1
|
Onoi Y, Matsumoto T, Anjiki K, Hayashi S, Nakano N, Kuroda Y, Tsubosaka M, Kamenaga T, Ikuta K, Tachibana S, Suda Y, Wada K, Maeda T, Saitoh A, Hiranaka T, Sobajima S, Iwaguro H, Matsushita T, Kuroda R. Human uncultured adipose-derived stromal vascular fraction shows therapeutic potential against osteoarthritis in immunodeficient rats via direct effects of transplanted M2 macrophages. Stem Cell Res Ther 2024; 15:325. [PMID: 39334434 PMCID: PMC11438128 DOI: 10.1186/s13287-024-03946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The uncultured adipose-derived stromal vascular fraction (SVF), consisting of adipose-derived stromal cells (ADSCs), M2 macrophages (M2Φ) and others, has shown therapeutic potential against osteoarthritis (OA), however, the mechanisms underlying its therapeutic effects remain unclear. Therefore, this study investigated the effects of the SVF on OA in a human-immunodeficient rat xenotransplantation model. METHODS OA model was induced in the knees of female immunodeficient rats by destabilization of the medial meniscus. Immediately after the surgery, human SVF (1 × 105), ADSCs (1 × 104), or phosphate buffered saline as a control group were transplanted into the knees. At 4 and 8 weeks postoperatively, OA progression and synovitis were analyzed by macroscopic and histological analyses, and the expression of collagen II, SOX9, MMP-13, ADAMTS-5, F4/80, CD86 (M1), CD163 (M2), and human nuclear antigen (hNA) were evaluated immunohistochemically. In vitro, flow cytometry was performed to collect CD163-positive cells as M2Φ from the SVF. Chondrocyte pellets (1 × 105) were co-cultured with SVF (1 × 105), M2Φ (1 × 104), and ADSCs (1 × 104) or alone as a control group, and the pellet size was compared. TGF-β, IL-10 and MMP-13 concentrations in the medium were evaluated using enzyme-linked immunosorbent assay. RESULTS In comparison with the control and ADSC groups, the SVF group showed significantly slower OA progression and less synovitis with higher expression of collagen II and SOX9, lower expression of MMP-13 and ADAMTS-5, and lower F4/80 and M1/M2 ratio in the synovium. Only the SVF group showed partial expression of hNA-, CD163-, and F4/80-positive cells in the rat synovium. In vitro, the SVF, M2Φ, ADSC and control groups, in that order, showed larger pellet sizes, higher TGF-β and IL-10, and lower MMP-13 concentrations. CONCLUSIONS The M2Φ in the transplanted SVF directly affected recipient tissue, enhancing the secretion of growth factors and chondrocyte-protecting cytokines, and partially improving chondrocytes and joint homeostasis. These findings indicate that the SVF is as an effective option for regenerative therapy for OA, with mechanisms different from those of ADSCs.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Akira Saitoh
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takafumi Hiranaka
- Department of Orthopaedic Surgery and Joint Surgery Center, Takatsuki General Hospital, Osaka, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
2
|
Onoi Y, Matsumoto T, Sobajima S, Tsubosaka M, Hayashi S, Matsushita T, Iwaguro H, Kuroda R. Clinical use of autologous adipose-derived stromal vascular fraction cell injections for hip osteoarthritis. Regen Ther 2023; 24:94-102. [PMID: 37363753 PMCID: PMC10285449 DOI: 10.1016/j.reth.2023.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Currently, studies on adipose-derived stromal vascular fraction (SVF) cells are attracting increasing attention because they have the potential to differentiate into a subset of cell types, such as bone marrow-derived mesenchymal stromal cells (MSCs), and are easier to harvest than MSCs, thus making them easier to apply clinically. This study evaluated the short-term clinical outcomes of SVF cell therapy for hip osteoarthritis (OA). Methods Forty-two patients were enrolled in this study; these patients received a single injection comprising an average of 3.8 (standard deviation [SD], ±1.3) × 107 SVF cells into the hip joint. All patients were followed-up for at least 6 months. The mean age of the patients was 60.2 years (SD, ±9.4 years). Kellgren-Lawrence (KL) grades II, III, and IV based on radiography were 13, 13, and 16 patients, respectively. SVF cells were obtained from the subcutaneous fat of the abdomen or breech using a Celution® 800/CRS system. The average cell viability of SVF cells was 90.8% (SD, ±2.8%). Clinical assessments were performed using the Harris Hip Score (HHS), Japanese Orthopaedic Association Hip Disease Evaluation Questionnaire (JHEQ) score, and visual analog scale (VAS) score to evaluate pain. Images were evaluated using radiography, and T2 mapping values were obtained using a 1.5-T magnetic resonance imaging system. These clinical and imaging assessments were followed from preoperatively to 6 months postoperatively. Results The HHS, JHEQ score, and VAS score improved significantly from 22.5 (SD, ±16.6), 26.6 (SD, ±11.3), and 75.5 (SD, ±15.8) preoperatively to 46.8 (SD, ±27.2), 39.4 (SD, ±19.7), and 46.5 (SD, ±27.9), respectively, at 6 months postoperatively. KL grade II showed significant improvement in clinical outcome from preoperative to postoperative, while KL grade IV showed slight or little improvement. The center edge angle, acetabular head index on the radiographs, and T2 mapping values did not change significantly from preoperatively to 6 months postoperatively. Conclusions SVF cell injection in the hip joint showed good short-term clinical efficacy for reducing hip OA symptoms. SVF cell therapy is thus an innovative and effective treatment for hip OA.
Collapse
Affiliation(s)
- Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Gemayel J, Chaker D, El Hachem G, Mhanna M, Salemeh R, Hanna C, Harb F, Ibrahim A, Chebly A, Khalil C. Mesenchymal stem cells-derived secretome and extracellular vesicles: perspective and challenges in cancer therapy and clinical applications. Clin Transl Oncol 2023:10.1007/s12094-023-03115-7. [PMID: 36808392 DOI: 10.1007/s12094-023-03115-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023]
Abstract
Stem cell-based therapies have been foreshowed as a promising therapeutic approach for the treatment of several diseases. However, in the cancer context, results obtained from clinical studies were found to be quite limited. Deeply implicated in inflammatory cues, Mesenchymal, Neural, and Embryonic Stem Cells have mainly been used in clinical trials as a vehicle to deliver and stimulate signals in tumors niche. Although these stem cells have shown some therapeutical promises, they still face several challenges, including their isolation, immunosuppression potential, and tumorigenicity. In addition, regulatory and ethical concerns limit their use in several countries. Mesenchymal stem cells (MSC) have emerged as a gold standard adult stem cell medicine tool due to their distinctive characteristics, such as self-renewal and potency to differentiate into numerous cell types with lower ethical restrictions. Secreted extracellular vesicles (EVs), secretomes, and exosomes play a crucial role in mediating cell-to-cell communication to maintain physiological homeostasis and influence pathogenesis. Due to their low immunogenicity, biodegradability, low toxicity, and ability to transfer bioactive cargoes across biological barriers, EVs and exosomes were considered an alternative to stem cell therapy through their immunological features. MSCs-derived EVs, exosomes, and secretomes showed regenerative, anti-inflammatory, and immunomodulation properties while treating human diseases. In this review, we provide an overview of the paradigm of MSCs derived exosomes, secretome, and EVs cell-free-based therapies, we will focus on MSCs-derived components in anti-cancer treatment with decreased risk of immunogenicity and toxicity. Astute exploration of MSCs may lead to a new opportunity for efficient therapy for patients with cancer.
Collapse
Affiliation(s)
- Jack Gemayel
- Faculty of Health Sciences, Balamand University, Beirut, Lebanon
| | - Diana Chaker
- INSERM, National Institute of Health and Medical Research, Paris XI, Paris, France
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Georges El Hachem
- Balamand University, Faculty of Medicine, Beirut, Lebanon
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Melissa Mhanna
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rawad Salemeh
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
| | - Colette Hanna
- Faculty of Medicine, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, P.O. Box 100, Kalhat, Lebanon
| | - Ahmad Ibrahim
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Balamand University, Faculty of Medicine, Beirut, Lebanon
| | - Alain Chebly
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon.
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, UAE.
- Stem Cell Institute, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
4
|
Fujita M, Matsumoto T, Sobajima S, Tsubosaka M, Matsushita T, Iwaguro H, Kuroda R. Clinical and Radiological Comparison of Single and Double Intra-articular Injection of Adipose-Derived Stromal Vascular Fraction for Knee Osteoarthritis. Cell Transplant 2023; 32:9636897231190175. [PMID: 37551027 PMCID: PMC10411282 DOI: 10.1177/09636897231190175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
The aim of the article is to compare the clinical and radiological outcomes between single and double stromal vascular fraction (SVF) cell injections in patients with knee osteoarthritis (OA). We included 54 patients treated for varus knee OA with intra-articular SVF cell injection. They were divided into two groups: those who received one injection and those who received two. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, knee range of motion, and knee muscle force were assessed at baseline and 3, 6, 12, and 24 months after the first injection. The preoperative hip-knee-ankle (HKA) angle was evaluated using plain radiographs, and T2 mapping values were assessed. The total WOMAC score improved significantly in the single injection group from 3 to 24 months, but the total WOMAC score in the double injection group improved significantly at 24 months. The T2 mapping values in both the groups improved, with a significant difference at 12 months. The preoperative mean HKA angle and the correlation coefficients between the HKA angle and the total WOMAC score and between the HKA angle and the T2 mapping value of the medial femur were significant. In conclusion, double injections may provide more satisfactory treatment outcomes in patients with severe varus knee alignment. This clinical trial is registered in the Japanese Ministry of Health, Labour and Welfare (URL: https://saiseiiryo.mhlw.go.jp/published_plan/index/2) with the registration name "Cell transplantation therapy for osteoarthritis using autologous subcutaneous adipose tissue-derived regenerative (stem) cells (ADRCs)," and the registration number was "PB5160012."
Collapse
Affiliation(s)
- Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
5
|
TEKİN Ö, UYANIKGİL Y, TAŞKIRAN D. Glukagon benzeri peptit-1'in yağ doku kaynaklı mezenkimal kök hücrelerinin kardiyomiyositlere dönüşmesi üzerindeki etkisi. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1180666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Amaç: Mezenkimal kök hücreler, çeşitli protokoller kullanılarak in vitro koşullarda kolaylıkla
kardiyomiyositlere farklılaşabilir. Ancak bu protokollerde kullanılan ajanların hücre canlılığı üzerinde bazı
olumsuz etkileri olduğu bildirilmiştir. Azasitidin mezenkimal kök hücreleri kalp kası hücrelerine
farklandırmak için kullanılmaktadır. Bu çalışmanın amacı, bir GLP-1 reseptör agonisti olan Eksenatid'in
insan yağ dokusu kaynaklı kök hücrelerinin kardiyomiyositlere farklılaşması ve canlılığı üzerindeki
etkilerini araştırmaktır.
Gereç ve Yöntem: Azasitidin ve Eksenatid'in insan yağ doku kaynaklı mezenkimal kök hücreler
üzerinde hücre canlılığı ve proliferasyonu üzerindeki etkileri ile sitotoksisite testleri yapıldı. Farklılanma
protokolü için, hücreler dört hafta boyunca Azasitidin ve Eksenatid ile inkübe edildi. Hücrelerin morfolojik
değişiklikleri izlendi ve kardiyomiyojenik farklılaşma belirteçlerinin (cTnI, GATA4 ve MYH7)
ekspresyonları immünohistokimyasal olarak değerlendirildi. Ayrıca kültürlerdeki kardiyak troponin I
(cTnI) seviyeleri enzime bağlı immünosorbent testi kullanılarak ölçüldü. Veriler, tek yönlü varyans analizi
(ANOVA) ve post-hoc testi ile değerlendirildi.
Bulgular: İnsan yağ doku kaynaklı mezenkimal kök hücreler üzerine Azasitidin uygulaması, kontrole
grubuna kıyasla hücre canlılığını önemli ölçüde azaltırken (%54.4) hücrelerin Azasitidin+Eksenatid ile
uygulaması doza bağlı bir şekilde hücre ölümünü önledi. Azasitidin ve Eksenatid uygulanan hücreler,
kardiyomiyojenik farklılaşma ile uyumlu önemli morfolojik değişiklikler ve kardiyomiyojenik belirteçlerde
artış gösterdi. Ayrı ayrı ve birlikte uygulama yapılan gruplarda cTnI seviyeleri kontrole göre anlamlı
derecede yüksek bulundu.
Sonuç: Bu bulgular GLP-1 reseptör agonisti Eksenatid'in, Azasitidin uygulamasının neden olduğu hücre
hasarını azaltarak İnsan yağ doku kaynaklı mezenkimal kök hücrelerin kardiyomiyojenik farklılaşması
üzerinde faydalı etkileri olabileceğini düşündürmektedir.
Collapse
|
6
|
Fujita M, Matsumoto T, Hayashi S, Hashimoto S, Nakano N, Maeda T, Kuroda Y, Takashima Y, Kikuchi K, Anjiki K, Ikuta K, Onoi Y, Tachibana S, Matsushita T, Iwaguro H, Sobajima S, Hiranaka T, Kuroda R. Paracrine effect of the stromal vascular fraction containing M2 macrophages on human chondrocytes through the Smad2/3 signaling pathway. J Cell Physiol 2022; 237:3627-3639. [PMID: 35766589 DOI: 10.1002/jcp.30823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/08/2022]
Abstract
The adipose-derived stromal vascular fraction (SVF) is composed of a heterogeneous mix of adipose-derived stem cells (ADSCs), macrophages, pericytes, fibroblasts, blood, and other cells. Previous studies have found that the paracrine effects of SVF cells may be therapeutic, but their role in osteoarthritis treatment remains unclear. This study aimed to investigate the therapeutic effect of SVF cells on chondrocytes. Chondrocytes were seeded on culture plates alone (control) or cocultured with SVF or ADSCs on cell culture inserts. After 48 h of coculture, chondrocyte collagen II, tissue inhibitors of metalloproteinases-3 (TIMP-3), and matrix metalloproteinases-13 (MMP-13) messenger RNA (mRNA) expression levels were evaluated using reverse-transcription polymerase chain reaction, and the transforming growth factor-β (TGF-β) levels in the supernatant were measured using ELISA. Immunohistochemical staining and flow cytometry were used to evaluate the macrophages in the SVF. These macrophages were characterized according to phenotype using the F4/80, CD86, and CD163 markers. To determine whether the Smad2/3 signaling pathways were involved, the chondrocytes were pre-treated with a Smad2/3 phosphorylation inhibitor and stimulated with the SVF, and then Smad2/3 phosphorylation levels were analyzed using western blot. The mRNA expression levels of various paracrine factors and chondrocyte pellet size were also assessed. Collagen II and TIMP-3 expression were higher in the SVF group than in the ADSC group and controls, while MMP-13 expression was the highest in the ADSC group and the lowest in the controls. TGF-β levels in the SVF group were also elevated. Immunohistochemical staining and flow cytometry revealed that the macrophages in the SVF were of the anti-inflammatory phenotype. Western blot analysis showed that the SVF increased Smad2/3 phosphorylation, while Smad2/3 inhibitors decreased phosphorylation. Smad2/3 inhibitors also reduced the expression of various other paracrine factors and decreased chondrocyte pellet size. These findings suggested that the paracrine effect of heterogeneous cells, such as anti-inflammatory macrophages, in the SVF partly supports chondrocyte regeneration through TGF-β-induced Smad2/3 phosphorylation.
Collapse
Affiliation(s)
- Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Osaka, Japan
| | - Takafumi Hiranaka
- Department of Orthopaedic Surgery and Joint Surgery Centre, Takatsuki General Hospital, Osaka, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Kamenaga T, Kuroda Y, Nagai K, Tsubosaka M, Takashima Y, Kikuchi K, Fujita M, Ikuta K, Anjiki K, Maeda T, Nakano N, Takayama K, Hashimoto S, Hayashi S, Matsushita T, Niikura T, Kuroda R, Matsumoto T. Cryopreserved human adipose-derived stromal vascular fraction maintains fracture healing potential via angiogenesis and osteogenesis in an immunodeficient rat model. Stem Cell Res Ther 2021; 12:110. [PMID: 33541427 PMCID: PMC7863470 DOI: 10.1186/s13287-021-02182-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background Novel therapeutic strategies for the healing of nonunion, which has serious effects on the quality of life of patients, are needed. We evaluated the therapeutic effect of local transplantation of human stromal vascular fraction (SVF) cells on fracture healing in a rat non-healing fracture model and compared the effects between freshly isolated (F) and cryopreserved (C)-SVFs. Methods Non-healing fracture model was induced in the femur of female immunodeficient rats (F344/N Jcl rnu/rnu) with cauterizing periosteum. Immediately after the creation of non-healing fracture, rats received local transplantation of F and C-SVFs suspended in phosphate-buffered saline (PBS) or the same volume of PBS without cells using the same scaffold as a control group. During 8 weeks post-surgery, radiologic, histological, immunohistochemical, and biomechanical analyses were performed to evaluate fracture healing. The comparison of radiological results was performed with a chi-square test, and the multiple comparisons of immunohistochemical, histological, and biomechanical results among groups were made using a one-way analysis of variance. A probability value of 0.05 was considered to denote statistical significance. Results At week 8, in 60% of animals receiving F-SVF cells and in 50% of animals receiving C-SVF cells, the fracture radiologically healed with bone union whereas nonunion was observed in the control group. The healing potential was also confirmed by histological and biomechanical assessments. One of the mechanisms underlying healing involving intrinsic angiogenesis/osteogenesis was enhanced in F- and C-SVF groups compared with that in the control group. Human cell-derived vasculogenesis/osteogenesis, which was also confirmed in an in vitro differentiation assay, was also enhanced in the F- and C-SVF groups compared with that in the control groups and could be another mechanism for healing. Conclusions SVF cells can enhance bone healing and cryopreserved cells have almost equal potential as fresh cells. SVF cells can be used for improving nonunion bone fracture healing as an alternative to other mesenchymal stem cells and the effect of SVF cells can be maintained under cryopreservation.
Collapse
Affiliation(s)
- Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Kanto Nagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-chou, 650-0017, Kobe, Japan.
| |
Collapse
|
8
|
Bertrand B, Eraud J, Velier M, Cauvin C, Macagno N, Boucekine M, Philandrianos C, Casanova D, Magalon J, Sabatier F. Supportive use of platelet-rich plasma and stromal vascular fraction for cell-assisted fat transfer of skin radiation-induced lesions in nude mice. Burns 2020; 46:1641-1652. [PMID: 32475796 DOI: 10.1016/j.burns.2020.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/15/2019] [Accepted: 04/15/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND External radiotherapy has become indispensable in oncological therapies. Unfortunately, radiation is responsible for serious side effects, such as radiodermatitis. The skin is weakened and ulcerated. Our study aimed to evaluate the subcutaneous transfer of microfat (MF) alone and two mixes: MF+Platelet-rich plasma (PRP) and MF+stromal vascular fraction (SVF) to treat radiation-induced skin lesions. METHOD We defined randomly five experimental groups of nine mice: 1 healthy control group and 4 irradiated (60 Grey) and treated groups. The skin lesions were treated 3 months after irradiation by MF, MF+PRP (50%-50%), MF+SVF (90%-10%) or Ringer-lactate subcutaneous injections. Wound healing was evaluated at 1, 2 and 3 months post-injection and histological wound analysis at 3 months, after euthanasia. RESULTS All the irradiated mice presented with wounds. After sham-injection, the wound area increased by 91.1±71.1% versus a decrease of 15.9±23.1% after MF alone (NS), 27.3±23.8% after MF+SVF (NS) and 76.4±7.7% after MF+PRP (P=0.032). A significative reduction of skin thickness in wound periphery was measured for the three treated groups compared to sham-injection (P<0.05) but not in the healed wounds (NS). The most important subcutaneous neo-vessel density was shown after MF+SVF injection. CONCLUSION The MF+PRP mix was the most efficient product to increase healing. The MF+SVF mix showed the highest rate of neo-angiogenesis but was disappointing in terms of healing. LEVEL OF EVIDENCE Not gradable.
Collapse
Affiliation(s)
- Baptiste Bertrand
- Department of Plastic Surgery, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France; Aix-Marseille Univ, C2VN, INSERM, INRA, France.
| | - Julia Eraud
- Department of Plastic Surgery, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| | - Mélanie Velier
- Aix-Marseille Univ, C2VN, INSERM, INRA, France; Culture and Cell Therapy Laboratory, INSERM CICBT-1409, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| | - Cécile Cauvin
- Department of Radiotherapy, Hopital Privé Clairval, Marseille, France.
| | - Nicolas Macagno
- Department of Pathology, la Timone Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| | - Mohamed Boucekine
- Aix-Marseille Univ, EA 3279 - Public Health, Chronic Diseases and Quality of Life - Research Unit, France.
| | - Cécile Philandrianos
- Department of Plastic Surgery, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| | - Dominique Casanova
- Department of Plastic Surgery, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| | - Jeremy Magalon
- Aix-Marseille Univ, C2VN, INSERM, INRA, France; Culture and Cell Therapy Laboratory, INSERM CICBT-1409, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| | - Florence Sabatier
- Aix-Marseille Univ, C2VN, INSERM, INRA, France; Culture and Cell Therapy Laboratory, INSERM CICBT-1409, La Conception Hospital, Assistance Publique - Hôpitaux de Marseille, France.
| |
Collapse
|
9
|
Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World J Stem Cells 2020; 12:1-7. [PMID: 32110271 PMCID: PMC7031762 DOI: 10.4252/wjsc.v12.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
This article presents the stem and progenitor cells from subcutaneous adipose tissue, briefly comparing them with their bone marrow counterparts, and discussing their potential for use in regenerative medicine. Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells (MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels. Pre-adipocytes are present both in the stromal-vascular fraction (SVF; freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells (ASCs; in vitro expanded cells), and have an active role on the chronic inflammation environment established in obesity, likely due their monocytic-macrophage lineage identity. The SVF and ASCs have been explored in cell therapy protocols with relative success, given their paracrine and immunomodulatory effects. Importantly, the widely explored multipotentiality of ASCs has direct application in bone, cartilage and adipose tissue engineering. The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering. Innovative cell culture techniques, in particular 3D scaffold-free cultures such as spheroids, are now available to increase the potential for regeneration and differentiation of mesenchymal lineages. Spheroids are being explored not only as a model for cell differentiation, but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| |
Collapse
|
10
|
The use of autologous fat grafts in breast surgery: A literature review. Arch Plast Surg 2019; 46:498-510. [PMID: 31775202 PMCID: PMC6882697 DOI: 10.5999/aps.2019.00416] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Autologous fat injection was first described roughly a century ago and has been used in surgery ever since. In addition to its use in many surgical fields, it is also frequently used for both aesthetic and reconstructive purposes in breast surgery. Since the application of fat grafting in breast surgery has steadily increased, studies investigating its reliability have simultaneously become increasingly common. Previous studies have reported that the use of fat grafting in breast surgery is reliable, but some pending questions remain about its routine use. In order to use fat grafts successfully in breast surgery, it is necessary to be familiar with the structure and content of adipose tissue, the efficacy of adipose stem cell-enriched fat grafts, the oncological safety of fat grafts, and the problems that may occur in the radiological follow-up of patients who undergo fat grafting procedures. In this literature review, we aim to discuss the use of fat grafts in breast surgery by investigating these common problems.
Collapse
|
11
|
Tehzeeb J, Manzoor A, Ahmed MM. Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search. Cureus 2019; 11:e5959. [PMID: 31803548 PMCID: PMC6874291 DOI: 10.7759/cureus.5959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart is one of the most industrious organs in the human body. It starts beating in the first few weeks of embryonic life and keeps pumping blood till death. This organ can host a range of diseases as well. Some can hamper the vasculature, while others can affect its electrical activity, the heart valves, etc. All these conditions can lead to end-stage failure where it can no longer meet the requirements of the body’s milieu. This imbalance between supply and demand leads to an array of symptoms. Medical management can reduce these clinical effects and possibly prolong the life expectancy in such patients. However, prescription medications can also have their own adverse effects. This necessitates that each line of treatment should be assessed on a risk vs benefit basis. The conventional approach has been to try and slow down the progression of heart failure (HF). However, the inception of stem cells in the management of HF has the potential for reversal of this pathology. Keeping this in view, many studies and trials are under process. To turn the clock back on the HF, before complications set in or get out of control, is the main focus of the time. This article attempts to evaluate various studies about stem cell therapy (SCT) and highlight the important aspects of this novel modality in changing patients' lives.
Collapse
Affiliation(s)
- Javaria Tehzeeb
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Anam Manzoor
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Munis M Ahmed
- Internal Medicine, St Mary Mercy Livonia Hospital, Livonia, USA
| |
Collapse
|
12
|
Mesenchymal Stem Cells for Liver Regeneration in Liver Failure: From Experimental Models to Clinical Trials. Stem Cells Int 2019; 2019:3945672. [PMID: 31191671 PMCID: PMC6525815 DOI: 10.1155/2019/3945672] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
The liver centralizes the systemic metabolism and thus controls and modulates the functions of the central and peripheral nervous systems, the immune system, and the endocrine system. In addition, the liver intervenes between the splanchnic and systemic venous circulation, determining an abdominal portal circulatory system. The liver displays a powerful regenerative potential that rebuilds the parenchyma after an injury. This regenerative mission is mainly carried out by resident liver cells. However, in many cases this regenerative capacity is insufficient and organ failure occurs. In normal livers, if the size of the liver is at least 30% of the original volume, hepatectomy can be performed safely. In cirrhotic livers, the threshold is 50% based on current practice and available data. Typically, portal vein embolization of the part of the liver that is going to be resected is employed to allow liver regeneration in two-stage liver resection after portal vein occlusion (PVO). However, hepatic resection often cannot be performed due to advanced disease progression or because it is not indicated in patients with cirrhosis. In such cases, liver transplantation is the only treatment possibility, and the need for transplantation is the common outcome of progressive liver disease. It is the only effective treatment and has high survival rates of 83% after the first year. However, donated organs are becoming less available, and mortality and the waiting lists have increased, leading to the initiation of living donor liver transplantations. This type of transplant has overall complications of 38%. In order to improve the treatment of hepatic injury, much research has been devoted to stem cells, in particular mesenchymal stem cells (MSCs), to promote liver regeneration. In this review, we will focus on the advances made using MSCs in animal models, human patients, ongoing clinical trials, and new strategies using 3D organoids.
Collapse
|
13
|
Rahimi M, Zarnani AH, Mohseni-Kouchesfehani H, Soltanghoraei H, Akhondi MM, Kazemnejad S. Comparative evaluation of cardiac markers in differentiated cells from menstrual blood and bone marrow-derived stem cells in vitro. Mol Biotechnol 2016; 56:1151-62. [PMID: 25189461 DOI: 10.1007/s12033-014-9795-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, menstrual blood-derived stem cells (MenSCs) have been introduced as easily accessible and refreshing stem cell source without ethical considerations in the field of regenerative medicine. The aim of this study was to investigate in vitro cardiac differentiation capacity of MenSCs compared to bone marrow-derived stem cells (BMSCs) under two protocols using 5-aza-2'-deoxycytidine (5-aza) and basic fibroblast growth factor (bFGF). Our data revealed that differentiated MenSCs and BMSCs acquired some features of cardiomyocytes; however, degree of differentiation was dependent on the protocol. In a similar manner with BMSCs, differentiated MenSCs showed upper levels of mRNA/protein of late-stage cardiac markers under 5-aza stimulation and continuous treatment with bFGF (protocol 2) compared to those induced by 5-aza alone (protocol 1) evidencing the key role of bFGF in cardiac development of stem cells. Compared to corresponding undifferentiated cells differentiated MenSCs under protocol 2 showed remarkable expression of connexin-43 and TNNT2 at both gene and protein levels, whereas developed BMSCs under the same condition only expressed connextin-43 at the higher level. Superiority of protocol 2 over protocol 1 was confirmed by assessment of LDH and cTnI production by differentiated cells. Based on the accumulative data, our study provided convincing evidence that MenSCs have relatively higher capability to be differentiated toward cardiomyocyte compared with BMSCs. Furthermore, usage of bFGF and 5-aza to induce in vitro cardiac differentiation of MenSCs is highly recommended.
Collapse
Affiliation(s)
- Maryam Rahimi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
14
|
Serratrice N, Bruzzese L, Magalon J, Véran J, Giraudo L, Aboudou H, Ould-Ali D, Nguyen PS, Bausset O, Daumas A, Casanova D, Granel B, Andrac-Meyer L, Sabatier F, Magalon G. New fat-derived products for treating skin-induced lesions of scleroderma in nude mice. Stem Cell Res Ther 2014; 5:138. [PMID: 25519759 PMCID: PMC4446000 DOI: 10.1186/scrt528] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 12/12/2014] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Scleroderma is characterized by cutaneous manifestations that mainly affect the hands, arms and face. As of today, there is no treatment for fibrotic skin lesions of scleroderma. Previously we generated and validated a model of scleroderma-like skin sclerosis in nude mice, appropriate to inject human derived products. We showed that the subcutaneous injection of micro-fat (MF), purified and injected using small caliber cannulas, have anti-fibrotic and pro-angiogenic effects and appears more suitable for the treatment of skin lesions of scleroderma compared to the gold standard (Coleman's technique or macro-fat). Here we compared the long-term efficacy of micro-fat "enriched" with other therapeutic products including the stromal vascular fraction (SVF) of fat and platelet-rich plasma (PRP) from blood in our murine model of scleroderma. METHODS We used 72 nude mice in this study. We formed six experimental groups: Macro-fat, MF, SVF, PRP, MF + SVF, MF + PRP. This project has three phases: i) Induction of skin sclerosis by daily subcutaneous injections of bleomycin (BLM) for 4 weeks in nude mice; ii) Purification and injection of the different cell therapy products; iii) Histological analyses done 8 weeks post-injections. RESULTS MF + SVF and MF + PRP significantly reversed dermal and epidermal sclerosis (P <0.01). Macro-fat, SVF, PRP only corrected the dermal sclerosis (P <0.05). Epidermal sclerosis was reduced in treatments containing MF (P <0.01). MF was more stable. Products containing the SVF were associated with a significant increase of the local vascularization (P <0.01). CONCLUSIONS All tested substances were effective in treating skin-induced lesions of scleroderma with different levels of fibrosis and vascular improvement; MF derived products are more stable and SVF demonstrated better pro-angiogenic effects. The observed efficacy of this combination of products in the animal model provides a rationale for potential clinical applications to treat human disease.
Collapse
|
15
|
Colazzo F, Alrashed F, Saratchandra P, Carubelli I, Chester AH, Yacoub MH, Taylor PM, Somers P. Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors 2014; 32:139-49. [PMID: 25112491 DOI: 10.3109/08977194.2014.945642] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we combine chemical and mechanical stimulation to investigate the effects of vascular endothelial growth factor (VEGF) and physiological shear stress in promoting the differentiation human adipose derived stem cells (ADSCs) into endothelial cells. ADSCs were isolated and characterized; endothelial differentiation was promoted by culturing confluent cells in 50 ng/ml VEGF under physiological shear stress for up to 14 days. Afterwards, endothelial cells were seeded onto collagen or acellular aortic valve matrices and exposed to four culture conditions: shear stress + VEGF; shear stress - VEGF; static + VEGF and static - VEGF. After 7 days, phenotype was investigated. ADSCs subjected to shear stress and VEGF express a comprehensive range of specific endothelial markers (vWF, eNOS and FLT-1 after 7 days and CD31, FLk-1 and VE-cadherin after 14 days) and maintain the phenotype when seeded onto scaffolds. Our protocol proved to be an efficient source of endothelial-like cells for tissue engineering based on autologous ADSC.
Collapse
Affiliation(s)
- Francesca Colazzo
- Heart Science Centre, NHLI, Imperial College London , Harefield, Middlesex , UK and
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Eguchi M, Ikeda S, Kusumoto S, Sato D, Koide Y, Kawano H, Maemura K. Adipose-derived regenerative cell therapy inhibits the progression of monocrotaline-induced pulmonary hypertension in rats. Life Sci 2014; 118:306-12. [PMID: 24853385 DOI: 10.1016/j.lfs.2014.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/26/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
AIMS Functional and structural changes in pulmonary vasculature characterize pulmonary arterial hypertension (PAH) and the prognosis of advanced PAH remains poor despite progress in pharmacotherapy. Adipose-derived regenerative cells (ADRCs) promote cell regeneration at pathological sites and comprise a novel therapy for ailments of various organs. We investigated the effects of ADRC therapy in rat models of monocrotaline (MCT)-induced pulmonary hypertension (PH) and the underlying mechanisms. MAIN METHODS Rats were assigned to Control and MCT groups without and with (M/A) intravenous transfusion of seven million ADRCs on day 7. We echocardiographically evaluated pulmonary hypertension as pulmonary artery flow acceleration time (PAAT) and deceleration (PADc). Right ventricular (RV) systolic pressure was measured by catheterization on day 28 and then pathological changes in pulmonary vessels were assessed. We analyzed PAH-associated gene expression on day 14 using real-time RT-PCR. KEY FINDINGS Echocardiography and RV catheterization showed that ADRC therapy inhibited PH development (assessed as PAAT, PADc, and RV systolic pressure) at day 28 (MCT vs. M/A, P<0.05). Pulmonary vascular remodeling was also inhibited (vessel wall thickness: MCT vs. M/A, P<0.01). Messenger RNA levels of endothelin (ET) A and B receptors, ET-1 and transforming growth factor (TGF)-β increased in the lungs by MCT were suppressed by ADRCs (MCT vs. M/A, P<0.05). SIGNIFICANCE The development of PH was inhibited by ADRCs through suppressing changes in the expression of genes associated with ET and TGF-β systems. We believe that ADRC therapy could serve as a novel strategy for treating PH.
Collapse
Affiliation(s)
- Masamichi Eguchi
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Ikeda
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Saburo Kusumoto
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daisuke Sato
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Koide
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroaki Kawano
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
17
|
[Interests and potentials of adipose tissue in scleroderma]. Rev Med Interne 2013; 34:763-9. [PMID: 24050783 DOI: 10.1016/j.revmed.2013.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/07/2013] [Accepted: 08/17/2013] [Indexed: 01/10/2023]
Abstract
Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma.
Collapse
|
18
|
Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P. Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther 2013; 13:1357-70. [PMID: 23919743 DOI: 10.1517/14712598.2013.823153] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the past decade human adipose tissue has been identified as a source of multipotent stem cells. Adipose tissue derived stem cells (ASCs) are characterised by immunosuppressive properties and low immunogenicity. Therefore, they can be used in regenerative medicine, as well as applied to induce graft tolerance or prevent autoimmunity. ASCs can be easily harvested with low morbidity, which is their main advantage over mesenchymal stem cells (MSCs) derived from other sources. AREAS COVERED The review focuses on reported clinical applications of ASCs and discusses technical approaches of their isolation and processing. The differences in phenotype and differentiation preferences between ASCs and other MSCs that may affect the choice of a particular cell type for the future therapy are also described. EXPERT OPINION ASCs seem to be the perfect tool for regenerative medicine and immunosuppressive cellular therapies. Nevertheless, there are some tasks that should be addressed by the future studies: i) ASCs require better characterisation; a set of markers determining ASCs should be clearly defined; ii) there is need for more studies on safety of reconstructive therapies with ASCs in cancer patients (e.g., after mastectomy); iii) release criteria should be determined for freshly isolated and ex vivo expanded ASCs designed for clinical applications.
Collapse
Affiliation(s)
- Michał Pikuła
- Medical University of Gdańsk, Department of Clinical Immunology and Transplantology , ul. Dębinki 7, 80-210 Gdańsk , Poland
| | | | | | | | | |
Collapse
|
19
|
He JQ, January CT, Thomson JA, Kamp TJ. Human embryonic stem cell-derived cardiomyocytes: drug discovery and safety pharmacology. Expert Opin Drug Discov 2013; 2:739-53. [PMID: 23488962 DOI: 10.1517/17460441.2.5.739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human embryonic stem cells (hESCs) can provide potentially unlimited quantities of a wide range of human cell types that can be used in drug discovery and development, basic research and regenerative medicine. In this review, the authors describe the differentiation of hESCs into cardiomyocytes and outline the properties of hESC-derived cardiomyocytes (hESC-CMs), including their cardiac-type action potentials and contractile characteristics. In vitro cellular assays using hESC-CMs, which can be genetically engineered to create target-specific reporters as well as human disease models, will have applications at multiple stages of the drug discovery process. Furthermore, cardiac safety pharmacology assays evaluating the risk of proarrhythmic side effects associated with QT prolongation may be enhanced in their predictive value with the use of hESC-CMs.
Collapse
Affiliation(s)
- Jia-Qiang He
- Cellular Dynamics International, Inc., 525 Science Drive, Suite 200, Madison, WI 53711, USA +1 608 263 4856 ; +1 608 263 0405 ;
| | | | | | | |
Collapse
|
20
|
Impact of CpG methylation in addressing adipose-derived stem cell differentiation towards the cardiac phenotype. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Durgam SS, Stewart AA, Pondenis HC, Gutierrez-Nibeyro SM, Evans RB, Stewart MC. Comparison of equine tendon- and bone marrow-derived cells cultured on tendon matrix with or without insulin-like growth factor-I supplementation. Am J Vet Res 2012; 73:153-61. [PMID: 22204302 DOI: 10.2460/ajvr.73.1.153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare in vitro expansion, explant colonization, and matrix synthesis of equine tendon- and bone marrow-derived cells in response to insulin-like growth factor-I (IGF-I) supplementation. SAMPLE Cells isolated from 7 young adult horses. PROCEDURES Tendon- and bone marrow-derived progenitor cells were isolated, evaluated for yield, and cultured on autogenous cell-free tendon matrix for 7 days. Samples were analyzed for cell viability and expression of collagen type I, collagen type III, and cartilage oligomeric matrix protein mRNAs. Collagen and glycosaminoglycan syntheses were quantified over a 24-hour period. RESULTS Tendon- and bone marrow-derived cells required 17 to 19 days of monolayer culture to reach 2 passages. Mean ± SE number of monolayer cells isolated was higher for tendon-derived cells (7.9 ± 0.9 × 10(6)) than for bone marrow-derived cells (1.2 ± 0.1 × 10(6)). Cell numbers after culture for 7 days on acellular tendon matrix were 1.6- to 2.8-fold higher for tendon-derived cells than for bone marrow-derived cells and 0.8- to 1.7-fold higher for IGF-I supplementation than for untreated cells. New collagen and glycosaminoglycan syntheses were significantly greater in tendon-derived cell groups and in IGF-I-supplemented groups. The mRNA concentrations of collagen type I, collagen type III, and cartilage oligomeric matrix protein were not significantly different between tendon- and bone marrow-derived groups. CONCLUSIONS AND CLINICAL RELEVANCE In vitro results of this study suggested that tendon-derived cells supplemented with IGF-I may offer a useful resource for cell-based strategies in tendon healing.
Collapse
Affiliation(s)
- Sushmitha S Durgam
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ischemic cardiac tissue conditioned media induced differentiation of human mesenchymal stem cells into early stage cardiomyocytes. Cytotechnology 2012; 64:563-75. [PMID: 22395895 DOI: 10.1007/s10616-012-9440-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 02/09/2012] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, can be easily expanded in culture and hence are an attractive therapeutic tool for cardiac repair. MSCs have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. The present study examined the differentiation capacity of conditioned media derived from ischemic cardiac tissue on human MSCs. Human Bone marrow-derived MSCs after due characterization by immunocytochemistry and flow cytometry for MSC specific markers were induced by culture media derived from ischemic (n = 13) and non-ischemic (n = 18) human cardiac tissue. Parallel cultures were treated with 5-azacytidine (5-azaC), a potent cardiomyogen. MSCs induced with ischemic conditioned media formed myotube like structures, expressed sarcomeric Troponin I, alpha myosin heavy chain proteins and were positive for cardiac specific markers (Nkx2.5, human atrial natriuretic peptide, myosin light chain-2a, GATA-4) as was observed in 5-azaC treated cells. However, uninduced MSCs as well as those induced with non-ischemic cardiac conditioned media still maintained the fibroblast morphology even after 3 weeks post-induction. Transmission electron microscopic studies of cardiomyocyte-like cells derived from MSCs revealed presence of sarcomeric bands but failed to show gap junctions and intercalated discs as of adult cardiomyocytes. These findings demonstrate that ischemic cardiac conditioned media induces morphological and molecular changes in MSCs with cardiac features, but at a primitive stage. Proteomics analysis of the ischemic conditioned media revealed differential expression of three relevant proteins (C-type lectin superfamily member 13, Testis-specific chromodomain protein Y2 and ADP/ATP translocase 1), whose exact role in cardiac regeneration needs further analysis.
Collapse
|
23
|
Young DA, DeQuach JA, Christman KL. Human cardiomyogenesis and the need for systems biology analysis. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:666-80. [PMID: 21197666 PMCID: PMC3282989 DOI: 10.1002/wsbm.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death in the Western world and myocardial infarction is one of the primary facets of this disease. The limited natural self-renewal of cardiac muscle following injury and restricted supply of heart transplants has encouraged researchers to investigate other means to stimulate regeneration of damaged myocardium. The plasticity of stem cells toward multiple lineages offers the potential to repair the heart following injury. Embryonic stem cells have been extensively studied for their ability to differentiate into early cardiomyocytes, however, the pathway has only been partially defined and inadequate efficiency limits their clinical applicability. Some studies have shown cardiomyogenesis from adult mesenchymal stem cells, from both bone marrow and adipose tissue, but their differentiation pathway remains poorly detailed and these results remain controversial. Despite promising results using stem cells in animal models of cardiac injury, the driving mechanisms behind their differentiation down a cardiomyogenic pathway have yet to be determined. Currently, there is a paucity of information regarding cardiomyogenesis on the systemic level. Stem cell differentiation results from multiple signaling parameters operating in a tightly regulated spatiotemporal pattern. Investigating this phenomenon from a systems biology perspective could unveil the abstruse mechanisms controlling cardiomyogenesis that would otherwise require extensive in vitro testing.
Collapse
Affiliation(s)
- D Adam Young
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
24
|
Binsalamah ZM, Paul A, Khan AA, Prakash S, Shum-Tim D. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int J Nanomedicine 2011; 6:2667-78. [PMID: 22114497 PMCID: PMC3218580 DOI: 10.2147/ijn.s25175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Acute myocardial ischemia results in scar formation with ventricular dilatation and eventually heart failure. Placental growth factor (PlGF) is reported to stimulate angiogenesis and improve cardiac function. In this study, it was hypothesized that intramyocardial injection of PlGF contained in nanoparticles can be released at the site of action for an extended time period as a sustained slow-release protective mechanism that accelerates myocardial recovery in a rat model of ischemic cardiomyopathy. METHODS PlGF-loaded chitosan-alginate nanoparticles were injected into an acute myocardial infarction model in rats (n = 10 per group). Transthoracic echocardiography was performed at different time intervals. Enzyme-linked immunosorbent assay was used to measure the serum cytokines levels at 8 weeks. Hearts were stained with Masson's trichrome for scar area analysis. Immunofluorostaining was performed to evaluate the extent of myocardial angiogenesis at the infarction border. PlGF enzyme-linked immunosorbent assay was used to measure the in vitro release kinetics of PlGF-loaded nanoparticles. RESULTS At 8 weeks after coronary ligation, hearts that were treated with PlGF-loaded chitosan-alginate nanoparticles had significant increases in left-ventricular function (P < 0.01), vascular density (P < 0.01), and in the serum level of the anti-inflammatory cytokine interleukin-10 (P < 0.05). There was significant decrease in scar area formation (P < 0.05) and in serum levels of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6 (P < 0.01). In vitro PlGF-release kinetic studies showed a sustained release of PlGF from the particles over a 120-hour period. CONCLUSION The use of nanoparticles as a vehicle for PlGF delivery, as opposed to the direct injection of the growth factor after acute myocardial infarction, can provide sustained slow-release PlGF therapy, enhancing the positive effects of the growth factor in the setting of acute myocardial ischemia.
Collapse
Affiliation(s)
- Ziyad Mohammed Binsalamah
- Divisions of Cardiac Surgery and Surgical Research, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
25
|
Yu G, Wu X, Dietrich MA, Polk P, Scott LK, Ptitsyn AA, Gimble JM. Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy 2011; 12:538-46. [PMID: 20380539 DOI: 10.3109/14653241003649528] [Citation(s) in RCA: 337] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Adipose-derived stromal/stem cells (ASC) capable of multipotential differentiation can be isolated with high yields from human subcutaneous lipoaspirates. This study reports our recent experience of isolating and immunophenotypically characterizing ASC from >60 human patients with a mean age of 43.6 and body mass index (BMI) of 27. METHODS We examined the ASC yield per unit volume of lipoaspirate tissue, the surface antigen profile based on flow cytometry, histochemical differentiation potential along the adipogenic and osteogenic pathways, and expression of adipogenic mRNA by transcriptomic microarray and reverse transcription (RT)-polymerase chain reaction (PCR). RESULTS The population (n = 64) of predominantly Caucasian (84.3%) female (90.6%) donors had a mean age of 43.6 +/- 11.1 years and a mean BMI of 27.0 +/- 3.8. A yield of 375 +/- 142 x 10(3) ASC was obtained per milliliter of lipoaspirate within a 4.1 +/- 0.7-day culture period (n = 62). The ASC population was uniformly CD29(+) CD34(+) CD44(lo) CD45(lo) CD73(+) CD90(+) CD105(+) and capable of undergoing both adipogenesis and osteogenesis in vitro based on Oil Red O and Alizarin Red staining, respectively. Adipogenic differentiation was associated with a significant induction of multiple mRNA associated with lipid storage and synthesis based on microarray analysis of n = 3 donors. During an adipogenic differentiation time-course, representative mRNA (adiponectin, C/EBPalpha, leptin and LPL) displayed increases of several orders of magnitude. CONCLUSIONS These findings demonstrate the reproducibility of subcutaneous lipoaspirates as a consistent and abundant source of functional ASC from donors across a spectrum of ages and BMI. These results have relevance for regenerative medical applications exploiting autologous and allogeneic ASC for soft and hard tissue engineering.
Collapse
Affiliation(s)
- Gang Yu
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Huh YJ, Kim DW. Stem cells: general information and perspectives. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2011. [DOI: 10.5124/jkma.2011.54.5.450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yong Joon Huh
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Wook Kim
- Department of Physiology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Stem Cell Research Center, Seoul, Korea
| |
Collapse
|
27
|
Feng Z, Ting J, Alfonso Z, Strem BM, Fraser JK, Rutenberg J, Kuo HC, Pinkernell K. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transplant 2010; 25:3874-84. [PMID: 20921297 PMCID: PMC2989793 DOI: 10.1093/ndt/gfq603] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. Acute kidney injury (AKI) represents a major clinical problem with high mortality and limited causal treatments. The use of cell therapy has been suggested as a potential modality to improve the course and outcome of AKI. Methods. We investigated the possible renoprotection of freshly isolated, uncultured adipose tissue-derived stem and regenerative cells (ADRCs) before and after cryopreservation in a rat ischemia–reperfusion (I–R) model of AKI. Results. We demonstrated that ADRC therapy drastically reduced mortality (survival 100% vs. 57%, ADRC vs. controls, respectively) and significantly reduced serum creatinine (sCr on Day 3: 3.03 ± 1.58 vs. 7.37 ± 2.32 mg/dL, ADRC vs. controls, respectively). Histological analysis further validated a significantly reduced intratubular cast formation, ameliorated acute tubular epithelial cell necrosis and mitigated macrophage infiltration. Furthermore, a reduced RNA expression of CXCL2 and IL-6 was found in the ADRC group which could explain the reduced macrophage recruitment. Use of cryopreserved ADRCs resulted in an equally high survival (90% vs. 33% in the control group) and similarly improved renal function (sCr on Day 3: 4.64 ± 2.43 vs. 7.24 ± 1.40 mg/dL in controls). Conclusions. Collectively, these results suggest a potential clinical role for ADRC therapy in patients with AKI. Importantly, cryopreservation of ADRCs could offer an autologous treatment strategy for patients who are at high risk for AKI during planned interventions.
Collapse
Affiliation(s)
- Zheng Feng
- Department of Regenerative Cell Technology, Cytori Therapeutics, Inc., 3020 Callan Road, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res 2010; 3:652-62. [PMID: 20559770 DOI: 10.1007/s12265-010-9198-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 05/26/2010] [Indexed: 12/27/2022]
Abstract
Cardiac cell therapy has emerged as a controversial yet promising therapeutic strategy. Both experimental data and clinical applications in this field have shown modest but tangible benefits on cardiac structure and function and underscore that transplanted stem-progenitor cells can attenuate the postinfarct microenvironment. The paracrine factors secreted by these cells represent a pivotal mechanism underlying the benefits of cell-mediated cardiac repair. This article reviews key studies behind the paracrine effect related to the cardiac reparative effects of cardiac cell therapy.
Collapse
|
29
|
Corselli M, Chen CW, Crisan M, Lazzari L, Péault B. Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol 2010; 30:1104-9. [PMID: 20453168 DOI: 10.1161/atvbaha.109.191643] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Independent studies by numerous investigators have shown that it is possible to harvest multipotent progenitor cells from diverse dissociated and cultured fetal, perinatal, and principally adult developed tissues. Despite the increasingly recognized medical value of these progenitor cells, the archetype of which remains the mesenchymal stem cell, this indirect extraction method has precluded the understanding of their native identity, tissue distribution, and frequency. Consistent with other researchers, we have hypothesized that blood vessels in virtually all organs harbor ubiquitous stem cells. We have identified, marked, and sorted to homogeneity by flow cytometry endothelial and perivascular cells in a large selection of human fetal, perinatal, and adult organs. Perivascular cells, including pericytes in the smallest blood vessels and adventitial cells around larger ones, natively express mesenchymal stem cell markers and produce in culture a long-lasting progeny of multilineage mesodermal progenitor cells. Herein, we review results from our and other laboratories that suggest a perivascular origin for mesenchymal stem cells and other adult progenitor cells. Recent experiments illustrate the therapeutic potential of human pericytes to regenerate skeletal muscle and promote functional recovery in the diseased heart and kidney.
Collapse
Affiliation(s)
- Mirko Corselli
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pa., USA
| | | | | | | | | |
Collapse
|
30
|
Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both? Cytokine Growth Factor Rev 2010; 20:429-34. [PMID: 19926515 DOI: 10.1016/j.cytogfr.2009.10.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multi-lineage progenitors, e.g. mesenchymal stem cells, persist in adult developed organs, making a windfall for the cell therapist but an enigma for stem cell biologists. Recent results from our own and other laboratories show that the ancestor of these elusive adult stem cells is likely to be found in the perivascular area, explaining the ubiquitous distribution of these cells in the body. We have prospectively identified and purified vascular pericytes in multiple human organs and shown that these cells are potent mesodermal progenitors that give rise to genuine mesenchymal stem cells in culture. Pericytes can differentiate into diverse cell lineages, but also secrete multiple paracrine growth factors/cytokines, which likely explains in part their robust regenerative potential.
Collapse
|
31
|
Weber C, Pohl S, Poertner R, Pino-Grace P, Freimark D, Wallrapp C, Geigle P, Czermak P. Production process for stem cell based therapeutic implants: expansion of the production cell line and cultivation of encapsulated cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 123:143-62. [PMID: 20091287 DOI: 10.1007/10_2009_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell based therapy promises the treatment of many diseases like diabetes mellitus, Parkinson disease or stroke. Microencapsulation of the cells protects them against host-vs-graft reactions and thus enables the usage of allogenic cell lines for the manufacturing of cell therapeutic implants. The production process of such implants consists mainly of the three steps expansion of the cells, encapsulation of the cells, and cultivation of the encapsulated cells in order to increase their vitality and thus quality. This chapter deals with the development of fixed-bed bioreactor-based cultivation procedures used in the first and third step of production. The bioreactor system for the expansion of the stem cell line (hMSC-TERT) is based on non-porous glass spheres, which support cell growth and harvesting with high yield and vitality. The cultivation process for the spherical cell based implants leads to an increase of vitality and additionally enables the application of a medium-based differentiation protocol.
Collapse
Affiliation(s)
- C Weber
- Institute of Biopharmaceutical Technology, University of Applied Sciences Giessen-Friedberg, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wu KH, Mo XM, Zhou B, Lu SH, Yang SG, Liu YL, Han ZC. Cardiac potential of stem cells from whole human umbilical cord tissue. J Cell Biochem 2009; 107:926-32. [PMID: 19459155 DOI: 10.1002/jcb.22193] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the role of stem cells from human umbilical cord tissue in cardiomyocyte regeneration. The umbilical cord stem cells were initially characterized and differentiated in a myocardial differentiation medium containing 5-azacytidine for 24 h. Differentiation into cardiomyocytes was determined by expression of cardiac specific markers, like cardiac alpha-actin, connexin43, myosin, Troponin T, and ultrastructural analysis. In vivo, the transplanted umbilical cord stem cells were sprouting from local injection and differentiated into cardiomyocyte-like cells in a rat myocardial infarction model. Echocardiography revealed increasing left ventricular function after umbilical cord stem cell transplantation. These results demonstrate that umbilical cord stem cells can differentiate into cardiomyocyte-like cells both in vitro and in vivo. Therefore, human umbilical cord might represent a source of stem cells useful for cellular therapy and myocardial tissue engineering. Future studies are required to determine the molecular signaling mechanisms responsible for this phenomenon.
Collapse
Affiliation(s)
- Kai Hong Wu
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Crisan M, Chen CW, Corselli M, Andriolo G, Lazzari L, Péault B. Perivascular Multipotent Progenitor Cells in Human Organs. Ann N Y Acad Sci 2009; 1176:118-23. [DOI: 10.1111/j.1749-6632.2009.04967.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 2009; 1:035001. [PMID: 20811105 DOI: 10.1088/1758-5082/1/3/035001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.
Collapse
Affiliation(s)
- Tao Xu
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
35
|
Hoke N, Salloum F, Loesser-Casey K, Kukreja R. Cardiac regenerative potential of adipose tissue-derived stem cells. ACTA ACUST UNITED AC 2009; 96:251-65. [DOI: 10.1556/aphysiol.96.2009.3.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Sliwa A, Balwierz A, Kiec-Wilk B, Polus A, Knapp A, Dembinska-Kiec A. Differentiation of human adipose tissue SVF cells into cardiomyocytes. GENES & NUTRITION 2009; 4:195-8. [PMID: 19533197 PMCID: PMC2745743 DOI: 10.1007/s12263-009-0127-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/27/2009] [Indexed: 11/27/2022]
Abstract
Progenitor cells have been extensively studied and therapeutically applied in tissue reconstructive therapy. Stromal vascular fraction (SVF) cells, which are derived from adipose tissue, may represent a potential source of the cells which undergo phenotypical differentiation into many lineages both in vitro as well as in vivo. The goal of this study was to check whether human SVF cells may differentiate into cardiomyocyte-like entities. Human SVF cells were induced to differentiate by their incubation in Methocult medium in the presence of SCF, IL-3 and IL-6. Morphological transformation of the cells was monitored using optical light microscope, whereas changes in expression of the genes typical for cardiac phenotype were measured by qRT-PCR. Incubation of the human SVF cells in the medium that promotes cardiomyocyte differentiation in vitro resulted in formation of myotubule-like structures accompanied by up-regulation of the myocardium-characteristic genes, such as GATA, MEF2C, MYOD1, but not ANP. Human SVF cells differentiate into cardiomyocyte-like cells in the presence of the certain set of myogenesis promoting cytokines.
Collapse
Affiliation(s)
- Agnieszka Sliwa
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, 15a Kopernika Str., 31-501 Krakow, Poland
| | - A. Balwierz
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, 15a Kopernika Str., 31-501 Krakow, Poland
- Postgraduate School of Molecular Medicine, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland
| | - B. Kiec-Wilk
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, 15a Kopernika Str., 31-501 Krakow, Poland
| | - A. Polus
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, 15a Kopernika Str., 31-501 Krakow, Poland
| | - A. Knapp
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, 15a Kopernika Str., 31-501 Krakow, Poland
| | - A. Dembinska-Kiec
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, 15a Kopernika Str., 31-501 Krakow, Poland
| |
Collapse
|
37
|
Wang L, Deng J, Tian W, Xiang B, Yang T, Li G, Wang J, Gruwel M, Kashour T, Rendell J, Glogowski M, Tomanek B, Freed D, Deslauriers R, Arora RC, Tian G. Adipose-derived stem cells are an effective cell candidate for treatment of heart failure: an MR imaging study of rat hearts. Am J Physiol Heart Circ Physiol 2009; 297:H1020-31. [PMID: 19574490 DOI: 10.1152/ajpheart.01082.2008] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study assessed the potential therapeutic efficacy of adipose-derived stem cells (ASCs) on infarcted hearts. Myocardial infarction was induced in rat hearts by occlusion of the left anterior descending artery (LAD). One week after LAD occlusion, the rats were divided into three groups and subjected to transplantation of ASCs or transplantation of cell culture medium (CCM) or remained untreated. During a 1-mo recovery period, magnetic resonance imaging showed that the ASC-treated hearts had a significantly greater left ventricular (LV) ejection fraction and LV wall thickening than did the CCM-treated and untreated hearts. The capillary density in infarct border zone was significantly higher in the ASC-treated hearts than in the CCM-treated and untreated hearts. However, only 0.5% of the ASCs recovered from the ASC-treated hearts were stained positive for cardiac-specific fibril proteins. It was also found that ASCs under a normal culture condition secreted three cardiac protective growth factors: vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1. Results of this study suggest that ASCs were able to improve cardiac function of infarcted rat hearts. Paracrine effect may be the mechanism underlying the improved cardiac function and increased capillary density.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Stewart AA, Barrett JG, Byron CR, Yates AC, Durgam SS, Evans RB, Stewart MC. Comparison of equine tendon-, muscle-, and bone marrow-derived cells cultured on tendon matrix. Am J Vet Res 2009; 70:750-7. [PMID: 19496665 DOI: 10.2460/ajvr.70.6.750] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare viability and biosynthetic capacities of cells isolated from equine tendon, muscle, and bone marrow grown on autogenous tendon matrix. SAMPLE POPULATION Cells from 4 young adult horses. PROCEDURES Cells were isolated, expanded, and cultured on autogenous cell-free tendon matrix for 7 days. Samples were analyzed for cell viability, proteoglycan synthesis, collagen synthesis, and mRNA expression of collagen type I, collagen type III, and cartilage oligomeric matrix protein (COMP). RESULTS Tendon- and muscle-derived cells required less time to reach confluence (approx 2 weeks) than did bone marrow-derived cells (approx 3 to 4 weeks); there were fewer bone marrow-derived cells at confluence than the other 2 cell types. More tendon- and muscle-derived cells were attached to matrices after 7 days than were bone marrow-derived cells. Collagen and proteoglycan synthesis by tendon- and muscle-derived cells was significantly greater than synthesis by bone marrow-derived cells. On a per-cell basis, tendon-derived cells had more collagen synthesis, although this was not significant. Collagen type I mRNA expression was similar among groups. Tendon-derived cells expressed the highest amounts of collagen type III and COMP mRNAs, although the difference for COMP was not significant. CONCLUSIONS AND CLINICAL RELEVANCE Tendon- and muscle-derived cells yielded greater cell culture numbers in shorter time and, on a per-cell basis, had comparable biosynthetic assays to bone marrow-derived cells. More in vitro experiments with higher numbers may determine whether tendon-derived cells are a useful resource for tendon healing.
Collapse
Affiliation(s)
- Allison A Stewart
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 2008; 26:664-75. [DOI: 10.1002/cbf.1488] [Citation(s) in RCA: 425] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Abstract
Over three-quarters of all craniofacial defects observed in the US per year are cleft palates. Usually involving significant bony defects in both the hard palate and alveolar process of the maxilla, repair of these defects is typically performed surgically using autologous bone grafts taken from appropriate sites (i.e., iliac crest). However, surgical intervention is not without its complications. As such, the reconstructive surgeon has turned to the scientist and engineer for help. In this review, the application of the field of tissue engineering to craniofacial defects (e.g., cleft palates) is discussed. Specifically the use of adult stem cells, such as mesenchymal stem cells from bone marrow and Adipose-derived Stem Cells (ASCs) in combination with currently available biomaterials is presented in the context of healing craniofacial defects like the cleft palate. Finally, future directions with regards to the use of ASCs in craniofacial repair are discussed, including possible scaffold-driven and gene-driven approaches.
Collapse
Affiliation(s)
- Patricia A Zuk
- Department of Surgery, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 10833, USA.
| |
Collapse
|
41
|
Accumulation of fibronectin in the heart after myocardial infarction: a putative stimulator of adhesion and proliferation of adipose-derived stem cells. Cell Tissue Res 2008; 332:289-98. [PMID: 18305959 PMCID: PMC2295254 DOI: 10.1007/s00441-008-0573-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 01/09/2008] [Indexed: 11/01/2022]
Abstract
Stem cell therapy is a promising treatment after myocardial infarction (MI). A major problem in stem cell therapy, however, is that only a small proportion of stem cells applied to the heart can survive and differentiate into cardiomyocytes. We hypothesized that fibronectin in the heart after MI might positively affect stem cell adhesion and proliferation at the site of injury. Therefore, we investigated the kinetics of attachment and proliferation of adipose-tissue-derived stem cells (ASC) on fibronectin and analysed the time frame and localization of fibronectin accumulation in the human heart after MI. ASCs were seeded onto fibronectin-coated and uncoated culture wells. The numbers of adhering ASC were quantified after various incubation periods (5-30 min) by using DNA quantification assays. The proliferation of ASC was quantified after culturing ASC for various periods (0-9 days) by using DNA assays. Fibronectin accumulation after MI was quantified by immunohistochemical staining of heart sections from 35 patients, after different infarction periods (0-14 days old). We found that ASC attachment and proliferation on fibronectin-coated culture wells was significantly higher than on uncoated wells. Fibronectin deposition was significantly increased from 12 h to 14 days post-infarction, both in the infarction area and in the border-zone, compared with the uninfarcted heart. Our results suggest that a positive effect of fibronectin on stem cells in the heart can only be achieved when stem cell therapy is applied at least 12 h after MI, when the accumulation of fibronectin occurs in the infarcted heart.
Collapse
|
42
|
Parker AM, Shang H, Khurgel M, Katz AJ. Low serum and serum-free culture of multipotential human adipose stem cells. Cytotherapy 2008; 9:637-46. [PMID: 17917877 DOI: 10.1080/14653240701508452] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Adipose tissue provides an easily accessible and abundant source of putative stem cells for translational clinical research. Currently prevalent culture techniques include the use of FBS, a highly variable and undefined component, which brings with it the potential for adverse patient reactions. In an effort to eliminate the use of animal products in human adipose stem cell (ASC) cultures, we have developed two new culture methods, a very low human serum expansion medium and a completely serum-free medium. METHODS Through serial testing, a highly enriched medium formulation was developed for use with and without the addition of 0.5% human serum, an amount easily obtainable from autologous blood draws. RESULTS Very low-serum culture yielded population-doubling times averaging 1.86 days in early passage, while the serum-free formulation was associated with less robust cell growth, with doubling times averaging 5.79 days. ASC in both conditions maintained its ability to differentiate into adipo-, chondro- and osteogenic lineages in vitro, despite lower expression of CD34 in early passage. Expression of ALDH, HLA, CD133, CD184, and CD31 was comparable with that seen in cells cultured in 10% FBS. DISCUSSION These newly developed culture conditions provide a unique environment within which to study ASCs without the interference of animal serum, and allow for the rapid expansion of autologous ASCs in culture in an animal product-free environment for use in human clinical trials.
Collapse
Affiliation(s)
- A M Parker
- Department of Plastic Surgery, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
43
|
Ohnishi S, Ohgushi H, Kitamura S, Nagaya N. Mesenchymal stem cells for the treatment of heart failure. Int J Hematol 2007; 86:17-21. [PMID: 17675261 DOI: 10.1532/ijh97.07041] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heart failure is one of the most important cardiovascular health problems throughout the world and has high mortality, and there is a need to develop more effective therapeutic strategies to replace such specialized treatment as mechanical circulatory support and cardiac transplantation. Mesenchymal stem cells (MSC) are multipotent plastic-adherent cells obtained from bone marrow, adipose tissue, and other tissues and can be easily expanded in culture. The ability of MSC to differentiate into a variety of cells, including cardiomyocytes and vascular endothelial cells, make them an attractive therapeutic tool for heart failure. Recent in vitro and in vivo studies have revealed the underlying mechanisms of MSC in cardiac repair. MSC exert their role in cardiac regeneration not only by differentiating into specific cell types such as cardiomyocytes and vascular endothelial cells but also through paracrine effects via secretion of a variety of angiogenic, antiapoptotic, and mitogenic factors. Endogenous MSC as well as exogenously administered MSC have also been suggested to migrate and participate in cardiac repair. On the basis of information obtained from basic and translational research, several clinical trials have recently been started to evaluate the safety and efficacy of autologous MSC for heart failure.
Collapse
Affiliation(s)
- Shunsuke Ohnishi
- Department of Regenerative Medicine & Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | |
Collapse
|
44
|
Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PIJM. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. ACTA ACUST UNITED AC 2007; 13:1799-808. [PMID: 17518736 DOI: 10.1089/ten.2006.0165] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The perspective of an innovative new concept integrating tissue-engineering techniques with an established surgical technique is described. The focus is primarily on a one-step surgical procedure using adipose tissue-derived mesenchymal stem cells, a calcium phosphate scaffold as a carrier, and a bioresorbable polymer cage to facilitate spinal interbody fusion. We address the harvesting and processing of clinically relevant quantities of adipose tissue-derived mesenchymal stem cells, triggering of these stem cells toward lineage-specific differentiation, seeding of the triggered stem cells on a bioresorbable scaffold, and implantation of the resulting tissue-engineered construct. The integrated steps can be accomplished within one surgical procedure in a surgical theater. Although the proposed concept has been developed for spinal fusion, potential application in other surgical disciplines is presumed realistic.
Collapse
Affiliation(s)
- Marco N Helder
- Department of Orthopedic Surgery, VU University Medical Center (VUMC), Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Palpant NJ, Yasuda SI, MacDougald O, Metzger JM. Non-canonical Wnt signaling enhances differentiation of Sca1+/c-kit+ adipose-derived murine stromal vascular cells into spontaneously beating cardiac myocytes. J Mol Cell Cardiol 2007; 43:362-70. [PMID: 17706246 PMCID: PMC2048991 DOI: 10.1016/j.yjmcc.2007.06.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/08/2007] [Accepted: 06/25/2007] [Indexed: 02/04/2023]
Abstract
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to establish methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody-tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies.
Collapse
Affiliation(s)
- Nathan J Palpant
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-0622, USA
| | | | | | | |
Collapse
|
46
|
Medina A, Kilani RT, Carr N, Brown E, Ghahary A. Transdifferentiation of peripheral blood mononuclear cells into epithelial-like cells. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1140-52. [PMID: 17717137 PMCID: PMC1988865 DOI: 10.2353/ajpath.2007.070051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone marrow-derived stem cells have the potential to transdifferentiate into unexpected peripheral cells. We hypothesize that circulating bone marrow-derived stem cells might have the capacity to transdifferentiate into epithelial-like cells and release matrix metalloproteinase-1-modulating factors such as 14-3-3varsigma for dermal fibroblasts. We have characterized a subset of peripheral blood mononuclear cells (PBMCs) that develops an epithelial-like profile. Our findings show that these cells develop epithelial-like morphology and express 14-3-3varsigma and keratin-5, -8 as early as day 7 and day 21, respectively. When compared with control, conditioned media collected from PBMCs in advanced epithelial-like differentiation (cultures on days 28, 35, and 42) increased the matrix metalloproteinase-1 expression in dermal fibroblasts (P </= 0.01). The depletion of 14-3-3varsigma from these conditioned media by immunoprecipitation reduced the effect by 39.5% (P value, 0.05). Therefore, the releasable 14-3-3varsigma from PBMC-derived epithelial-like cells is involved in this process. Our findings provide new insights into the PBMC transdifferentiation to generate epithelial-like cells and subsequently release of 14-3-3varsigma that will disclose new therapeutic alternatives for different dermal clinical settings.
Collapse
Affiliation(s)
- Abelardo Medina
- British Columbia Professional Fire Fighters' Burn/Wound Healing Laboratory, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
47
|
Nishimoto S, Oyama T, Matsuda K. Simultaneous concentration of platelets and marrow cells: a simple and useful technique to obtain source cells and growth factors for regenerative medicine. Wound Repair Regen 2007; 15:156-62. [PMID: 17244331 DOI: 10.1111/j.1524-475x.2006.00196.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Platelet-rich plasma (PRP) has attracted attention as a safe and cost-effective source of growth factors that stimulate cells to regenerate tissue. Bone marrow aspirate was processed with the same protocol to obtain PRP from peripheral blood. This concentrate contained condensed nucleated bone marrow cells, which are useful for regenerative medicine, as well as condensed platelets. In PRP derived from bone marrow aspirate, the density of platelets and levels of growth factors (platelet-derived growth factor and transforming growth factor-beta) were the same as in PRP derived from peripheral blood. Condensation of nucleated cells, especially small-sized cells, was confirmed. With a simple and cost-effective technique, source cells and growth factors can be obtained at the same time. This simultaneous concentration of platelets and bone marrow cells has great potential as a source of materials for regenerative medicine.
Collapse
Affiliation(s)
- Soh Nishimoto
- Department of Plastic Surgery, Kobe Children's Hospital, Kobe, Japan.
| | | | | |
Collapse
|
48
|
Ohnishi S, Nagaya N. Prepare cells to repair the heart: mesenchymal stem cells for the treatment of heart failure. Am J Nephrol 2007; 27:301-7. [PMID: 17460394 DOI: 10.1159/000102000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/19/2007] [Indexed: 01/09/2023]
Abstract
Heart failure is one of the most important cardiovascular diseases, with high mortality, and invasive treatment such as mechanical circulatory support and cardiac transplantation is sometimes required for severe heart failure. Therefore, the development of less invasive and more effective therapeutic strategies is desired. Cell therapy is attracting growing interest as a new approach for the treatment of heart failure. As a cell source, various kinds of stem/progenitor cells such as bone marrow cells, endothelial progenitor cells, mesenchymal stem cells (MSC) and cardiac stem cells have been investigated for their efficacy and safety. Especially, bone marrow-derived MSC possess multipotency and can be easily expanded in culture, and are thus an attractive therapeutic tool for heart failure. Recent studies have revealed the underlying mechanisms of MSC in cardiac repair: MSC not only differentiate into specific cell types such as cardiomyocytes and vascular endothelial cells, but also secrete a variety of paracrine angiogenic and cytoprotective factors. It has also been suggested that endogenous MSC as well as exogenously transplanted MSC migrate and participate in cardiac repair. Based on these findings, several clinical trials have just been started to evaluate the safety and efficacy of MSC for the treatment of heart failure.
Collapse
Affiliation(s)
- Shunsuke Ohnishi
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Osaka, Japan
| | | |
Collapse
|
49
|
Qu CQ, Zhang GH, Zhang LJ, Yang GS. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2007; 43:95-100. [PMID: 17570023 DOI: 10.1007/s11626-006-9008-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.
Collapse
Affiliation(s)
- Chang-qing Qu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, XiNong Road 22#, Yangling, Shaanxi, 712100, China
| | | | | | | |
Collapse
|
50
|
Sell S. Adult stem cell plasticity: introduction to the first issue of stem cell reviews. ACTA ACUST UNITED AC 2007; 1:1-7. [PMID: 17132868 DOI: 10.1385/scr:1:1:001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|