1
|
Tarin M, Oryani MA, Javid H, Hashemzadeh A, Karimi-Shahri M. Advancements in chitosan-based nanocomposites with ZIF-8 nanoparticles: multifunctional platforms for wound healing applications. Carbohydr Polym 2025; 362:123656. [PMID: 40409814 DOI: 10.1016/j.carbpol.2025.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/25/2025]
Abstract
The integration of chitosan and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles has demonstrated significant potential in enhancing wound healing through their multifunctional capabilities. This review explores recent developments in chitosan-based nanocomposites incorporating ZIF-8 nanoparticles, emphasizing their antibacterial properties, pH-responsive drug release, angiogenesis promotion, and mechanical stability. Applications span hydrogel scaffolds, electrospun nanofibers, and sprayable membranes, all tailored for addressing challenges such as bacterial resistance, delayed tissue regeneration, and chronic wound management. Key findings highlight the synergistic benefits of ZIF-8's bioactivity with chitosan's biocompatibility, yielding innovative therapeutic strategies for complex wound healing scenarios. The discussed advancements not only underline their clinical relevance but also set a foundation for future explorations in regenerative medicine.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of medical sciences, Mashhad. Iran.
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
2
|
Lai Y, Zhang W, Chen Y, Weng J, Zeng Y, Wang S, Niu X, Yi M, Li H, Deng X, Zhang X, Jia D, Jin W, Yang F. Advanced healing potential of simple natural hydrogel loaded with sildenafil in combating infectious wounds. Int J Pharm X 2025; 9:100328. [PMID: 40225287 PMCID: PMC11992542 DOI: 10.1016/j.ijpx.2025.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/15/2025] Open
Abstract
Infected wounds are common clinical injuries that often complicated by inflammation and oxidative stress due to bacterial invasion. These wounds typically suffer from impaired vascularization, which delays healing and increases the risk of complications such as sepsis and chronic wounds. Therefore, developing an effective treatment for infected wounds is highly necessary. Egg white can promote cell regeneration and repair, while chitosan is effective in resisting bacterial invasion. Sildenafil is believed to have the potential to promote angiogenesis. Based on these properties, we have prepared a new type of hydrogel using egg white and chitosan as the framework, loaded with sildenafil (CEHS). The hydrogel combines the benefits of its components, exhibiting good biocompatibility and promoting the proliferation and migration of NIH 3T3 (3T3) cells and human umbilical vein endothelial cells (HUVEC), as well as the angiogenesis in HUVEC. It also exhibits significant antioxidant, anti-inflammatory, and antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Additionally, in a mouse model of infected wounds, the CEHS effectively promoted wound healing through its excellent antioxidant and anti-inflammatory properties, antibacterial activity, and pro-angiogenic effects. In summary, this simple-to-prepare, multifunctional natural hydrogel shows great promise for the treatment of infected wounds.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Wa Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yizhang Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Jialu Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yuhan Zeng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shunfu Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaoying Niu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Meilin Yi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haobing Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xuchen Deng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiuhua Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Danyun Jia
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Wenzhang Jin
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Fajing Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
3
|
Heo TH, Gu BK, Ohk K, Yoon JK, Son YH, Chun HJ, Yang DH, Jeong GJ. Polynucleotide and Hyaluronic Acid Mixture for Skin Wound Dressing for Accelerated Wound Healing. Tissue Eng Regen Med 2025; 22:515-526. [PMID: 40009152 PMCID: PMC12122959 DOI: 10.1007/s13770-025-00712-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Skin wound healing is a complex process requiring coordinated cellular and molecular interactions. Polynucleotides (PN) and hyaluronic acid (HA) have emerged as promising agents in regenerative medicine due to their ability to enhance cellular proliferation, angiogenesis, and extracellular matrix (ECM) remodeling. Combining PN and HA offers potential synergistic effects, accelerating wound repair. METHODS PN and HA hydrogels were prepared and evaluated for viscosity and gel stability. Their effects on human dermal fibroblasts (HDF) and keratinocytes (HaCaT) were assessed using migration, proliferation assays, and gene expression analyses for vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and matrix metalloproteinase-10 (MMP-10). In vivo studies were conducted using a mouse wound model to observe wound closure and tissue regeneration over 14 days. RESULTS The PN-HA mixture demonstrated superior mechanical stability compared to individual components. In vitro, PN-HA significantly enhanced HDF and HaCaT migration, proliferation, and upregulated VEGF, MMP-9, and MMP-10 expression. In vivo, PN-HA treatment accelerated wound closure, improved dermal thickness, and enhanced ECM remodeling, as evidenced by histological analyses. CONCLUSION The PN-HA combination synergistically accelerates wound healing by promoting angiogenesis, cellular migration, and ECM remodeling. These findings highlight its potential as an advanced wound dressing for acute and chronic wound management.
Collapse
Affiliation(s)
- Tae-Hyun Heo
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, 17546, Republic of Korea
| | - Bon Kang Gu
- R&D Center, Humedix Co. Ltd., Seongnam, 13021, Republic of Korea
| | - Kyungeun Ohk
- R&D Center, Humedix Co. Ltd., Seongnam, 13021, Republic of Korea
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, 17546, Republic of Korea
| | - Young Hoon Son
- Biohybrid Systems Group, Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Heung Jae Chun
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dae-Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Gun-Jae Jeong
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
4
|
Edo GI, Ndudi W, Makia RS, Ainyanbhor IE, Yousif E, Gaaz TS, Isoje EF, Opiti RA, Akpoghelie PO, Igbuku UA, Ahmed DS, Essaghah AEA, Umar H. Carrageenan-Based Hydrogels for Advanced Wound Healing and Controlled Drug Delivery in Tissue Engineering. J Biomed Mater Res B Appl Biomater 2025; 113:e35594. [PMID: 40369882 DOI: 10.1002/jbm.b.35594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Carrageenan (CGN) is a high molecular weight polysaccharide that is extracted from red seaweeds. It is made up of D-galactose residues connected by β-1,4 and α-1,3 galactose-galactose bonds. As a result of its ability to thicken, emulsify, and stabilize food, it is frequently used as a food additive in processed food. Its consumption has surged in recent years due to the Western diet's (WD) spread. Carrageenan has the ability to change the thickness of the mucus barrier, the composition of the gut microbiota, and the innate immune pathway that causes inflammation. Also, its inherent qualities, which include biodegradability, biocompatibility, resemblance to native glycosaminoglycans, antioxidants, anticancer, immunomodulatory, and anticoagulant activities, Carrageenan-based hydrogels have been the subject of numerous investigations lately for biomedical applications. The brittle hydrogel and uncontrollably exchanged ions, however, are two drawbacks to the application of this polysaccharide, but these can be avoided by making straightforward chemical changes to polymer networks, which create chemically bonded hydrogels with important mechanical characteristics and regulated degradation rates. Furthermore, the addition of diverse kinds of nanoparticles, as well as polymer networks, to carrageenan hydrogels results in hybrid platforms with noteworthy mechanical, chemical, and biological characteristics, which qualify them as appropriate biomaterials for tissue engineering (TE), drug delivery (DD), and also wound healing applications. Our goal in this article is to provide an overview of the most current developments in hybrid carrageenan-based platforms and several chemical modification techniques for TE and DD applications.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Winifred Ndudi
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Raghda S Makia
- Department of Plant Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Irene Ebosereme Ainyanbhor
- Faculty of Science, Department of Biochemistry, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Tayser Sumer Gaaz
- Department of Prosthetics and Orthotics Engineering, College of Engineering and Technologies, Al-Mustaqbal University, Babylon, Iraq
| | - Endurance Fegor Isoje
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Rapheal Ajiri Opiti
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Patrick Othuke Akpoghelie
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Faculty of Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| |
Collapse
|
5
|
Li H, Wu M, Ma Z, Wang X, Fan J, Hu K, Wei Y, Yao C, Liu J, Kang S, Kang X, Yuan J. Porcine plasma protein cold-set hydrogel crosslinked by genipin and the immunomodulatory, proliferation promoting and scar-remodeling in wound healing. BIOMATERIALS ADVANCES 2025; 170:214216. [PMID: 39923602 DOI: 10.1016/j.bioadv.2025.214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Addressing the critical need for biocompatible and multifunctional wound dressings for chronic and non-healing wounds, cold-set hydrogel using natural biomacromolecules are potential candidates. This study developed a novel cold-set hydrogel of porcine plasma protein (PPP) through genipin (GP) as crosslinker and glucono delta-lactone (GDL) as acidifier. GP promoted hardness, springiness, water holding capacity (WHC) and modulus in a dose-dependent manner in the presence of GDL, and significantly enhanced microstructural density, integrity and anti-degradation, critical as wound dressing, achieving the optimal performance at 0.15 % GP and 0.2 % GDL. Subsequently, biocompatibility assessments revealed that the optimum PPP gel was low cytotoxicity and could support cell migration and proliferation, reduce apoptosis with dose-effect relationship of the filler PPP. Meanwhile, in vivo skin wound healing model indicated the efficacy in accelerating wound healing, reducing inflammation, and promoting tissue remodeling without excessive scar formation. These effects are attributed to the ability of PPP in the hydrogel to modulate local inflammatory responses, enhance angiogenesis, and balance extracellular matrix remodeling processes. In conclusion, this pioneering work establishes PPP cold-set hydrogels as promising candidates for advanced wound care solutions, combining the benefits of natural protein-based biomaterials with innovative crosslinking strategies to meet urgent clinical needs in regenerative medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Meiling Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhuanzhuan Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, First Affiliated Hospital of Shihezi University, Xinjiang 832008, China
| | - Junwei Fan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kanghong Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Yanhong Wei
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Chenguang Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Jinbiao Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sini Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Xu Kang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| | - Jianglan Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Sino-Germany Biomedical Center, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
6
|
Wang H, Tian Z, Wang L, Wang H, Zhang Y, Shi Z. Advancements, functionalization techniques, and multifunctional applications in biomedical and industrial fields of electrospun pectin nanofibers: A review. Int J Biol Macromol 2025; 307:141964. [PMID: 40074113 DOI: 10.1016/j.ijbiomac.2025.141964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Electrospun pectin nanofibers have emerged as a transformative advancement in biomaterials, offering remarkable potential across diverse biomedical and industrial applications. This review explores the synthesis, optimization, and versatile applications of electrospun pectin nanofibers, highlighting their unique properties, including biocompatibility, biodegradability, and adaptability for functionalization. Pectin's structural diversity, coupled with its ability to form hydrogels and interact with biological systems, makes it a promising candidate for wound healing, drug delivery, tissue engineering, and smart packaging. Electrospinning has enabled the fabrication of pectin nanofibers with tunable morphology and functionality, overcoming traditional limitations such as poor mechanical strength. Advances in blending pectin with other polymers and incorporating bioactive agents have further enhanced their mechanical, biological, and therapeutic properties. In wound healing, pectin nanofibers mimic the extracellular matrix, promote angiogenesis, and deliver bioactive compounds to accelerate tissue regeneration. Challenges such as scalability, regulatory compliance, and mechanical limitations remain barriers to widespread adoption. This review underscores the need for interdisciplinary research to address these challenges and advance the clinical and commercial translation of pectin nanofibers. By critically analyzing recent advancements and outlining future directions, this review highlights the transformative potential of electrospun pectin nanofibers as sustainable, high-performance biomaterials for modern biomedical and industrial applications.
Collapse
Affiliation(s)
- Haoyu Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China; Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Zenan Tian
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Long Wang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Yuxing Zhang
- Biomedical Research Center of Xijing University, Xi'an, Shaanxi 710123, China.
| | - Zhibin Shi
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
7
|
Ghazwani M, Hani U, Kyada A, Ballal S, Issa BS, Abosaoda MK, Singh A, Sabarivani A, Ray S. Advancements in insulin delivery: the potential of natural polymers for improved diabetes management. Front Bioeng Biotechnol 2025; 13:1566743. [PMID: 40352348 PMCID: PMC12062796 DOI: 10.3389/fbioe.2025.1566743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetes is a growing global health issue, with millions of people affected by the condition. While insulin therapy is vital for managing both Type 1 and Type 2 diabetes, traditional methods such as subcutaneous injections have notable drawbacks, including pain, discomfort, and difficulty in maintaining stable blood sugar levels. To improve insulin delivery, research is increasingly focused on the use of natural polymers-substances derived from plants, animals, and microorganisms. These polymers, including materials like alginate, chitosan, and hyaluronic acid, have promising properties such as biocompatibility, biodegradability, and the ability to provide controlled, sustained insulin release. By encapsulating insulin in polymers, it is protected from degradation and released in a manner that more closely mirrors the body's natural insulin production. Furthermore, the development of non-invasive delivery methods, such as oral and transdermal systems, is gaining momentum, offering the potential for more patient-friendly treatment options. This review discusses the role of natural polymers in insulin delivery, examining their mechanisms, types, and current research efforts. It also addresses the challenges that remain in advancing these technologies into practical clinical use, aiming to provide more efficient, comfortable, and effective solutions for diabetes management.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashishkumar Kyada
- Department of Pharmaceutical Sciences, Marwadi University Research Center, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - A. Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subhashree Ray
- Department of Biochemistry,IMS and SUM Hospital, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
8
|
Faal M, Faal M, Ahmadi T, Dehgan F. Fabrication and evaluation of polylactic acid-curcumin containing carbon nanotubes (CNTs) wound dressing using electrospinning method with experimental and computational approaches. Sci Rep 2025; 15:13398. [PMID: 40251413 PMCID: PMC12008188 DOI: 10.1038/s41598-025-98393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
The development of advanced wound dressings has seen a significant leap with the integration of biodegradable nanofibers. This study introduces an innovative approach by designing polylactic acid (PLA)-curcumin nanofiber wound dressings enhanced with carbon nanotubes (CNTs). Using the electrospinning method, various formulations were crafted, incorporating diverse weight percentages of curcumin and CNTs. Comprehensive analyses, including FT-IR and SEM, confirmed the structural and physical integrity of the nanofibers, while tensile testing revealed a notable enhancement in mechanical strength with the addition of CNTs. Drug release evaluations highlighted a controlled and predictable release pattern of curcumin across all samples. Water absorption tests demonstrated the ability of PLA nanofibers to absorb up to 364%, with PLA-Cur-0.03%CNT samples absorbing 163%, showcasing their adaptability to wound exudates. Importantly, cytotoxicity assessments confirmed the biocompatibility of all samples, with high cell viability observed after 3 and 7 days. Antibacterial tests underscored the efficacy of CNT-incorporated samples, with PLA-Cur-0.05%CNT achieving the highest antibacterial activity at 78.95%. Additionally, using Density Functional Theory (DFT) calculations, the transition state, HOMO-LUMO energy, and equilibrium constant were explored, revealing higher equilibrium constants for keto-enol transformations compared to enol-keto in various solvents. Tautomeric conversion is easier in polar solvents due to the stability of charged species. HOMO-LUMO energy analysis revealed the stability and chemical activity of curcumin in solvents. This comprehensive research not only highlighted the mechanical, antibacterial, and drug delivery capabilities of the wound dressing but also provided an innovative approach for designing and optimizing pharmaceutical compounds under challenging chemical environments through advanced modeling and computational techniques.
Collapse
Affiliation(s)
- Mahmood Faal
- Department of Biomedical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Faal
- Medicinal Plants Research Center, Shahed University, Tehran, Iran.
| | - Tahmineh Ahmadi
- Department of Biomedical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Fatemeh Dehgan
- Department of Biomedical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Hu X, Xie D, Li Y, Niu Y, Tan R, She Z, Wang C. A dual-modified glucomannan polysaccharide selectively sequesters growth factors for skin tissue repair. J Control Release 2025; 380:185-198. [PMID: 39894264 DOI: 10.1016/j.jconrel.2025.01.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Artificial dermal matrixes (ADMs) are valuable clinical options for treating large soft tissue defects, but their suboptimal bioactivities compared with the real tissue limit their therapeutic potential. For example, glycosaminoglycan (GAG) polysaccharides in the native skin vitally and differentially regulate endogenous growth factors (GFs) to maintain tissue homeostasis. However, the GAG used in the current ADMs has often lost such delicate regulation. Here, we developed a novel polysaccharide-based ADM that can promote skin tissue repair through selective modulation of specific pro-healing GFs. First, we prepared a plant-derived backbone of glucomannan (named BSP) - representing the two dominant monosaccharide components in the human body - in mass and homogenic quality. Then, we modified this backbone with sulfate and acetyl groups in a controlled manner to yield an optimized BSP derivative (SMAL-BSP) as a main composition to generate a new ADM. In vitro, SMAL-BSP enabled the ADM to selectively sequester pro-angiogenic GFs of VEGF-A and FGF-2 in situ for stimulating endothelial cell growth. Moreover, the addition of the acetyl group induced macrophages to secrete nitric oxide (NO) with antibacterial activities. Further in vivo tests in a rat model of full-thickness skin wounds indicated that SMAL-BSP ADM could sequester GFs in situ to promote angiogenesis and thus tissue regeneration, with superior effects than conventional chondroitin sulfate-based ADM, while showing no adverse effects often associated with animal-derived products. Our study represents a novel strategy for ADM design, targeting selective GF sequestration towards optimal skin tissue regeneration.
Collapse
Affiliation(s)
- Xiaotong Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Guangdong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials, Shenzhen, China
| | - Daping Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yuwei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Rongwei Tan
- Guangdong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials, Shenzhen, China
| | - Zhending She
- Guangdong Engineering Technology Research Center of Implantable Medical Polymer, Shenzhen Lando Biomaterials, Shenzhen, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China; Zhuhai UM Science and Technology Research Institute (ZUMRI), University of Macau, Hengqin, China.
| |
Collapse
|
10
|
Zhang H, Zhao Z, Wu C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415344. [PMID: 40013907 PMCID: PMC11967777 DOI: 10.1002/advs.202415344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Tissue engineering aims to repair damaged tissues with physiological functions recovery. Although several therapeutic strategies are there for tissue regeneration, the functional recovery of regenerated tissues still poses significant challenges due to the lack of concerns of tissue innervation. Design rationale of multifunctional biomaterials with both tissue-induction and neural induction activities shows great potential for functional tissue regeneration. Recently, the research and application of inorganic biomaterials attracts increasing attention in innervated multi-tissue regeneration, such as central nerves, bone, and skin, because of its superior tunable chemical composition, topographical structures, and physiochemical properties. More importantly, inorganic biomaterials are easily combined with other organic materials, biological factors, and external stimuli to enhance their therapeutic effects. This review presents a comprehensive overview of recent advancements of inorganic biomaterials for innervated multi-tissue regeneration. It begins with introducing classification and properties of typical inorganic biomaterials and design rationale of inorganic-based material composites. Then, recent progresses of inorganic biomaterials in regenerating various nerves and nerve-innervated tissues with functional recovery are systematically reviewed. Finally, the existing challenges and future perspectives are proposed. This review may pave the way for the direction of inorganic biomaterials and offers a new strategy for tissue regeneration in combination of innervation.
Collapse
Affiliation(s)
- Hongjian Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Ziyi Zhao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
11
|
Kaczmarek-Szczepańska B, Glajc P, Chmielniak D, Gwizdalska K, Swiontek Brzezinska M, Dembińska K, Shinde AH, Gierszewska M, Łukowicz K, Basta-Kaim A, D’Amora U, Zasada L. Development and Characterization of Biocompatible Chitosan-Aloe Vera Films Functionalized with Gluconolactone and Sorbitol for Advanced Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15196-15207. [PMID: 39999379 PMCID: PMC11912206 DOI: 10.1021/acsami.5c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Chitosan (CTS) has emerged as a promising biopolymer for wound healing due to its biocompatibility, biodegradability, and intrinsic bioactive properties. This study explores the development and characterization of CTS-based films enhanced with natural bioactive agents, aloe vera (A), gluconolactone (GL), and sorbitol (S), to improve their mechanical, antimicrobial, and regenerative performance for potential use in advanced wound care. A series of CTS-based films were fabricated with varying concentrations of A, GL, and S, and their physicochemical, mechanical, and biological properties were comprehensively evaluated. Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM) analysis revealed modifications in the film structure attributable to these additives, influencing the surface roughness, hydrophilicity, and thermal stability. Biocidal assays confirmed enhanced antimicrobial activity, particularly in films containing GL and A. Biodegradation studies demonstrated a significant enhancement in microbial decomposition of the films, while cytocompatibility tests confirmed minimal cytotoxic effects and improved cellular response. This research underscores the potential of combining CS with A, GL, and S to engineer multifunctional biomaterials tailored for effectively tackling different phases of the wound healing process, offering a sustainable and biocompatible alternative for clinical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Patrycja Glajc
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dorota Chmielniak
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Klaudia Gwizdalska
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Maria Swiontek Brzezinska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Katarzyna Dembińska
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Ambika H. Shinde
- Department
of Environmental Microbiology and Biotechnology, Faculty of Biological
and Veterinary Sciences, Nicolaus Copernicus
University in Torun, Lwowska 1, 87-100 Torun, Poland
| | - Magdalena Gierszewska
- Department
of Physical Chemistry and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Krzysztof Łukowicz
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department
of Experimental Neuroendocrinology, Laboratory of Immunoendocrinology, Maj Institute of Pharmacology, PolishAcademy of Sciences, 12 Smętna St., 31-343 Kraków, Poland
| | - Ugo D’Amora
- Institute
of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d’Oltremare,
Pad. 20, 80125 Naples, Italy
| | - Lidia Zasada
- Department
of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
12
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
13
|
Askin S, Kaynarpinar M. Efficacy of Formulation With Potential as Herbal Medicine on Second Degree Burn Wound: Biochemical and Molecular Evaluation. J Cosmet Dermatol 2025; 24:e70122. [PMID: 40098566 PMCID: PMC11915081 DOI: 10.1111/jocd.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Burn injury is a condition caused by heat, cold, electricity, synthetic substances, and radiation, and it causes psychological and physical problems in the affected individuals. AIMS In this study, it was aimed to investigate the healing effect of the spray formulation prepared using ethanol extracts of Olea europaea and Aloe vera leaves, Cocus nucifera fruit, and Chamomilla recutita flower plants (OACC) in a second-degree burn model created in rats, using biochemical and molecular parameters. METHODS Experimental groups were assigned to Healthy control (HC), Burn control (BC), Silver-Sulfadiazine (SS) and OACC. A deep second-degree burn was induced on the lower back and upper back of each rat under standard burning procedures, respectively. Experiments were performed using serum and skin tissue samples obtained on the 3rd-21st days after the burns were created. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were calculated. Transforming Growth Factor Beta-1 (Tgf-β1), Vascular Endothelial Growth Factor-alfa (Vegf-α), interleukin-6 (Il-6) and Tumor Necrosis Factor Alpha (Tnf-α) mRNA expression levels were determined using real-time polymerase chain reaction (RT-PCR). RESULTS AOCC reduced the increased MDA levels in serum related to the burning event, while increasing the decreased SOD enzyme activity levels. In addition, AOCC decreased the gene expression levels of Tgf-β1 and Vegf-α, which are growth factors that were increased in the burn group, and Il-6 and Tnf-α, which are oxidative stress markers. CONCLUSIONS We believe that our study will shed light on the detailed examination of biochemical and molecular pathways affecting the wound healing process in future studies and will contribute to opening new doors for treatment.
Collapse
Affiliation(s)
- Seda Askin
- Health Services Vocational SchoolAtaturk UniversityErzurumTurkey
| | | |
Collapse
|
14
|
Yudishter, Shams R, Dash KK. Polysaccharide nanoparticles as building blocks for food processing applications: A comprehensive review. Food Sci Biotechnol 2025; 34:527-546. [PMID: 39958179 PMCID: PMC11822165 DOI: 10.1007/s10068-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
Polysaccharides are renewable biomacromolecules obtained from natural sources like plants, bacteria, and algae, and are utilized for production of nanomaterials. Chitosan, cellulose, starch, alginate, hyaluronic acid, dextran, pectin, and glycosaminoglycans are examples of polysaccharides often utilized in production of nanomaterials. Chitosan nanoparticles are utilized in administration of drugs, wound healing, and a wide range of biomedical applications. Nanocellulose, a cellulose derivative, is utilized in nanocomposites, drug delivery systems, and as reinforcing agent in a variety of materials. In food sector, starch nanoparticles are employed to encapsulate and regulate the release of beneficial substances. Polysaccharide nanoparticles are highly suitable for food packaging due to their biocompatibility, surface activity, and controlled release capabilities. Based on this, the article provides an overview of the usage of polysaccharides in the development of nanomaterials. The chemical, technical, and functional features of polysaccharides, as well as prospective sources and applications are discussed in this article.
Collapse
Affiliation(s)
- Yudishter
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| |
Collapse
|
15
|
Jha B, Majie A, Roy K, Lim WM, Gorain B. Glycyrrhizic Acid-Loaded Poloxamer and HPMC-Based In Situ Forming Gel of Acacia Honey for Improved Wound Dressing: Formulation Optimization and Characterization for Wound Treatment. ACS APPLIED BIO MATERIALS 2025; 8:310-328. [PMID: 39657741 DOI: 10.1021/acsabm.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The present study aims to formulate a stimuli-responsive in situ hydrogel system to codeliver acacia honey and glycyrrhizic acid for topical application that will aid in absorbing wound exudates, control microbial infestation, and produce angiogenic and antioxidant effects to accelerate wound healing. Therefore, both the natural active constituents were incorporated within an in situ hydrogel composed of poloxamer and hydroxypropyl methylcellulose (HPMC), where the concentrations of the polymers were optimized using Design-Expert software considering optimum values of the dependent variables, gelation temperature (34-37 °C), gelation time (<10 min), and the viscosity (2000-3500 cPs). The optimized formulation showed improved physicochemical properties such as mucoadhesiveness, porosity, swelling, and spreadability, which makes it suitable for wound application. Additionally, the in situ hydrogel exhibited potent in vitro and ex vivo antioxidant effects, in vitro antimicrobial activities, and ex ovo angiogenic effects. Furthermore, the optimized formulation was found to be nontoxic while tested in the HaCaT cell line and acute dermal irritation and corrosion study. The findings of the in vivo wound-healing studies in experimental animal models showed complete wound closure within 15 days of treatment and accelerated development of the extracellular matrix. In addition, the antioxidant, antimicrobial, angiogenic, and wound-healing properties of acacia honey and glycyrrhizic acid coloaded in situ hydrogel were also found to be promising when compared to the standard treatments. Overall, it can be concluded that the optimized stimuli-responsive in situ hydrogel containing two natural compounds could be an alternative to existing topical formulations for acute wounds.
Collapse
Affiliation(s)
- Bhawana Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kankan Roy
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Wei Meng Lim
- School of Pharmacy, Monash University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
16
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
17
|
Abdelmonem R, Bakr A, Badawy I, Abd El Maksoud AI, Attia RT. Quality by Design Approach for the Formulation and Evaluation of Stem Cells Derived Rosmarinic Acid-Loaded Nanofibers as an Anti-Wrinkle Patch: In Vitro and In Vivo Characterizations. Pharmaceutics 2024; 16:1598. [PMID: 39771576 PMCID: PMC11677431 DOI: 10.3390/pharmaceutics16121598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Skin wrinkles result from a myriad of multifaceted processes involving intrinsic and extrinsic aging. To combat this effect, plant stem cells offer a renewable and eco-friendly source for various industries, including cosmeceuticals. Salvia miltiorrhiza (SM), which contains the bioactive compound Rosmarinic acid (RA) and has been proposed for its anti-wrinkle effect. Methods: In the present study, calli from SM were cultured and Quality by Design (QbD) was implemented to investigate the effect of different types and concentrations of elicitors; jasmonic acid (JA) and salicylic acid (SA). Both raised RA levels yet, jasmonic acid (50 µM) has resulted in the highest yield for RA, at 16 mg/g. A nanofiber patch was prepared and characterized in-vitro by the release percentage, drug content, swelling degree, scanning electron microscope, and surface roughness. Then, the anti-wrinkle effect of the patch was tested in a UV wrinkle-induced mouse model. Results: Interestingly, after treatment, there were visibly fewer wrinkles, and the skin was softer than in the untreated control group. This study suggests that the treatment exerted its effect through the Nrf2/Keap1 pathway, which plays a crucial role in cellular antioxidant protective processes. By activating this pathway through boosting Nrf2 and diminishing Keap1 cellular content, the nanofiber patch enhances the production of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, enhancesglutathione, and reduces the skin lipid peroxidation, collectively indicating enhanced skin quality. Conclusions: In conclusion, this study highlights the importance of this formula as an anti-wrinkle treatment, and future clinical studies are recommended to further unveil the potential of this formula.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Industrial Pharmacy Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt; (R.A.); (A.B.)
| | - Ahmed Bakr
- Industrial Pharmacy Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt; (R.A.); (A.B.)
| | - Ingy Badawy
- Pharmaceutical and Industrial Biotechnology Department, College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt;
| | - Ahmed Ibrahim Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Reem T. Attia
- Department of Pharmacology, and Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11865, Egypt
| |
Collapse
|
18
|
Perpelek M, Tamburaci S, Karakasli A, Tihminlioglu F. Fabrication of Bioactive Helix aspersa Extract-Loaded Chitosan-Based Bilayer Wound Dressings for Skin Tissue Regeneration. ACS OMEGA 2024; 9:48070-48088. [PMID: 39676965 PMCID: PMC11635475 DOI: 10.1021/acsomega.4c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024]
Abstract
In recent years, there has been a notable shift toward exploring plant and animal extracts for the fabrication of tissue engineering structures that seamlessly integrate with the human body, providing both biological compatibility and physical reinforcement. In this particular investigation, we synthesized bilayer wound dressings by incorporating snail (Helix aspersa) secretions, comprising mucus and slime, into chitosan matrices via lyophilization and electrospinning methodologies. A nanofiber layer was integrated on top of the porous structure to mimic the epidermal layer for keratinocyte activity as well as acting as an antibacterial barrier against possible infection, whereas a porous structure was designed to mimic the dermal microenvironment for fibroblast activity. Comprehensive assessments encompassing physical characterization, antimicrobial efficacy, in vitro bioactivity, and wound healing potential were conducted on these bilayer dressings. Our findings revealed that the mucus and slime extract loading significantly altered the morphology in terms of nanofiber diameter and average pore size. Snail extracts loaded on a nanofiber layer of bilayer dressings showed slight antimicrobial activity against Staphylococcus epidermidis and Escherichia coli. An in vitro release study of slime extract loaded in the nanofiber layer indicated that both groups 1 and 2 showed a burst release up to 6 h, and a sustained release was observed up to 96 h for group 1, whereas slime extract release from group 2 continued up to 72 h. In vitro bioactivity assays unveiled the favorable impact of mucus and slime extracts on NIH/3T3 fibroblast and HS2 keratinocyte cell attachment, proliferation, and glycosaminoglycan synthesis. Furthermore, our investigations utilizing the in vitro scratch assay showcased the proliferative and migratory effects of mucus and slime extracts on skin cells. Collectively, our results underscore the promising prospects of bioactive snail secretion-loaded chitosan constructs for facilitating skin regeneration and advancing wound healing therapies.
Collapse
Affiliation(s)
- Merve Perpelek
- Department
of Biomechanics, Dokuz Eylul University, Balcova, İzmir 35330, Turkey
| | - Sedef Tamburaci
- Department
of Chemical Engineering, İzmir Institute
of Technology, Urla, İzmir 35430, Turkey
| | - Ahmet Karakasli
- Department
of Orthopedics and Traumatology, Dokuz Eylul
University, Balcova, İzmir 35330, Turkey
| | - Funda Tihminlioglu
- Department
of Chemical Engineering, İzmir Institute
of Technology, Urla, İzmir 35430, Turkey
| |
Collapse
|
19
|
Zhao J, Chen L, Ma A, Bai X, Zeng Y, Liu D, Liu B, Zhang W, Tang S. Recent advances in coaxial electrospun nanofibers for wound healing. Mater Today Bio 2024; 29:101309. [PMID: 39558931 PMCID: PMC11570975 DOI: 10.1016/j.mtbio.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024] Open
Abstract
The skin is the body's primary immune barrier, defending it against pathogenic invasion. Skin injuries impose a significant physiological burden on patients, making effective wound management essential. Dressings are commonly employed in wound care, and electrospun nanofiber dressings are a research hotspot owing to their ease of fabrication, cost-effectiveness, and structural similarity to the extracellular matrix. Coaxial electrospinning offers considerable advantages in drug delivery, fiber structure transformation, and enhanced interaction with the host. These attributes make coaxial electrospun materials promising candidates for precision and personalized wound dressings in medical treatments. This review provides a comprehensive overview of wound healing and its influencing factors. It also outlines coaxial electrospinning's production principles and benefits in wound dressings. Guided by the factors affecting wound healing, coaxial electrospun nanofiber dressings have different application modalities. Furthermore, we discuss the current limitations and future directions for enhancing the current coaxial electrospun dressing technologies.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Aiwei Ma
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Xujue Bai
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Yating Zeng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Bo Liu
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Plastic Surgery Institute of Shantou University Medical College, Shantou Plastic Surgery Clinical Research Center, Shantou, Guangdong, 515041, China
| |
Collapse
|
20
|
Alizadeh S, Nasiri M, Saraei M, Zahiri M, Khosrowpour Z, Sineh Sepehr K, Nouri M, Zarrabi M, Kalantari N, Shafikhani SH, Gholipourmalekabadi M. Optimization of an Affordable and Efficient Skin Allograft Composite with Excellent Biomechanical and Biological Properties Suitable for the Regeneration of Deep Skin Wounds: A Preclinical Study. ACS APPLIED BIO MATERIALS 2024; 7:7378-7390. [PMID: 39475164 DOI: 10.1021/acsabm.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Deep skin wounds require grafting with a skin substitute for treatment. Despite many attempts in the development of an affordable and efficient skin substitute, the repair of deep skin wounds still remains challenging. In the current study, we present a 3D sponge composite made from human placenta (a disposable organ) and sodium alginate with exceptional properties for skin tissue engineering applications. Toward this goal, different proportions of alginate (Alg) and decellularized placenta scaffold (DPS) were composited and freeze-dried to generate a 3D sponge with the desired biomechanical and biological features. Comprehensive in vitro, in ovo, and in vivo characterizations were performed to assess the morphology, physical structure, mechanical behaviors, angiogenic potential, and wound healing properties of the composites. Through these analyses, the scaffold with optimal proportions of Alg (50%) and DPS (50%) was found to have superior properties. The optimized scaffold (Alg50/DPS50) was applied to the full-thickness wounds created in rats. Our data revealed that the addition of DPS to the Alg solution caused a significant improvement in the mechanical characteristics of the scaffold. Remarkably, the fabricated composite scaffold exhibited mechanical properties similar to those of native skin tissue. When implanted into the full-thickness wounds, the Alg50/DPS50 composite scaffold promoted angiogenesis, re-epithelialization, and granulation tissue formation, as compared to the group without a scaffold. Overall, our findings underscore the potential value of this hybrid scaffold for enhancing skin wound healing and suggest an Alg50/DPS50 composite for clinical investigations.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- R & D Department, Royan Stem Cell Technology Co, Tehran 1665666311, Iran
| | - Modara Nasiri
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran 1651153311, Iran
| | - Mohadese Saraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1416753955, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 6715847141, Iran
- Department of Anatomical Sciences, School of Medical Sciences, Bushehr University of Medical Sciences, Bushehr 75614, Iran
| | - Zahra Khosrowpour
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Masoumeh Nouri
- R & D Department, Royan Stem Cell Technology Co, Tehran 1665666311, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Nikta Kalantari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sasha H Shafikhani
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, California 95817-2305, United States
| | - Mazaher Gholipourmalekabadi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1416753955, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- NanoBiotechnology & Regenerative Medicine Innovation Group, Noavaran Salamat ZHINO (PHC), Tehran 1949635882, Iran
| |
Collapse
|
21
|
Zhuang K, Shu X, Xie W. Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydr Polym 2024; 344:122503. [PMID: 39218541 DOI: 10.1016/j.carbpol.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing, China; National Coarse Cereals Engineering Research Center, Daqing, China.
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Xie
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
22
|
Sarkhel S, Jaiswal A. Emerging Frontiers in In Situ Forming Hydrogels for Enhanced Hemostasis and Accelerated Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61503-61529. [PMID: 39479880 DOI: 10.1021/acsami.4c07108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
With a surge in the number of accidents and chronic wounds worldwide, there is a growing need for advanced hemostatic and wound care solutions. In this regard, in situ forming hydrogels have emerged as a revolutionary biomaterial due to their inherent properties, which include biocompatibility, biodegradability, porosity, and extracellular matrix (ECM)-like mechanical strength, that render them ideal for biomedical applications. This review demonstrates the advancements of in situ forming hydrogels, tracing their evolution from injectable to more sophisticated forms, such as sprayable and 3-D printed hydrogels. These hydrogels are designed to modulate the pathophysiology of wounds, enhancing hemostasis and facilitating wound repair. The review presents different methodologies for in situ forming hydrogel synthesis, spanning a spectrum of physical and chemical cross-linking techniques. Furthermore, it showcases the adaptability of hydrogels to the dynamic requirements of wound healing processes. Through a detailed discussion, this article sheds light on the multifunctional capabilities of these hydrogels such as their antibacterial, anti-inflammatory, and antioxidant properties. This review aims to inform and inspire continued advancement in the field, ultimately contributing to the development of sophisticated wound care solutions that meet the complexity of clinical needs.
Collapse
Affiliation(s)
- Sanchita Sarkhel
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075 Himachal Pradesh, India
| |
Collapse
|
23
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Kusnadi K, Herdiana Y, Rochima E, Putra ON, Mohd Gazzali A, Muchtaridi M. Collagen-Based Nanoparticles as Drug Delivery System in Wound Healing Applications. Int J Nanomedicine 2024; 19:11321-11341. [PMID: 39524919 PMCID: PMC11550700 DOI: 10.2147/ijn.s485588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes. Aims of Study This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing. Methodology This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed. Results A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade. Conclusion In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.
Collapse
Affiliation(s)
- Kusnadi Kusnadi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmacy, Politeknik Harapan Bersama, Tegal, Central Java, 52147, Indonesia
| | - Yedi Herdiana
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Emma Rochima
- Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Okta Nama Putra
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong, Jawa Barat, 16911, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
25
|
Kumi M, Chen T, Zhang Z, Wang A, Li G, Hou Z, Cheng T, Wang J, Wang T, Li P. Integration of Hydrogels and 3D Bioprinting Technologies for Chronic Wound Healing Management. ACS Biomater Sci Eng 2024; 10:5995-6016. [PMID: 39228365 DOI: 10.1021/acsbiomaterials.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tianyi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zhengheng Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - An Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Gangfeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Zishuo Hou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tian Cheng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- School of Flexible Electronics, Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, P. R. China
| |
Collapse
|
26
|
Xu X, Wang Y, Han C, Lin J, Shen Q, Lan Y, Long L, Tan X, Liu J, Liu S, Luo L, Lv M, Zhang Y, Wang G, Zang G. Poison Turned Panacea: Arsenic Trioxide Loaded Hydrogel for Inhibiting Scar Formation in Wound Healing. ACS Biomater Sci Eng 2024; 10:6533-6544. [PMID: 39283699 DOI: 10.1021/acsbiomaterials.4c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Without intervention, the natural wound healing process can often result in scarring, which can have detrimental effects on both the physical and mental well-being of patients. Therefore, it is crucial to develop biomaterials that can promote healing without scarring. Regulating the Yes-associated protein-1/PDZ-binding motif (YAP/TAZ) signaling pathway is possible to reduce excessive fibrosis of fibroblasts and proliferation of vascular endothelial cells, ultimately impacting scar formation. Arsenic trioxide (ATO), an ancient drug with medicinal and toxic properties, has shown promise in regulating this pathway. An ATO-loaded hydrogel dressing (ATO@CS/SA) was created to facilitate scarless wound healing, utilizing chitosan (CS) and sodium alginate (SA) to prevent direct contact of ATO with the wound tissue and minimize potential side effects. In vitro studies demonstrated that low concentrations of ATO did not impact cell viability and even promoted proliferation and migration. Co-culturing the hydrogel with fibroblasts and vascular endothelial cells led to decreased expression levels of YAP and TAZ. Animal studies over a 90-day period revealed significant inhibition of scar formation with this system. Histological experiments further confirmed that the decreased expression of YAP and TAZ was responsible for this outcome. In conclusion, when administered at the appropriate dose, ATO can be repurposed from a traditional poison to a therapeutic agent, effectively suppressing excessive cell fibrosis and blood vessel proliferation and offering a novel approach to scar-free treatment.
Collapse
Affiliation(s)
- Xinyue Xu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Youwei Wang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Changhao Han
- Department of Orthopaedics Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jingsong Lin
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Qingan Shen
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Youyi Lan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Linjing Long
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Xudong Tan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jiankai Liu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Siyi Liu
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Lanxinhui Luo
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Mingqi Lv
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuchan Zhang
- College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Guixue Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China
- Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing 400044, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangchao Zang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
27
|
Ilic-Tomic T, Kramar A, Kostic M, Vojnovic S, Milovanovic J, Petkovic M, D’Agostino PM, Gulder TAM, Nikodinovic-Runic J. Functionalization of silk with actinomycins from Streptomyces anulatus BV365 for biomedical applications. Front Bioeng Biotechnol 2024; 12:1466757. [PMID: 39364265 PMCID: PMC11447452 DOI: 10.3389/fbioe.2024.1466757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Silk, traditionally acclaimed as the "queen of fiber," has been widely used thanks to its brilliant performance such as gentleness, smoothness and comfortableness. Owing to its mechanical characteristics and biocompatibility silk has a definitive role in biomedical applications, both as fibroin and fabric. In this work, the simultaneous dyeing and functionalization of silk fabric with pigments from Streptomyces anulatus BV365 were investigated. This strain produced high amounts of orange extracellular pigments on mannitol-soy flour agar, identified as actinomycin D, C2 and C3. The application of purified actinomycins in the dyeing of multifiber fabric was assessed. Actinomycins exhibited a high affinity towards protein fibers (silk and wool), but washing durability was maintained only with silk. Acidic condition (pH5) and high temperature (65°C) facilitated the silk dyeing. The morphologies and chemical components of the treated silk fabrics were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The results showed the pigments bind to the silk through interaction with the carbonyl group in silk fibroin rendering the functionalized, yet surface that does not cause skin irritation. The treated silk exhibited a remarkable antibacterial effect, while the biocompatibility test performed with 3D-reconstructed human epidermis model indicated safe biological properties, paving the way for future application of this material in medicine.
Collapse
Affiliation(s)
- Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ana Kramar
- Department of Textile Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Paterna, Spain
| | - Mirjana Kostic
- Department of Textile Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Jelena Milovanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milos Petkovic
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Paul M. D’Agostino
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Saarland, Germany
- Technical University of Dresden, Dresden, Saxony, Germany
| | - Tobias A. M. Gulder
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Saarland, Germany
- Technical University of Dresden, Dresden, Saxony, Germany
| | | |
Collapse
|
28
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
29
|
Wang J, Huang D, Fang Y, Ren H, Zhao Y. Biomimetic cell encapsulations by microfluidics. SCIENCE CHINA MATERIALS 2024; 67:2414-2426. [DOI: 10.1007/s40843-024-2903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 01/12/2025]
|
30
|
Choudhury S, Madhu Krishna M, Sen D, Ghosh S, Basak P, Das A. 3D Porous Polymer Scaffold-Conjugated KGF-Mimetic Peptide Promotes Functional Skin Regeneration in Chronic Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37418-37434. [PMID: 38980153 DOI: 10.1021/acsami.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The re-epithelialization process gets severely dysregulated in chronic nonhealing diabetic foot ulcers/wounds. Keratinocyte growth factor (KGF or FGF-7) is the major modulator of the re-epithelialization process, which regulates the physiological phenotypes of cutaneous keratinocytes. The existing therapeutic strategies of growth factor administration have several limitations. To overcome these, we have designed a KGF-mimetic peptide (KGFp, 13mer) based on the receptor interaction sites in murine KGF. KGFp enhanced migration and transdifferentiation of mouse bone marrow-derived MSCs toward keratinocyte-like cells (KLCs). A significant increase in the expression of skin-specific markers Bnc1 (28.5-fold), Ck5 (14.6-fold), Ck14 (26.1-fold), Ck10 (187.7-fold), and epithelial markers EpCam (23.3-fold) and Cdh1 (64.2-fold) was associated with the activation of ERK1/2 and STAT3 molecular signaling in the KLCs. Further, to enhance the stability of KGFp in the wound microenvironment, it was conjugated to biocompatible 3D porous polymer scaffolds without compromising its active binding sites followed by chemical characterization using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, dynamic mechanical analysis, and thermogravimetry. In vitro evaluation of the KGFp-conjugated 3D polymer scaffolds revealed its potential for transdifferentiation of MSCs into KLCs. Transplantation of allogeneic MSCGFP using KGFp-conjugated 3D polymer scaffolds in chronic nonhealing type 2 diabetic wounds (db/db transgenic, 50-52 weeks old male mice) significantly enhanced re-epithelialization-mediated wound closure rate (79.3%) as compared to the control groups (Untransplanted -22.4%, MSCGFP-3D polymer scaffold -38.5%). Thus, KGFp-conjugated 3D porous polymer scaffolds drive the fate of the MSCs toward keratinocytes that may serve as potential stem cell delivery platform technology for tissue engineering and transplantation.
Collapse
Affiliation(s)
- Subholakshmi Choudhury
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Mangali Madhu Krishna
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Debanjan Sen
- BCDA College of Pharmacy and Technology, Hridaypur, Kolkata 700127, West Bengal, India
| | - Subhash Ghosh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Organic Synthesis and Process Chemistry, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Pratyay Basak
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
- Department of Polymers and Functional Materials, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
31
|
Hong C, Chung H, Lee G, Kim D, Jiang Z, Kim SH, Lee K. Remendable Cross-Linked Alginate/Gelatin Hydrogels Incorporating Nanofibers for Wound Repair and Regeneration. Biomacromolecules 2024; 25:4344-4357. [PMID: 38917335 DOI: 10.1021/acs.biomac.4c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Wound dressings made from natural-derived polymers are highly valued for their biocompatibility, biodegradability, and biofunctionality. However, natural polymer-based hydrogels can come with their own set of limitations, such as low mechanical strength, limited cell affinity, and the potential cytotoxicity of cross-linkers, which delineate the boundaries of their usage and hamper their practical application. To overcome the limitation of natural-derived polymers, this study utilized a mixture of oxidized alginate and gelatin with 5 mg/mL polycaprolactone (PCL):gelatin nanofiber fragments at a ratio of 7:3 (OGN-7) to develop a hydrogel composite wound dressing that can be injected and has the ability to be remended. The in situ formation of the remendable hydrogel is facilitated by dual cross-linking of oxidized alginate chains with gelatin and PCL/gelatin nanofibers through Schiff-base mechanisms, supported by the physical integration of nanofibers, thereby obviating the need for additional cross-linking agents. Furthermore, OGN-7 exhibits increased stiffness (γ = 79.4-316.3%), reduced gelation time (543 ± 5 to 475 ± 5 s), improved remendability of the hydrogel, and excellent biocompatibility. Notably, OGN-7 achieves full fusion within 1 h of incubation and maintains structural integrity under external stress, effectively overcoming the inherent mechanical weaknesses of natural polymer-based dressings and enhancing biofunctionality. The therapeutic efficacy of OGN-7 was validated through a full-thickness in vivo wound healing analysis, which demonstrated that OGN-7 significantly accelerates wound closure compared to alginate-based dressings and control groups. Histological analysis further revealed that re-epithelialization and collagen deposition were markedly enhanced in the regenerating skin of the OGN-7 group, confirming the superior therapeutic performance of OGN-7. In summary, OGN-7 optimized the synergistic effects of natural polymers, which enhances their collective functionality as a wound dressing and expands their utility across diverse biomedical applications.
Collapse
Affiliation(s)
- Changgi Hong
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Haeun Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Gyubok Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwoo Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Zhuomin Jiang
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 02792 Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
32
|
Ye R, Zhu Z, Gu T, Cao D, Jiang K, Dai Q, Xing K, Jiang Y, Zhou S, Cai P, Leong DT, Yu M, Song J. Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant. Nat Commun 2024; 15:5557. [PMID: 38956415 PMCID: PMC11219873 DOI: 10.1038/s41467-024-49933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Rui Ye
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyu Zhu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Tianyi Gu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Dengjie Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Dai
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yifan Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Siyi Zhou
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China
| | - Ping Cai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, 310006, Zhejiang, China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
33
|
Mishra A, Kushare A, Gupta MN, Ambre P. Advanced Dressings for Chronic Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:2660-2676. [PMID: 38723276 DOI: 10.1021/acsabm.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Wound healing, particularly for chronic wounds, presents a considerable difficulty due to differences in biochemical and cellular processes that occur in different types of wounds. Recent technological breakthroughs have notably advanced the understanding of diagnostic and therapeutic approaches to wound healing. The evolution in wound care has seen a transition from traditional textile dressings to a variety of advanced alternatives, including self-healing hydrogels, hydrofibers, foams, hydrocolloids, environment responsive dressings, growth factor-based therapy, bioengineered skin substitutes, and stem cell and gene therapy. Technological advancements, such as 3D printing and electronic skin (e-skin) therapy, contribute to the customization of wound healing. Despite these advancements, effectively managing chronic wounds remains challenging. This necessitates the development of treatments that consider performance, risk-benefit balance, and cost-effectiveness. This review discusses innovative strategies for the healing of chronic wounds. Incorporating biomarkers into advanced dressings, coupled with corresponding biosensors and drug delivery formulations, enables the theranostic approach to the treatment of chronic wounds. Furthermore, integrating advanced dressings with power sources and user interfaces like near-field communication, radio frequency identification, and Bluetooth enhances real-time monitoring and on-demand drug delivery. It also provides a thorough evaluation of the advantages, patient compliance, costs, and durability of advanced dressings, emphasizing smart formulations and their preparation methods.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Aniket Kushare
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Premlata Ambre
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
34
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|