelivery strategy of antioxidative nanozymes and gas prodrugs for the comprehensive management of IBD.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Huan Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Mudan Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an 710061, P. R. China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
12
|
Dai L, Ma W, Song Z, Lu B, He Y, Zhang J, Wei D, Wang B, Li G, Gao D, Wang Y. Targeted and Synergistic Codelivery of Chemotherapeutic and Nucleic Acid Drugs by Liposome-Coated MPDA Nanoparticles for Advanced Prostate Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8875-8885. [PMID: 39894982 DOI: 10.1021/acsami.4c17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Docetaxel (DTX)-based chemotherapy is the primary therapeutic approach for advanced prostate cancer (PCa) when endocrine therapy proves ineffective. Traditional chemotherapy exhibits poor specificity and induces severe side effects, such as immunosuppression, neurotoxicity, and hypersensitivity. In this study, we aimed to develop a new targeted nanodrug delivery system to accurately identify PCa cells and deliver drugs. We prepared mesoporous polydopamine (MPDA) nanoparticles using a one-pot method. After loading DTX onto MPDA, siRNA was attached to the surface, which was coated with polyethylene glycol lipids film (PEG-Lips); together, this formed MDS@L. The aptamer A10-3.2 was coupled to the surface of PEG-Lips to obtain MDS@LA, which was characterized using different techniques, including transmission electron microscopy and Fourier transform infrared spectroscopy. MDS@LA exhibited excellent stability, acid-responsive release, and photothermal properties, enhancing its antitumor effects. Both in vitro and in vivo experiments revealed that MDS@LA precisely targeted PCa cells and effectively delivered DTX and siRNA, leading to significant inhibition of PCa cell growth and proliferation. This versatile nanoplatform offers a promising, precise, and efficient therapeutic approach for advanced PCa, addressing the limitations of conventional chemotherapy.
Collapse
Affiliation(s)
- Liang Dai
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Wangteng Ma
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Zixuan Song
- Department of Pediatrics, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Binwei Lu
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Yuchu He
- State Key Laboratory of Metastable, Materials Science and Technology, Nano-biotechnology KeyLab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediationin Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Jidong Zhang
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Dapeng Wei
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Baibing Wang
- Department of Urology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Guangming Li
- School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Dawei Gao
- State Key Laboratory of Metastable, Materials Science and Technology, Nano-biotechnology KeyLab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediationin Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yimin Wang
- Department of General Surgery, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
- Department of Surgery, Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
13
|
Meng W, Chen X, Chen Y, Li M, Zhang L, Luo Q, Wei C, Huang G, Zhao P, Sun B, Chen M, Zhang Q, Chen J. Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411189. [PMID: 39791290 DOI: 10.1002/smll.202411189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPdshells/BNN6/PEG@Gel (UAPsBP@Gel) is developed. The system is capable of acting as a nitric oxide (NO) reactor utilizing synergistic therapy that harnesses NIR-II light-triggered photothermal effects and controlled release of NO gas for synergistic treatment to eradicate biofilm infections at different depths. The AuPd nanoshells exhibits superoxide dismutase (SOD)-, glucose oxidase (GOx)-, and catalase (CAT)-like activities, enabling self-cascade process for scavenging both reactive oxygen species (ROS) and glucose. This activity reshapes the DUs microenvironment, switches on the endogenous antioxidant Nrf2/HO-1 pathway and inhibits the NF-κB pathway, promotes macrophage polarization toward the anti-inflammatory M2 phenotype, and reduces oxidative stress, resulting in efficient immunomodulation. In vitro/in vivo results demonstrate that the UAPsBP@Gel can multifacetedly enhance the epithelial rejuvenation process through wound hemostasis, pro-cellular migration and vascularization. These results highlight that a programmed therapeutic based on UBAPsP@Gel tailored to the different stages of infected DUs can meet complex clinical needs.
Collapse
Affiliation(s)
- Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanyan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mingshun Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lianying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qiujie Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chenlu Wei
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guoqin Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Pei Zhao
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China
| | - Bin Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Qun Zhang
- Office of Clinical Trial of Drug, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510663, China
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
14
|
Liao Y, Zhang Z, Zhao Y, Zhang S, Zha K, Ouyang L, Hu W, Zhou W, Sun Y, Liu G. Glucose oxidase: An emerging multidimensional treatment option for diabetic wound healing. Bioact Mater 2025; 44:131-151. [PMID: 39484022 PMCID: PMC11525048 DOI: 10.1016/j.bioactmat.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
The healing of diabetic skin wounds is a complex process significantly affected by the hyperglycemic environment. In this context, glucose oxidase (GOx), by catalyzing glucose to produce gluconic acid and hydrogen peroxide, not only modulates the hyperglycemic microenvironment but also possesses antibacterial and oxygen-supplying functions, thereby demonstrating immense potential in the treatment of diabetic wounds. Despite the growing interest in GOx-based therapeutic strategies in recent years, a systematic summary and review of these efforts have been lacking. To address this gap, this review article outlines the advancements in the application of GOx and GOx-like nanozymes in the treatment of diabetic wounds, including reaction mechanisms, the selection of carrier materials, and synergistic therapeutic strategies such as multi-enzyme combinations, microneedle structures, and gas therapy. Finally, the article looks forward to the application prospects of GOx in aiding the healing of diabetic wounds and the challenges faced in translating these innovations to clinical practice. We sincerely hope that this review can provide readers with a comprehensive understanding of GOx-based diabetic treatment strategies, facilitate the rigorous construction of more robust multifunctional therapeutic systems, and ultimately benefit patients with diabetic wounds.
Collapse
Affiliation(s)
| | | | | | | | - Kangkang Zha
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Lizhi Ouyang
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Weixian Hu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Wu Zhou
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Yun Sun
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Guohui Liu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| |
Collapse
|
15
|
Guo C, Liu Y, Ma F, Xu X, Zhang W, Zhao Z, Wang Y, Kong Q. Microenvironment Remodeling Microgel Repairs Degenerated Intervertebral Disc via Programmed Delivery of MicroRNA-155. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6009-6023. [PMID: 39804788 DOI: 10.1021/acsami.4c18801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The progression of intervertebral disc degeneration (IVDD) is associated with increased cell apoptosis and reduced extracellular matrix (ECM) production, both of which are driven by ongoing inflammation. Thus, alleviating the acidic inflammatory microenvironment and mitigating the apoptosis of nucleus pulposus cells (NPCs) are essential for intervertebral disc (IVD) regeneration. Regulating pH levels in the local environment can reduce inflammation and promote tissue recovery. In this study, a lactic acid-capturing microgel carrying a functionalized miRNA-155 nanocarrier was designed for IVD regeneration. microRNA-155 was loaded into the NPC-targeted nanogel via host-guest binding. The miR-155 nanocarrier (NGM) achieved lactic acid-sensitive release of miRNA-155, resulting in rapid regulation of apoptosis. Moreover, SS31, which dissociated from the nanogel network, had the ability to regulate mitochondrial metabolism. Moreover, the microgel was constructed using a matrix metalloproteinase-responsive peptide. The chitosan coating on the microgel system was ingeniously employed to capture lactic acid and enable pH-responsive dissociation, thereby alleviating the acidic microenvironment to protect cell viability and facilitate the delivery of the NGM. The microgel system effectively promoted IVD regeneration by alleviating the acidic microenvironment and preventing NPC apoptosis.
Collapse
Affiliation(s)
- Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fei Ma
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyuan Xu
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Weifei Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Kusnadi K, Herdiana Y, Rochima E, Putra ON, Mohd Gazzali A, Muchtaridi M. Collagen-Based Nanoparticles as Drug Delivery System in Wound Healing Applications. Int J Nanomedicine 2024; 19:11321-11341. [PMID: 39524919 PMCID: PMC11550700 DOI: 10.2147/ijn.s485588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes. Aims of Study This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing. Methodology This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed. Results A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade. Conclusion In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.
Collapse
Affiliation(s)
- Kusnadi Kusnadi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmacy, Politeknik Harapan Bersama, Tegal, Central Java, 52147, Indonesia
| | - Yedi Herdiana
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Emma Rochima
- Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Okta Nama Putra
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong, Jawa Barat, 16911, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
17
|
Pawar B, Otavi S, Singh A, Kaur S, Tekade RK. On-demand Opto-Laser activatable nanoSilver ThermoGel for treatment of full-thickness diabetic wound in a mouse model. BIOMATERIALS ADVANCES 2024; 164:213994. [PMID: 39153455 DOI: 10.1016/j.bioadv.2024.213994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Patients suffering from diabetes mellitus are prone to develop diabetic wounds that are non-treatable with conventional therapies. Hence, there is an urgent need of hour to develop the therapy that will overcome the lacunas of conventional therapies. This investigation reports the Quality by Design-guided one-pot green synthesis of unique Opto-Laser activatable nanoSilver ThermoGel (OL→nSil-ThermoGel) for hyperthermia-assisted treatment of full-thickness diabetic wounds in mice models. The characterization findings confirmed the formation of spherical-shaped nanometric Opto-Laser activatable nanoSilver (30.75 ± 2.7 nm; ∆T: 37 ± 0.2 °C → 66.2 ± 0.1 °C; at 1.8 W/cm2 NIR laser density). The findings indicated acceptable in vitro cytocompatibility and significant keratinocyte migration (95.04 ± 0.07 %) activity of OL→nSil towards HaCaT cells. The rheological data of OL→nSil hybridized in situ thermoresponsive gel (OL→nSil-ThermoGel) showed the gelling temperature at 32 ± 2 °C. In vivo studies on full-thickness diabetic wounds in a Mouse model showed OL→nSil-ThermoGel accelerated wound closure (94.42 ± 1.03 %) and increased collagen synthesis, angiogenesis, and decreased inflammatory markers. Similarly, immunohistochemistry study showed significant angiogenesis and faster phenotypic switching of fibroblasts to myofibroblasts in OL→nSil-ThermoGel treated diabetic wounds. Histological evaluation revealed a marked rise in keratinocyte migration, organized collagen deposition, and early regeneration of the epithelial layer compared to the diabetic wound control. In conclusion, the OL→nSil-ThermoGel modulates the cytokines, re-epithelialization, protein expression, and growth factors, thereby improving the repair and regeneration of diabetic wounds in mice.
Collapse
Affiliation(s)
- Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Amrita Singh
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Simranjeet Kaur
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
18
|
Jiang Y, Feng X, Qiao X, Li Y, Li X, Yang J, Han L. Plant-inspired visible-light-driven bioenergetic hydrogels for chronic wound healing. Bioact Mater 2024; 41:523-536. [PMID: 39210966 PMCID: PMC11359762 DOI: 10.1016/j.bioactmat.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic bioenergetic imbalances and inflammation caused by hyperglycemia are obstacles that delay diabetic wound healing. However, it is difficult to directly deliver energy and metabolites to regulate intracellular energy metabolism using biomaterials. Herein, we propose a light-driven bioenergetic and oxygen-releasing hydrogel (PTKM@HG) that integrates the thylakoid membrane-encapsulated polyphenol nanoparticles (PTKM NPs) to regulate the energy metabolism and inflammatory response in diabetic wounds. Upon red light irradiation, the PTKM NPs exhibited oxygen generation and H2O2 deletion capacity through a photosynthetic effect to restore hypoxia-induced mitochondrial dysfunction. Meanwhile, the PTKM NPs could produce exogenous ATP and NADPH to enhance mitochondrial function and facilitate cellular anabolism by regulating the leucine-activated mTOR signaling pathway. Furthermore, the PTKM NPs inherited antioxidative and anti-inflammatory ability from polyphenol. Finally, the red light irradiated PTKM@HG hydrogel augmented the survival and migration of cells keratinocytes, and then accelerated angiogenesis and re-epithelialization of diabetic wounds. In short, this study provides possibilities for effectively treating diseases by delivering key metabolites and energy based on such a light-driven bioenergetic hydrogel.
Collapse
Affiliation(s)
- Yuping Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaomin Feng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yufeng Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaozhuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
19
|
Li Y, Liu W, Wang Y, Liu T, Feng Y. Nanotechnology-Mediated Immunomodulation Strategy for Inflammation Resolution. Adv Healthc Mater 2024; 13:e2401384. [PMID: 39039994 DOI: 10.1002/adhm.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Inflammation serves as a common characteristic across a wide range of diseases and plays a vital role in maintaining homeostasis. Inflammation can lead to tissue damage and the onset of inflammatory diseases. Although significant progress is made in anti-inflammation in recent years, the current clinical approaches mainly rely on the systemic administration of corticosteroids and antibiotics, which only provide short-term relief. Recently, immunomodulatory approaches have emerged as promising strategies for facilitating the resolution of inflammation. Especially, the advanced nanosystems with unique biocompatibility and multifunctionality have provided an ideal platform for immunomodulation. In this review, the pathophysiology of inflammation and current therapeutic strategies are summarized. It is mainly focused on the nanomedicines that modulate the inflammatory signaling pathways, inflammatory cells, oxidative stress, and inflammation targeting. Finally, the challenges and opportunities of nanomaterials in addressing inflammation are also discussed. The nanotechnology-mediated immunomodulation will open a new treatment strategy for inflammation therapy.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
| |
Collapse
|
20
|
Zhang A, Wei Q, Zheng Y, Ma M, Cao T, Zhan Q, Cao P. Hydrogen Sulfide Delivery System Based on Salting-Out Effect for Enhancing Synergistic Photothermal and Photodynamic Cancer Therapies. Adv Healthc Mater 2024; 13:e2400803. [PMID: 39036862 DOI: 10.1002/adhm.202400803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/30/2024] [Indexed: 07/23/2024]
Abstract
The simultaneous application of photothermal therapy (PTT) and photodynamic therapy (PDT) offers substantial advantages in cancer treatment. However, their synergistic anticancer efficacy is often limited by tumor hypoxia, and thermotolerance induced by high expression of heat shock proteins (HSP). Fortunately, hydrogen sulfide (H2S), known for its direct cytotoxic effect on tumor cells, has been recognized for its ability to enhance PTT and PDT. The effectiveness of H2S in these therapies is challenged by its low loading efficiency, poor stability, and short diffusion distance. To address these issues, a nanoscale emulsion drop template created through the salting-out effect is employed to construct a robust H2S delivery system. Polydopamine (PDA), chosen for its interfacial polymerization tendency and excellent photothermal conversion rate, is utilized as a carrier for the H2S donor (ADT) and Zinc phthalocyanine (ZnPc) to fabricate a novel nanomedicine termed APZ NPs. The temperature-responsive APZ NPs are designed to release H2S during the PTT process. Elevated H2S levels promoted vasodilation, thereby enhancing the enhanced permeability and retention effect (EPR) of APZ NPs within solid tumors. This strategy effectively alleviated tumor hypoxia by disrupting the mitochondrial respiratory chain and mitigated tumor cell heat tolerance by inhibiting HSP expression.
Collapse
Affiliation(s)
- Aimei Zhang
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Qingyun Wei
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P. R. China
| | - Yuhan Zheng
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengyuan Ma
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Tao Cao
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Qichen Zhan
- Animal-Derived Chinese Medicine and Functional Peptides International Collaboration Joint Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
| | - Peng Cao
- Quzhou People's Hospital, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang, 324000, P. R. China
- Jiangsu Provincial Medicinal Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, P. R. China
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, 212002, P. R. China
| |
Collapse
|
21
|
Shim G, Youn YS. Precise subcellular targeting approaches for organelle-related disorders. Adv Drug Deliv Rev 2024; 212:115411. [PMID: 39032657 DOI: 10.1016/j.addr.2024.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Pharmacological research has expanded to the nanoscale level with advanced imaging technologies, enabling the analysis of drug distribution at the cellular organelle level. These advances in research techniques have contributed to the targeting of cellular organelles to address the fundamental causes of diseases. Beyond navigating the hurdles of reaching lesion tissues upon administration and identifying target cells within these tissues, controlling drug accumulation at the organelle level is the most refined method of disease management. This approach opens new avenues for the development of more potent therapeutic strategies by delving into the intricate roles and interplay of cellular organelles. Thus, organelle-targeted approaches help overcome the limitations of conventional therapies by precisely regulating functionally compartmentalized spaces based on their environment. This review discusses the basic concepts of organelle targeting research and proposes strategies to target diseases arising from organelle dysfunction. We also address the current challenges faced by organelle targeting and explore future research directions.
Collapse
Affiliation(s)
- Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
22
|
Yang C, Yuan W, Liao G, Tang Z, Zhu T, Jia Y, Yu Q, Wang L. Customized Vascular Repair Microenvironment: Poly(lactic acid)-Gelatin Nanofibrous Scaffold Decorated with bFGF and Ag@Fe 3O 4 Core-Shell Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40787-40804. [PMID: 39072379 DOI: 10.1021/acsami.4c09269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Vascular defects caused by trauma or vascular diseases can significantly impact normal blood circulation, resulting in serious health complications. Vascular grafts have evolved as a popular approach for vascular reconstruction with promising outcomes. However, four of the greatest challenges for successful application of small-diameter vascular grafts are (1) postoperative anti-infection, (2) preventing thrombosis formation, (3) utilizing the inflammatory response to the graft to induce tissue regeneration and repair, and (4) noninvasive monitoring of the scaffold and integration. The present study demonstrated a basic fibroblast growth factor (bFGF) and oleic acid dispersed Ag@Fe3O4 core-shell nanowires (OA-Ag@Fe3O4 CSNWs) codecorated poly(lactic acid) (PLA)/gelatin (Gel) multifunctional electrospun vascular grafts (bAPG). The Ag@Fe3O4 CSNWs have sustained Ag+ release and exceptional photothermal capabilities to effectively suppress bacterial infections both in vitro and in vivo, noninvasive magnetic resonance imaging (MRI) modality to monitor the position of the graft, and antiplatelet adhesion properties to promise long-term patency. The gradually released bFGF from the bAPG scaffold promotes the M2 macrophage polarization and enhances the recruitment of macrophages, endothelial cells (ECs) and fibroblast cells. This significant regulation of diverse cell behavior has been proven to be beneficial to vascular repair and regeneration both in vitro and in vivo. Therefore, this study supplies a method to prepare multifunctional vascular-repair materials and is expected to represent a significant guidance and reference to the development of biomaterials for vascular tissue engineering.
Collapse
Affiliation(s)
- Congyi Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Weiwen Yuan
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Guoxing Liao
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Zhe Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Tong Zhu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Yifan Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - Qianqian Yu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
| | - LinGe Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Li H, Lin X, Rao S, Zhou G, Meng L, Yu Y, Wang J, Chen X, Sun W. Decellularized Tumor Tissues Integrated with Polydopamine for Wound Healing. RESEARCH (WASHINGTON, D.C.) 2024; 7:0445. [PMID: 39109247 PMCID: PMC11301524 DOI: 10.34133/research.0445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 05/04/2025]
Abstract
Natural biomaterials have been showing extensive potential in wound healing; attempts therefore focus on productions achieving both antimicrobial and tissue regenerative abilities. Here, we construct a decellularized human colon tumor (DHCT)-derived scaffold for wound remolding via microfluidic bioprinting. The DHCT retains a series of growth factors, fibrin, and the collagen configuration, that favor tissue repair and reconstruction. Specifically, the scaffold shows superior abilities in cell migration and angiogenesis. The biocompatible scaffold is also imparted with tissue adhesion ability and photothermal effect due to the coating of biologically derived polydopamine on the surface. The strong photothermal effect under near-infrared irradiation also present the scaffold with an antibacterial rate exceeding 90%. Furthermore, in vivo experiments convinced that the polydopamine-integrated DHCT scaffold can markedly expedite the healing process of acute extensive wounds. These findings indicate that composite materials derived from natural tumors have substantial potential in pertinent clinical applications.
Collapse
Affiliation(s)
- Hongzheng Li
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiang Lin
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School,
Nanjing University, Nanjing, 210008, China
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku, 20520, Finland
| | - Shangrui Rao
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Gongting Zhou
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Letian Meng
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku, 20520, Finland
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School,
Nanjing University, Nanjing, 210008, China
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery,
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijian Sun
- Department of Gastrointestinal Surgery,
The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
24
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
25
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
26
|
Qi X, Liu C, Si J, Yin B, Huang J, Wang X, Huang J, Sun H, Zhu C, Zhang W. A bioenergetically-active ploy (glycerol sebacate)-based multiblock hydrogel improved diabetic wound healing through revitalizing mitochondrial metabolism. Cell Prolif 2024; 57:e13613. [PMID: 38351579 PMCID: PMC11216945 DOI: 10.1111/cpr.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic wounds impose significant burdens on patients' quality of life and healthcare resources due to impaired healing potential. Factors like hyperglycemia, oxidative stress, impaired angiogenesis and excessive inflammation contribute to the delayed healing trajectory. Mounting evidence indicates a close association between impaired mitochondrial function and diabetic complications, including chronic wounds. Mitochondria are critical for providing energy essential to wound healing processes. However, mitochondrial dysfunction exacerbates other pathological factors, creating detrimental cycles that hinder healing. This study conducted correlation analysis using clinical specimens, revealing a positive correlation between mitochondrial dysfunction and oxidative stress, inflammatory response and impaired angiogenesis in diabetic wounds. Restoring mitochondrial function becomes imperative for developing targeted therapies. Herein, we synthesized a biodegradable poly (glycerol sebacate)-based multiblock hydrogel, named poly (glycerol sebacate)-co-poly (ethylene glycol)-co-poly (propylene glycol) (PEPGS), which can be degraded in vivo to release glycerol, a crucial component in cellular metabolism, including mitochondrial respiration. We demonstrate the potential of PEPGS-based hydrogels to improve outcomes in diabetic wound healing by revitalizing mitochondrial metabolism. Furthermore, we investigate the underlying mechanism through proteomics analysis, unravelling the regulation of ATP and nicotinamide adenine dinucleotide metabolic processes, biosynthetic process and generation during mitochondrial metabolism. These findings highlight the therapeutic potential of PEPGS-based hydrogels as advanced wound dressings for diabetic wound healing.
Collapse
Affiliation(s)
- Xin Qi
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenjun Liu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Bohao Yin
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingjing Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Wang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jinghuan Huang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Sun
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wei Zhang
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Chen L, Zhao M, Kang W, Yu L, Zhang C, Wu S, Song X, Zhao K, Liu P, Liu Q, Dai R, Zheng Z, Zhang R. Endogenous Melanin and Hydrogen-Based Specific Activated Theranostics Nanoagents: A Novel Multi-Treatment Paradigm for Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401046. [PMID: 38666450 PMCID: PMC11220692 DOI: 10.1002/advs.202401046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by excessive proliferation of rheumatoid arthritis synovial fibroblasts (RASFs) and accumulation of inflammatory cytokines. Exploring the suppression of RASFs and modulation of the RA microenvironment is considered a comprehensive strategy for RA. In this work, specifically activated nanoagents (MAHI NGs) based on the hypoxic and weakly acidic RA microenvironment are developed to achieve a second near-infrared fluorescence (NIR-II FL)/photoacoustic (PA) dual-model imaging-guided multi-treatment. Due to optimal size, the MAHI NGs passively accumulate in the diseased joint region and undergo rapid responsive degradation, precisely releasing functionalized components: endogenous melanin-nanoparticles (MNPs), hydrogen gas (H2), and indocyanine green (ICG). The released MNPs play a crucial role in ablating RASFs within the RA microenvironment through photothermal therapy (PTT) guided by accurate PA imaging. However, the regional hyperthermia generated by PTT may exacerbate reactive oxygen species (ROS) production and inflammatory response following cell lysis. Remarkably, under the acidic microenvironment, the controlled release of H2 exhibits precise synergistic antioxidant and anti-inflammatory effects with MNPs. Moreover, the ICG, the second near-infrared dye currently approved for clinical use, possesses excellent NIR-II FL imaging properties that facilitate the diagnosis of deep tissue diseases and provide the right time-point for PTT.
Collapse
Affiliation(s)
- Lin Chen
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Mingxin Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Weiwei Kang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Lujie Yu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Chongqing Zhang
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Shutong Wu
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| | - Xiaorui Song
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Keqi Zhao
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Pengmin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Qin Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical SciencesTongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Rong Dai
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Medical Imaging DepartmentShanxi Province Cancer Hospital (Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University)Taiyuan030001China
| | - Ziliang Zheng
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
- Academy of Medical SciencesShanxi Medical UniversityTaiyuan030001China
| | - Ruiping Zhang
- Department of RadiologyFifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)Taiyuan030000China
| |
Collapse
|
28
|
Du X, Zeng Q, Luo Y, He L, Zhao Y, Li N, Han C, Zhang G, Liu W. Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction. Mitochondrion 2024; 75:101846. [PMID: 38237649 DOI: 10.1016/j.mito.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Due to the pivotal role of mitochondria in the generation of adenosine triphosphate (ATP) and the regulation of cellular homeostasis, mitochondrial dysfunction may exert a profound impact on various physiological systems, potentially precipitating a spectrum of distinct diseases. Consequently, research pertaining to mitochondrial therapeutics has assumed increasing significance, warranting heightened scrutiny. In recent years, the field of mitochondrial therapy has witnessed noteworthy advancements, with active exploration into diverse pharmacological agents aimed at ameliorating mitochondrial function. Elamipretide (SS-31), a novel synthetic mitochondrial-targeted antioxidant, has emerged as a promising candidate with extensive therapeutic potential. Its notable attributes encompass the mitigation of oxidative stress, the suppression of inflammatory processes, the maintenance of mitochondrial dynamics, and the prevention of cellular apoptosis. As such, SS-31 may emerge as a viable choice for the treatment of mitochondrial dysfunction-related ailments in the foreseeable future. This article extensively expounds upon the superiority of SS-31 over natural antioxidants and traditional mitochondrial-targeted antioxidants, delves into its mechanisms of modulating mitochondrial function, and comprehensively summarizes its applications in alleviating mitochondrial dysfunction-associated disorders. Furthermore, we offer a comprehensive outlook on the expansive prospects of SS-31's future development and application.
Collapse
Affiliation(s)
- Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China; Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Yunchang Luo
- Biology Major, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Yuhong Zhao
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China; School of Clinical Laboratory Medicine, Chengdu Medical College, Chengdu 610083, China.
| | - Ninjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Changli Han
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Weixin Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, China; Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| |
Collapse
|
29
|
Bao X, Huo S, Wang Z, Yang S, Dou L, Liu Y, Huang J, Cai C, Fang B, Xu G. Multifunctional biomimetic hydrogel dressing provides anti-infection treatment and improves immunotherapy by reprogramming the infection-related wound microenvironment. J Nanobiotechnology 2024; 22:80. [PMID: 38418972 PMCID: PMC10902999 DOI: 10.1186/s12951-024-02337-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.
Collapse
Affiliation(s)
- Xiaogang Bao
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zhenhua Wang
- Department of Laboratory Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Shengyan Yang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Linyun Dou
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yifei Liu
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Jian Huang
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Cai
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Bin Fang
- Department of Orthopedics, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
30
|
Wang T, Fang H, Yalikun S, Li J, Pan Y, Zhang K, Yin J, Cui H. Pluronic F127-Lipoic Acid Adhesive Nanohydrogel Combining with Ce 3+/Tannic Acid/Ulinastatin Nanoparticles for Promoting Wound Healing. Biomacromolecules 2024; 25:924-940. [PMID: 38156632 DOI: 10.1021/acs.biomac.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Developing strong anti-inflammatory wound dressings is of great significance for protecting inflammatory cutaneous wounds and promoting wound healing. The present study develops a nanocomposite Pluronic F127 (F127)-based hydrogel dressing with injectable, tissue adhesive, and anti-inflammatory performance. Briefly, Ce3+/tannic acid/ulinastatin nanoparticles (Ce3+/TA/UTI NPs) are fabricated. Meanwhile, α-lipoic acid is bonded to the ends of F127 to prepare F127-lipoic acid (F127LA) and its nanomicelles. Due to the gradual viscosity change instead of mutation during phase transition, the mixed Ce3+/TA/UTI NPs and F127LA nanomicelles show well-performed injectability at 37 °C and can form a semisolid composite nanohydrogel that can tightly attach to the skin at 37 °C. Furthermore, ultraviolet (UV) irradiation without a photoinitiator transforms the semisolid hydrogel into a solid hydrogel with well-performed elasticity and toughness. The UV-cured composite nanohydrogel acts as a bioadhesive that can firmly adhere to tissues. Due to the limited swelling property, the hydrogel can firmly adhere to tissues in a wet environment, which can seal wounds and provide a reliable physical barrier for the wounds. Ce3+/TA/UTI NPs in the hydrogel exhibit lipopolysaccharide (LPS)-scavenging ability and reactive oxygen species (ROS)-scavenging ability and significantly reduce the expression of inflammatory factors in wounds at the early stage, accelerating LPS-induced wound healing.
Collapse
Affiliation(s)
- Tao Wang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Subate Yalikun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yuqing Pan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Kunxi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haiyan Cui
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
31
|
Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, Guo Y, Wang R, Gan D, Shi J, Ma P, Gao F, Su H. Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair. Int J Nanomedicine 2023; 18:4485-4505. [PMID: 37576462 PMCID: PMC10416793 DOI: 10.2147/ijn.s418534] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH2, and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Cheng Yang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Junqiang Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Chao Zhang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Liaoliao Zhu
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yang Song
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yongdong Guo
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Ronglin Wang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Dongxue Gan
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Jingjie Shi
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Peixiang Ma
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Fei Gao
- Center for Peptide Functional Materials and Innovative Drugs, Institute of Translational Medicine, Shanghai University, ShangHai City, People’s Republic of China
| | - Haichuan Su
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| |
Collapse
|