1
|
Fu Z, Wang S, Zhou X, Ouyang L, Chen Z, Deng G. Harnessing the Power of Traditional Chinese Medicine in Cancer Treatment: The Role of Nanocarriers. Int J Nanomedicine 2025; 20:3147-3174. [PMID: 40103746 PMCID: PMC11913986 DOI: 10.2147/ijn.s502104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
For centuries, traditional Chinese medicine (TCM) has had certain advantages in the treatment of tumors. However, due to their poor water solubility, low bioavailability and potential toxicity, their effective delivery to target sites can be a major challenge. Nanocarriers based on the active ingredients of TCM, such as liposomes, polymer nanoparticles, inorganic nanoparticles, and organic/inorganic nanohybrids, are a promising strategy to improve the delivery of TCM, resulting in higher therapeutic outcomes and fewer side effects. Therefore, this article intends to review the application of Chinese medicine nano preparation in tumor. Firstly, we introduce the classification and synthesis of nanometer preparations of Chinese medicine. The second part mainly introduces the different responses of TCM nano-preparations in the course of treatment to introduce how TCM nano-preparations play a role in anti-tumor therapy. The third part focuses on Different response modes of Chinese medicine nano preparations in tumor therapy. The fourth part elucidates the application of Chinese medicine nano preparations in the treatment of cancer. Finally, the research direction to be explored in related fields is put forward.
Collapse
Affiliation(s)
- Ziyu Fu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Linqi Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People’s Republic of China
- The second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410005, People’s Republic of China
| |
Collapse
|
2
|
Liu Q, Ding X, Xu X, Lai H, Zeng Z, Shan T, Zhang T, Chen M, Huang Y, Huang Z, Dai X, Xia M, Cui S. Tumor-targeted hyaluronic acid-based oxidative stress nanoamplifier with ROS generation and GSH depletion for antitumor therapy. Int J Biol Macromol 2022; 207:771-783. [PMID: 35351548 DOI: 10.1016/j.ijbiomac.2022.03.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 01/01/2023]
Abstract
Tumor cells with innate oxidative stress are more susceptible to exogenous ROS-mediated oxidative damage than normal cells. However, the generated ROS could be scavenged by the overexpressed GSH in cancer cells, thus causing greatly restricted efficiency of ROS-mediated antitumor therapy. Herein, using cinnamaldehyde (CA) as a ROS generator while β-phenethyl isothiocyanate (PEITC) as a GSH scavenger, we designed a tumor-targeted oxidative stress nanoamplifier to elevate intracellular ROS level and synchronously suppress antioxidant systems, for thorough redox imbalance and effective tumor cells killing. First, an amphiphilic acid-sensitive cinnamaldehyde-modified hyaluronic acid conjugates (HA-CA) were synthesized, which could self-assemble into nano-assembly in aqueous media via strong hydrophobic interaction and π-π stacking. Then, aromatic PEITC was appropriately encapsulated into HA-CA nano-assembly to obtain HA-CA/PEITC nanoparticles. Through enhanced permeability retention (EPR) effect and specific CD44 receptor-mediated endocytosis, HA-CA/PEITC nanoparticles could accumulate in tumor tissues and successfully release CA and PEITC under acidic lysosomal environment. Both in vitro and in vivo results showed that the nanoparticles could efficiently boost oxidative stress of tumor cells via generating ROS and depleting GSH, and finally achieve superior antitumor efficacy. This nanoamplifier with good biosafety provides a potential strategy to augment ROS generation and suppress GSH for enhanced oxidation therapy.
Collapse
Affiliation(s)
- Qiuxing Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xin Ding
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ting Shan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiuling Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shengmiao Cui
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
3
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
4
|
Hu H, Chen J, Yang H, Huang X, Wu H, Wu Y, Li F, Yi Y, Xiao C, Li Y, Tang Y, Li Z, Zhang B, Yang X. Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC. NANOSCALE 2019; 11:6384-6393. [PMID: 30888375 DOI: 10.1039/c9nr01306g] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved cancer treatment which utilizes reactive oxygen species (ROS) to eradicate cancer cells. But the high concentration of GSH inside tumor cells can neutralize the generated ROS during PDT, resulting in an insufficient therapeutic effect. To address this issue, we combined ICG-loaded nanoparticles with PEITC for potent PDT. ICG encapsulated in novel hydroxyethyl starch-oleic acid conjugate (HES-OA) nanoparticles (∼50 nm) exhibited excellent stability and efficient singlet oxygen generation under laser irradiation, promoted cellular uptake, and enhanced tumor accumulation, whilst PEITC depleted intracellular GSH significantly. As a result, PDT based on ICG-loaded NPs combined with PEITC synergistically suppressed cancer cells both in vitro and in vivo. Potentiating ICG-loaded NPs with PEITC represents a novel and efficient strategy to enhance PDT efficacy.
Collapse
Affiliation(s)
- Hang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sehrawat A, Roy R, Pore SK, Hahm ER, Samanta SK, Singh KB, Kim SH, Singh K, Singh SV. Mitochondrial dysfunction in cancer chemoprevention by phytochemicals from dietary and medicinal plants. Semin Cancer Biol 2016; 47:147-153. [PMID: 27867044 DOI: 10.1016/j.semcancer.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 11/14/2016] [Indexed: 02/04/2023]
Abstract
Cancer chemoprevention, a scientific term coined by Dr. Sporn in the late seventies, implies use of natural or synthetic chemicals to block, delay or reverse carcinogenesis. Phytochemicals derived from edible and medicinal plants have been studied rather extensively for cancer chemoprevention using preclinical models in the past few decades. Nevertheless, some of these agents (e.g., isothiocyanates from cruciferous vegetables like broccoli and watercress) have already entered into clinical investigations. Examples of widely studied and highly promising phytochemicals from edible and medicinal plants include cruciferous vegetable constituents (phenethyl isothiocyanate, benzyl isothiocyanate, and sulforaphane), withaferin A (WA) derived from a medicinal plant (Withania somnifera) used heavily in Asia, and an oriental medicine plant component honokiol (HNK). An interesting feature of these structurally-diverse phytochemicals is that they target mitochondria to provoke cancer cell-selective death program. Mechanisms underlying cell death induction by commonly studied phytochemicals have been discussed rather extensively and thus are not covered in this review article. Instead, the primary focus of this perspective is to discuss experimental evidence pointing to mitochondrial dysfunction in cancer chemoprevention by promising phytochemicals.
Collapse
Affiliation(s)
- Anuradha Sehrawat
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ruchi Roy
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Subrata K Pore
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Suman K Samanta
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kamayani Singh
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Qin CZ, Zhang X, Wu LX, Wen CJ, Hu L, Lv QL, Shen DY, Zhou HH. Advances in molecular signaling mechanisms of β-phenethyl isothiocyanate antitumor effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3311-3322. [PMID: 25798652 DOI: 10.1021/jf504627e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
β-Phenethyl isothiocyanate (PEITC) is an important phytochemical from cruciferous vegetables and is being evaluated for chemotherapeutic activity in early phase clinical trials. Moreover, studies in cell culture and in animals found that the anticarcinogenic activities of PEITC involved all the major stages of tumor growth: initiation, promotion, and progression. A number of mechanisms have been proposed for the chemopreventive activities of this compound. Here, we focus on the major molecular signaling pathways for the anticancer activities of PEITC. These include (1) activation of apoptosis pathways; (2) induction of cell cycle arrest; and (3) inhibition of the survival pathways. Furthermore, we also discussed the regulation of drug-metabolizing enzymes, including cytochrome P450s, metabolizing enzymes, and multidrug resistance.
Collapse
Affiliation(s)
- Chong-Zhen Qin
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Xue Zhang
- §Institute of Life Sciences, Chongqing Medical University, Chongqing, Chongqing 400016, China
| | - Lan-Xiang Wu
- §Institute of Life Sciences, Chongqing Medical University, Chongqing, Chongqing 400016, China
| | - Chun-Jie Wen
- §Institute of Life Sciences, Chongqing Medical University, Chongqing, Chongqing 400016, China
| | - Lei Hu
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Qiao-Li Lv
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Dong-Ya Shen
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- †Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- ‡Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, P. R. China
| |
Collapse
|
7
|
Tsou MF, Tien N, Lu CC, Chiang JH, Yang JS, Lin JP, Fan MJ, Lu JJ, Yeh SP, Chung JG. Phenethyl isothiocyanate promotes immune responses in normal BALB/c mice, inhibits murine leukemia WEHI-3 cells, and stimulates immunomodulations in vivo. ENVIRONMENTAL TOXICOLOGY 2013; 28:127-136. [PMID: 21626647 DOI: 10.1002/tox.20705] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/17/2011] [Accepted: 01/19/2011] [Indexed: 05/30/2023]
Abstract
Enhanced cruciferous vegetable consumption is associated with the reduction of cancer incidence as shown in epidemiological studies. Phenethyl isothiocyanate (PEITC), one of the important compounds in cruciferous vegetables, has been shown to induce apoptosis in many types of human cancer cell lines, but there is no available information addressing the effects on normal and leukemia mice in vivo. The purpose of this study is to focus on the in vivo effects of PEITC on immune responses of normal and WEHI-3 leukemia BALB/c mice in vivo. Influences of PEITC on BALB/c mice after intraperitoneal (i.p.) injection with WEHI-3 cells and normal mice were investigated. In normal BALB/c mice, PEITC did not affect the body weight when compared to the olive oil treated animals. Moreover, PEITC promoted phagocytosis by macrophages from peripheral blood mononuclear cells (PBMC) and peritoneal cavity, increased the levels of CD11b and Mac-3, decreased the level of CD19 and promoted natural killer (NK) cell cytotoxic activity, but it did not alter the level of CD3. Also, PEITC enhanced T cell proliferation after concanavalin A (Con A) stimulation. Otherwise, PEITC increased the body weight, but decreased the weight of liver and spleen as compared to the olive oil-treated WEHI-3 leukemia mice. PEITC also increased the level of CD19, decreased the levels of CD3 and Mac-3 rather than influence in the level of CD11b, suggesting that the differentiation of the precursor of macrophages and T cells was inhibited, but the differentiation of the precursor of B cells was promoted in leukemia mice. Furthermore, PEITC enhanced phagocytosis by monocytes and macrophages from PBMC and peritoneal cavity, and also promoted the NK cell cytotoxic activity in comparison with the group of leukemia mice. Based on these observations, the biological properties of PEITC can promote immune responses in normal and WEHI-3 leukemia mice in vivo. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Body Weight/drug effects
- Cell Line, Tumor
- Concanavalin A/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Immunomodulation/drug effects
- Isothiocyanates/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Experimental/blood
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/immunology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Liver/drug effects
- Liver/immunology
- Lymphocyte Activation/drug effects
- Macrophages/drug effects
- Macrophages/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Phagocytosis/drug effects
- Phagocytosis/immunology
- Spleen/drug effects
- Spleen/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Mei-Fen Tsou
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Singh SV, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis 2012; 33:1833-42. [PMID: 22739026 DOI: 10.1093/carcin/bgs216] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inverse association between dietary intake of cruciferous vegetables and cancer risk observed in population-based case-control studies is partly attributable to structurally simple but mechanistically complex phytochemicals with an isothiocyanate (-N=C=S) functional group. Cancer protective role for dietary isothiocyanates (ITCs) is substantiated by preclinical studies in rodent models. A common feature of many naturally occurring ITCs relates to their ability to cause growth arrest and cell death selectively in cancer cells. At the same time, evidence continues to accumulate to suggest that even subtle change in chemical structure of the ITCs can have a profound effect on their activity and mechanism of action. Existing mechanistic paradigm stipulates that ITCs may not only prevent cancer initiation by altering carcinogen metabolism but also inhibit post-initiation cancer development by suppressing many processes relevant to tumor progression, including cellular proliferation, neoangiogenesis, epithelial-mesenchymal transition, and self-renewal of cancer stem cells. Moreover, the ITCs are known to suppress diverse oncogenic signaling pathways often hyperactive in human cancers (e.g. nuclear factor-κB, hormone receptors, signal transducer and activator of transcription 3) to elicit cancer chemopreventive response. However, more recent studies highlight potential adverse effect of Notch activation by ITCs on their ability to inhibit migration of cancer cells. Mechanisms underlying ITC-mediated modulation of carcinogen metabolism, growth arrest, and cell death have been reviewed extensively. This article provides a perspective on bench-cage-bedside evidence supporting cancer chemopreventive role for some of the most promising ITCs. Structure-activity relationship and mechanistic complexity in the context of cancer chemoprevention with ITCs is also highlighted.
Collapse
Affiliation(s)
- Shivendra V Singh
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
9
|
Wang F, Zhang P, Shi C, Yang Y, Qin H. Immunohistochemical detection of HSP27 and hnRNP K as prognostic and predictive biomarkers for colorectal cancer. Med Oncol 2011; 29:1780-8. [DOI: 10.1007/s12032-011-0037-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 02/02/2023]
|
10
|
Brown KK, Hampton MB. Biological targets of isothiocyanates. Biochim Biophys Acta Gen Subj 2011; 1810:888-94. [PMID: 21704127 DOI: 10.1016/j.bbagen.2011.06.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/13/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Isothiocyanates are phytochemicals with a broad array of effects in biological systems. Bioactivity includes the stimulation of cellular antioxidant systems, induction of apoptosis and interference with cytokine production and activity. Epidemiological evidence and experimental studies indicate that naturally occurring isothiocyanates and synthetic derivatives have anti-cancer and anti-inflammatory properties. SCOPE OF REVIEW This review focuses on the molecular targets of isothiocyanates, and how target modification translates into a biological response. MAJOR CONCLUSIONS Isothiocyanates may mediate their effects via direct protein modification or indirectly by disruption of redox homeostasis and increased thiol oxidation. Some target proteins have been identified, but in-depth searches with new techniques are needed to reveal novel targets. Site-directed mutagenesis and isothiocyanate structure-activity relationships will assist in determining the biological significance of specific modifications. GENERAL SIGNIFICANCE Target identification is important for rational drug design and exploiting the therapeutic potential of isothiocyanates. It also provides insight into the diverse pathways that these compounds regulate.
Collapse
Affiliation(s)
- Kristin K Brown
- Free Radical Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
11
|
Han JW, Zhan XR, Li XY, Xia B, Wang YY, Zhang J, Li BX. Impaired PI3K/Akt signal pathway and hepatocellular injury in high-fat fed rats. World J Gastroenterol 2010; 16:6111-8. [PMID: 21182226 PMCID: PMC3012583 DOI: 10.3748/wjg.v16.i48.6111] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether mitochondrial dysfunction resulting from high-fat diet is related to impairment of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt, also known as PKB) pathway.
METHODS: Rat models of nonalcoholic fatty liver were established by high-fat diet feeding. The expression of total and phosphorylated P13K and Akt proteins in hepatocytes was determined by Western blotting. Degree of fat accumulation in liver was measured by hepatic triglyceride. Mitochondrial number and size were determined using quantitative morphometric analysis under transmission electron microscope. The permeability of the outer mitochondrial membrane was assessed by determining the potential gradient across this membrane.
RESULTS: After Wistar rats were fed with high-fat diet for 16 wk, their hepatocytes displayed an accumulation of fat (103.1 ± 12.6 vs 421.5 ± 19.7, P < 0.01), deformed mitochondria (9.0% ± 4.3% vs 83.0% ± 10.9%, P < 0.05), and a reduction in the mitochondrial membrane potential (389.385% ± 18.612% vs 249.121% ± 13.526%, P < 0.05). In addition, the expression of the phosphorylated P13K and Akt proteins in hepatocytes was reduced, as was the expression of the anti-apoptotic protein Bcl-2, while expression of the pro-apoptotic protein caspase-3 was increased. When animals were treated with pharmacological inhibitors of P13K or Akt, instead of high-fat diet, a similar pattern of hepatocellular fat accumulation, mitochondrial impairment, and change in the levels of PI3K, Akt, Bcl-2 was observed.
CONCLUSION: High-fat diet appears to inhibit the PI3K/Akt signaling pathway, which may lead to hepatocellular injury through activation of the mitochondrial membrane pathway of apoptosis.
Collapse
|
12
|
Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin. FEBS Lett 2010; 584:1257-62. [DOI: 10.1016/j.febslet.2010.02.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/15/2010] [Accepted: 02/15/2010] [Indexed: 01/17/2023]
|
13
|
Martinez-Villaluenga C, Peñas E, Frias J, Ciska E, Honke J, Piskula MK, Kozlowska H, Vidal-Valverde C. Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. J Food Sci 2009; 74:C62-7. [PMID: 19200088 DOI: 10.1111/j.1750-3841.2008.01017.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The content of glucosinolates (GLS), ascorbigen, and ascorbic acid in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons (summer and winter) was determined, before and after spontaneous and starter-induced fermentation. Different salt concentrations (0.5% NaCl or 1.5% NaCl) were used for sauerkraut production. Glucoiberin, sinigrin, and glucobrassicin were dominating in raw white cabbage cultivated either in winter or summer seasons. Ascorbigen precursor, glucobrassicin, was found higher in cabbage cultivated in winter (2.54 micromol/g dw) than those grown in summer (1.83 micromol/g dw). Cabbage fermented for 7 d was found to contain only traces of some GLS irrespective of the fermentation conditions used. Ascorbigen synthesis occurred during white cabbage fermentation. Brining cabbage at low salt concentration (0.5% NaCl) improved ascorbigen content in sauerkraut after 7 d of fermentation at 25 degrees C. The highest ascorbigen concentration was observed in low-sodium (0.5% NaCl) sauerkraut produced from cabbage cultivated in winter submitted to either natural (109.0 micromol/100 g dw) or starter-induced fermentation (108.3 and 104.6 micromol/100 g dw in cabbages fermented by L. plantarum and L. mesenteroides, respectively). Ascorbic acid content was found higher in cabbage cultivated in summer and fermentation process led to significant reductions. Therefore, the selection of cabbages with high glucobrassicin content and the production of low-sodium sauerkrauts may provide enhanced health benefits towards prevention of chronic diseases.
Collapse
|
14
|
Lamy E, Mersch-Sundermann V. MTBITC mediates cell cycle arrest and apoptosis induction in human HepG2 cells despite its rapid degradation kinetics in the in vitro model. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:190-200. [PMID: 19177499 DOI: 10.1002/em.20448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite the great variety of structure homologous, experimental research on the cancer preventive properties of isothiocyanates (ITCs) is limited to only a fractional amount thereof so far. Especially the degradation of these compounds in the experimental system has not been investigated so far. In this study, we investigated the effect of 4-methylthiobutyl isothiocyante (MTBITC) on the proliferation of human hepatoma (HepG2) cells and underlying mechanisms. A concentration and time-dependent reduction in proliferation activity could be observed in cells treated with MTBITC exceeding 10 microM. At these concentrations MTBITC-induced apoptosis in HepG2 cells could be observed by internucleosomal DNA fragmentation, flow cytometry analysis, and the detection of single-stranded apoptotic DNA. In all the three assays, clear apoptotic events were present after 6-hr exposure to MTBITC. Apoptosis induction was accompanied by a time-dependent arrest of HepG2 cells at the G2/M phase of the cell cycle. This study shows for the first time the inhibitory potency of MTBITC on metabolically competent hepatoma cells, whereas the loss of reduced glutathione and its impact on mitochondria seem to be the major processes involved in the initiation and execution of the apoptotic cell death. The results of this study also showed that irrespective of the intense degradation kinetics of MTBITC, the strong cytostatic effect of the ITC was not markedly affected by it and suggests that although ITCs are only present at maximum concentrations in a living system for a rather short time, this might be sufficient to exert their therapeutic effects.
Collapse
Affiliation(s)
- Evelyn Lamy
- Department of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany.
| | | |
Collapse
|
15
|
Mann CD, Neal CP, Garcea G, Manson MM, Dennison AR, Berry DP. Phytochemicals as potential chemopreventive and chemotherapeutic agents in hepatocarcinogenesis. Eur J Cancer Prev 2009; 18:13-25. [PMID: 19077560 DOI: 10.1097/cej.0b013e3282f0c090] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth commonest malignancy worldwide and the incidence is rising. Surgery, including transplantation resection, is currently the most effective treatment for HCC; however, recurrence rates are high and long-term survival is poor. Identifying novel chemopreventive and chemotherapeutic agents and targeting them to patients at high risk of developing HCC or following curative treatment may go some way towards improving prognosis. This review examines current knowledge regarding the chemopreventive and chemotherapeutic potential of phytochemicals in heptocarcinogenesis. Both in-vitro and animal studies demonstrate that several phytochemicals, including curcumin, resveratrol, green tea catechins, oltipraz and silibinin, possess promising chemopreventive and chemotherapeutic properties. Despite this, very few clinical trials have been performed. Problems regarding validation of biomarkers, agent delivery, side effects and patient selection are barriers that need to be overcome to determine the potential of such agents in clinical practice.
Collapse
Affiliation(s)
- Christopher D Mann
- Cancer Biomarkers and Prevention Group, Department of Cancer Studies and Molecular Medicine, Biocentre, University of Leicester, Leicester, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Hail N, Cortes M, Drake EN, Spallholz JE. Cancer chemoprevention: a radical perspective. Free Radic Biol Med 2008; 45:97-110. [PMID: 18454943 DOI: 10.1016/j.freeradbiomed.2008.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 12/12/2022]
Abstract
Cancer chemopreventive agents block the transformation of normal cells and/or suppress the promotion of premalignant cells to malignant cells. Certain agents may achieve these objectives by modulating xenobiotic biotransformation, protecting cellular elements from oxidative damage, or promoting a more differentiated phenotype in target cells. Conversely, various cancer chemopreventive agents can encourage apoptosis in premalignant and malignant cells in vivo and/or in vitro, which is conceivably another anticancer mechanism. Furthermore, it is evident that many of these apoptogenic agents function as prooxidants in vitro. The constitutive intracellular redox environment dictates a cell's response to an agent that alters this environment. Thus, it is highly probable that normal cells, through adaption, could acquire resistance to transformation via exposure to a chemopreventive agent that promotes oxidative stress or disrupts the normal redox tone of these cells. In contrast, transformed cells, which typically endure an oxidizing intracellular environment, would ultimately succumb to apoptosis due to an uncontrollable production of reactive oxygen species caused by the same agent. Here, we provide evidence to support the hypothesis that reactive oxygen species and cellular redox tone are exploitable targets in cancer chemoprevention via the stimulation of cytoprotection in normal cells and/or the induction of apoptosis in transformed cells.
Collapse
Affiliation(s)
- Numsen Hail
- Department of Pharmaceutical Sciences, The University of Colorado Denver School of Pharmacy, Denver, CO 80220, USA.
| | | | | | | |
Collapse
|
17
|
Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, Conrads TP, Veenstra TD, Chung FL. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem 2008; 283:22136-46. [PMID: 18524779 DOI: 10.1074/jbc.m802330200] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Isothiocyanates (ITCs) found in cruciferous vegetables, including benzyl-ITC (BITC), phenethyl-ITC (PEITC), and sulforaphane (SFN), inhibit carcinogenesis in animal models and induce apoptosis and cell cycle arrest in various cell types. The biochemical mechanisms of cell growth inhibition by ITCs are not fully understood. Our recent study showed that ITC binding to intracellular proteins may be an important initiating event for the induction of apoptosis. However, the specific protein target(s) and molecular mechanisms were not identified. In this study, two-dimensional gel electrophoresis of human lung cancer A549 cells treated with radiolabeled PEITC and SFN revealed that tubulin may be a major in vivo binding target for ITC. We examined whether binding to tubulin by ITCs could lead to cell growth arrest. The proliferation of A549 cells was significantly reduced by ITCs, with relative activities of BITC > PEITC > SFN. All three ITCs also induced mitotic arrest and apoptosis with the same order of activity. We found that ITCs disrupted microtubule polymerization in vitro and in vivo with the same order of potency. Mass spectrometry demonstrated that cysteines in tubulin were covalently modified by ITCs. Ellman assay results indicated that the modification levels follow the same order, BITC > PEITC > SFN. Together, these results support the notion that tubulin is a target of ITCs and that ITC-tubulin interaction can lead to downstream growth inhibition. This is the first study directly linking tubulin-ITC adduct formation to cell growth inhibition.
Collapse
Affiliation(s)
- Lixin Mi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cross JV, Foss FW, Rady JM, Macdonald TL, Templeton DJ. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase. BMC Cancer 2007; 7:183. [PMID: 17894894 PMCID: PMC2071920 DOI: 10.1186/1471-2407-7-183] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 09/25/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. METHODS The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. RESULTS ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. CONCLUSION These results demonstrate that MEKK1 is directly modified and inhibited by ITCs, and that this correlates with inhibition of downstream activation of SAPK. These results support the conclusion that ITCs may carry out many of their actions by directly targeting important cell regulatory proteins.
Collapse
Affiliation(s)
- Janet V Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank W Foss
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Joshua M Rady
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Timothy L Macdonald
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Dennis J Templeton
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
19
|
Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhäuser C. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res 2006; 599:76-87. [PMID: 16500682 DOI: 10.1016/j.mrfmmm.2006.01.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 01/04/2006] [Accepted: 01/23/2006] [Indexed: 05/06/2023]
Abstract
The isothiocyanates sulforaphane and PEITC (beta-phenethyl isothiocyanate) as well as the indoles indole-3-carbinol and its condensation product 3,3'-diindolylmethane are known to inhibit cancer cell proliferation and induce apoptosis. In this study, we compared the cell growth inhibitory potential of the four compounds on the p53 wild type human colon cancer cell line 40-16 (p53(+/+)) and its p53 knockout derivative 379.2 (p53(-/-)) (both derived from HCT116). Using sulforhodamin B staining to assess cell proliferation, we found that the isothiocyanates were strongly cytotoxic, whereas the indoles inhibited cell growth in a cytostatic manner. Half-maximal inhibitory concentrations of all four compounds in both cell lines ranged from 5-15 microM after 24, 48 and 72 h of treatment. Apoptosis induction was analyzed by immunoblotting of poly(ADP-ribose)polymerase (PARP). Treatment with sulforaphane (15 microM), PEITC (10 microM), indole-3-carbinol (10 microM) and 3,3'-diindolylmethane (10 microM) induced PARP cleavage after 24 and 48 h in both 40-16 and the 379.2 cell lines, suggestive of a p53-independent mechanism of apoptosis induction. In cultured 40-16 cells, activation of caspase-9 and -7 detected by Western blotting indicated involvement of the mitochondrial pathway. We detected time- and concentration-dependent changes in protein expression of anti-apoptotic Bcl-x(L) as well as pro-apoptotic Bax and Bak proteins. Of note is that for sulforaphane only, ratios of pro- to anti-apoptotic Bcl-2 family protein levels directly correlated with apoptosis induction measured by PARP cleavage. Taken together, we demonstrated that the glucosinolate breakdown products investigated in this study have distinct profiles of cell growth inhibition, potential to induce p53-independent apoptosis and to modulate Bcl-2 family protein expression in human colon cancer cell lines.
Collapse
Affiliation(s)
- Gerlinde Pappa
- Division of Toxicology and Cancer Risk Factors, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Thomson SJ, Brown KK, Pullar JM, Hampton MB. Phenethyl Isothiocyanate Triggers Apoptosis in Jurkat Cells Made Resistant by the Overexpression of Bcl-2. Cancer Res 2006; 66:6772-7. [PMID: 16818653 DOI: 10.1158/0008-5472.can-05-3809] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isothiocyanates are a class of naturally occurring chemopreventive agents known to be effective at triggering apoptosis. In this study, we show that whereas overexpression of the oncoprotein Bcl-2 renders Jurkat T-lymphoma cells resistant to a range of cytotoxic agents, phenethyl isothiocyanate is able to overcome the inhibitory action of Bcl-2 and trigger apoptosis. A 50-fold increase in Bcl-2 expression shifted the dose-response curve, with an increase in the phenethyl isothiocyanate LD(50) from 7 to 15 micromol/L, but there was still a complete loss in cell viability at doses in excess of 20 micromol/L. At these concentrations, cytotoxicity was strongly associated with caspase activation, phosphatidylserine exposure, and morphologic changes characteristic of apoptosis. Cytotoxicity was inhibited by treatment of the cells with a broad-spectrum caspase inhibitor. A structure-activity analysis showed that the phenethyl and benzyl isothiocyanates were most effective at triggering apoptosis in cells overexpressing Bcl-2 whereas phenyl isothiocyanate and benzyl thiocyanate had no proapoptotic activity. Allyl isothiocyanate also had limited efficacy despite its ability to trigger apoptosis in the parental Jurkat cell line. From this information, we propose that isothiocyanates modify a key cysteine residue in an apoptosis regulatory protein and that the aromatic side chain facilitates access to the target site. An in-depth investigation of the cellular targets of the aromatic isothiocyanates is warranted.
Collapse
Affiliation(s)
- Susan J Thomson
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, University of Otago, Christchurch, New Zealand
| | | | | | | |
Collapse
|
21
|
Boyd LA, McCann MJ, Hashim Y, Bennett RN, Gill CIR, Rowland IR. Assessment of the Anti-Genotoxic, Anti-Proliferative, and Anti-Metastatic Potential of Crude Watercress Extract in Human Colon Cancer Cells. Nutr Cancer 2006; 55:232-41. [PMID: 17044779 DOI: 10.1207/s15327914nc5502_15] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although it is known to be a rich source of the putative anti-cancer chemicals isothiocyanates, watercress has not been extensively studied for its cancer preventing properties. The aim of this study was to investigate the potential chemoprotective effects of crude watercress extract toward three important stages in the carcinogenic process, namely initiation, proliferation, and metastasis (invasion) using established in vitro models. HT29 cells were used to investigate the protective effects of the extract on DNA damage and the cell cycle. The extract was not genotoxic but inhibited DNA damage induced by two of the three genotoxins used, namely hydrogen peroxide and fecal water, indicating the potential to inhibit initiation. It also caused an accumulation of cells in the S phase of the cell cycle indicating (possible) cell cycle delay at this stage. The extract was shown to significantly inhibit invasion of HT115 cells through matrigel. Component analysis was also carried out in an attempt to determine the major phytochemicals present in both watercress leaves and the crude extract. In conclusion, the watercress extract proved to be significantly protective against the three stages of the carcinogenesis process investigated.
Collapse
Affiliation(s)
- Lindsay A Boyd
- Northern Ireland Centre for Food and Health, Centre for Molecualr Biosciences, University of Ulster, Northern Ireland.
| | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Yao S, Li J. Vegetable-derived isothiocyanates: anti-proliferative activity and mechanism of action. Proc Nutr Soc 2006; 65:68-75. [PMID: 16441946 DOI: 10.1079/pns2005475] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Many isothiocyanates (ITC), which are available to human subjects mainly through consumption of cruciferous vegetables, demonstrate strong cancer-preventive activity in animal models. Human studies also show an inverse association between consumption of ITC and risk of cancer in several organs. Whereas earlier studies primarily focused on the ability of ITC to inhibit carcinogen-activating enzymes and induce carcinogen-detoxifying enzymes, more recent investigations have shown that ITC inhibit the proliferation of tumour cells both in vitro and in vivo by inducing apoptosis and arresting cell cycle progression. ITC cause acute cellular stress, which may be the initiating event for these effects. These findings shed new light on the mechanism of action of ITC and indicate that ITC may be useful both as cancer-preventive and therapeutic agents. ITC activate caspase 9-mediated apoptosis, apparently resulting from mitochondrial damage, and also activate caspase 8, but the mechanism remains to be defined. Cell cycle arrest caused by ITC occurs mainly in the G2/M phase, and both the G2 and M phases are targetted; critical G2-phase regulators, including cyclin B1, cell division cycle (Cdc) 2 and Cdc25C, are down regulated or inhibited, and tubulin polymerization and spindle assembly are disrupted. Moreover, ITC are metabolized in vivo through the mercapturic acid pathway, giving rise to thiol conjugates (dithiocarbamates). Studies show that these dithiocarbamates are similar to their parent ITC in exerting anti-proliferative activity. Taken together, dietary ITC are highly-promising anti-cancer agents, capable of targetting multiple cellular components that are important for tumour cell survival and proliferation.
Collapse
Affiliation(s)
- Yuesheng Zhang
- Department of Chemoprevention, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
23
|
Rose P, Ong CN, Whiteman M. Protective effects of Asian green vegetables against oxidant induced cytotoxicity. World J Gastroenterol 2006; 11:7607-14. [PMID: 16437686 PMCID: PMC4727240 DOI: 10.3748/wjg.v11.i48.7607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage.
Collapse
Affiliation(s)
- Peter Rose
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117597 Singapore.
| | | | | |
Collapse
|
24
|
Jakubíková J, Sedlák J, Bod'o J, Bao Y. Effect of isothiocyanates on nuclear accumulation of NF-kappaB, Nrf2, and thioredoxin in caco-2 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:1656-62. [PMID: 16506816 DOI: 10.1021/jf052717h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Early effects (only 1 h of exposure) of three isothiocyanates (benzyl, phenylethyl, and sulforaphane) on nuclear accumulation of thioredoxin, APE/Ref-1, and transcription factors NF-kappaB and Nrf2, as well as production of reactive oxygen species (ROS) and reduced glutathione levels were examined in human adenocarcinoma Caco-2 cells. Nuclear increase of NF-kappaB, Nrf2, and thioredoxin contents was observed in all isothiocyanate-treated cells, whereas the nuclear Ref-1 and cytoplasmic Keap1 contents were not changed. Sulforaphane was the most potent inducer of Nrf2 nuclear accumulation (10 microM, 1.9-fold) and NF-kappaB nuclear accumulation at higher concentration (25 microM, 6.3-fold). In contrast, benzyl isothiocyanate induced more thioredoxin nuclear accumulation (10 microM, 2.9-fold), increased production of ROS, and gave the greatest induction of thioredoxin reductase 1 mRNA (10 microM, 10.2-fold), whereas phenylethyl isothiocyanate was more potent in the depletion of reduced glutathione levels. These results show that different individual isothiocyanates may possess some different activities in nuclear accumulation of thioredoxin, NF-kappaB, Nrf2, and production of ROS.
Collapse
Affiliation(s)
- Jana Jakubíková
- Laboratory of Tumor Immunology, Cancer Research Institute, Vlarska 7, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
25
|
Robertson AAB, Botting NP. The synthesis of glucosinolates deuterium labelled in the glucose fragment. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Tang L, Zhang Y. Mitochondria are the primary target in isothiocyanate-induced apoptosis in human bladder cancer cells. Mol Cancer Ther 2005; 4:1250-9. [PMID: 16093441 DOI: 10.1158/1535-7163.mct-05-0041] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many isothiocysanates (ITC) are promising cancer-preventive agents, and induction of apoptosis is one of their underlying mechanisms of action. We recently found that caspase-9 was preferentially activated over other initiator caspases in human bladder cancer UM-UC-3 cells. We report here that caspase-9 activation is the major step leading to ITC-induced apoptosis in this cell line. More importantly, our results show that caspase-9 activation by the ITCs may result primarily from mitochondrial damage. Four common naturally occurring ITCs were studied, including allyl ITC, benzyl ITC (BITC), phenethyl ITC (PEITC), and sulforaphane. BITC and PEITC showed more potent mitochondria-damaging ability than the other two ITCs, correlating well with their stronger apoptosis-inducing potentials. Furthermore, BITC and PEITC damaged both the outer and inner mitochondrial membranes. Use of isolated mitochondria allowed us to establish that ITCs, and more importantly their major intracellular derivatives (glutathione conjugates) at concentrations that are readily achievable in cells, damage mitochondria, leading to the collapse of mitochondrial trans-membrane potential and release of cytochrome c. The mitochondria-damaging potencies of the ITCs correlate well with their lipophilicities. Bcl-2 family members are known to influence the stability of mitochondrial membrane. Our results show that the ITCs caused phosphorylation of Bcl-2, induced mitochondrial translocation of Bak, and disrupted the association of Bcl-xl with both Bak and Bax in mitochondrial membrane, indicating that ITC-induced mitochondrial damage results at least in part from modulation of select Bcl-2 family members.
Collapse
Affiliation(s)
- Li Tang
- Department of Chemoprevention, Roswell Park Cancer Institute, Basic Science 711, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
27
|
Abstract
The mitochondria have emerged as a novel target for anticancer chemotherapy. This tenet is based on the observations that several conventional and experimental chemotherapeutic agents promote the permeabilization of mitochondrial membranes in cancerous cells to initiate the release of apoptogenic mitochondrial proteins. This ability to engage mitochondrial-mediated apoptosis directly using chemotherapy may be responsible for overcoming aberrant apoptosis regulatory mechanisms commonly encountered in cancerous cells. Interestingly, several putative cancer chemopreventive agents also possess the ability to trigger apoptosis in transformed, premalignant, or malignant cells in vitro via mitochondrial membrane permeabilization. This process may occur through the regulation of Bcl-2 family members, or by the induction of the mitochondrial permeability transition. Thus, by exploiting endogenous mitochondrial-mediated apoptosis-inducing mechanisms, certain chemopreventive agents may be able to block the progression of premalignant cells to malignant cells or the dissemination of malignant cells to distant organ sites as means of modulating carcinogenesis in vivo. This review will examine cancer chemoprevention with respect to apoptosis, carcinogenesis, and the proapoptotic activity of various chemopreventive agents observed in vitro. In doing so, I will construct a paradigm supporting the notion that the mitochondria are a novel target for the chemoprevention of cancer.
Collapse
Affiliation(s)
- N Hail
- Department of Clinical Pharmacy, School of Pharmacy, The University of Colorado at Denver and Health Sciences Center, Denver, CO 80262, USA.
| |
Collapse
|
28
|
Rose P, Moore PK, Ming SH, Nam OC, Armstrong JS, Whiteman M. Hydrogen sulfide protects colon cancer cells from chemopreventative agent β-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol 2005; 11:3990-7. [PMID: 15996021 PMCID: PMC4502092 DOI: 10.3748/wjg.v11.i26.3990] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Hydrogen sulfide (H2S) is a prominent gaseous constituent of the gastrointestinal (GI) tract with known cytotoxic properties. Endogenous concentrations of H2S are reported to range between 0.2-3.4 mmol/L in the GI tract of mice and humans. Considering such high levels we speculate that, at non-toxic concentrations, H2S may interact with chemical agents and alter the response of colonic epithelium cells to such compounds. The GI tract is a major site for the absorption of phytochemical constituents such as isothiocyanates, flavonoids, and carotenoids, with each group having a role in the prevention of human diseases such as colon cancer. The chemopreventative properties of the phytochemical agent β-phenyethyl isothiocyanate (PEITC) are well recognized. However, little is currently known about the physiological or biochemical factors present in the GI tract that may influence the biological properties of ITCs. The current study was undertaken to determine the effects of H2S on PEITC mediated apoptosis in colon cancer cells.
METHODS: Induction of apoptosis by PEITC in human colon cancer HCT116 cells was assessed using classic apoptotic markers namely SubG1 population analysis, caspase-3 like activity and nuclear fragmentation and condensation coupled with the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide] viability assay and LDH leakage.
RESULTS: PEITC significantly induced apoptosis in HCT116 cells as assessed by SubG1 population formation, nuclear condensation, LDH leakage and caspase-3 activity after 24 h, these data being significant from control groups (P < 0.01). In contrast, co-treatment of cells with physiological concentrations of H2S (0.1-1 mmol/L) prevented PEITC mediated apoptosis as assessed using the parameters described.
CONCLUSION: PEITC effectively induced cell death in the human adenocarcinoma cell line HCT116 in vitro through classic apoptotic mechanisms. However, in the presence of H2S, apoptosis was abolished. These data suggest that H2S may play a significant role in the response of colonic epithelial cells to beneficial as well as toxic agents present within the GI tract.
Collapse
Affiliation(s)
- Peter Rose
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117597, Singapore.
| | | | | | | | | | | |
Collapse
|
29
|
Neo JCH, Rose P, Ong CN, Chung MCM. ?-Phenylethyl isothiocyanate mediated apoptosis: A proteomic investigation of early apoptotic protein changes. Proteomics 2005; 5:1075-82. [PMID: 15668997 DOI: 10.1002/pmic.200401070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
beta-Phenylethyl isothiocyanate (PEITC) is a promising chemopreventative agent found in abundance in watercress (Rorripa nasturtium aquaticum) as its glucosinolate precursor. In the present investigation, we sought to determine the early changes in protein expression that contribute to the mechanism(s) of PEITC-mediated apoptosis in the human hepatoma HepG2 cell line. Such data may invariably identify new molecular targets of PEITC, contributing to a greater understanding of the mechanism(s) by which isothiocyanates mediate apoptotic cascades. Using two-dimensional difference gel electrophoresis we determined the changes in global protein expression between control (0.01% dimethyl sulfoxide) and PEITC (IC50 approximately 20 microM) treated cells after 3 and 6 h, such time points being used to circumvent the effects of caspase mediate proteolysis. Comparison between PEITC treated cells with their respective controls showed that 17 protein spots were differentially expressed. Fourteen of these spots, representing 9 unique proteins, were successfully identified using matrix-assisted laser desorption / ionization-time of flight (MALDI-TOF) and MALDI tandem time of flight (TOF/TOF) mass spectrometry. We observed significant shifts in isoelectric points on two-dimensional electrophoresis gels in heat shock 27 kDa protein (HSP27), macrophage migration inhibition factor and heterogeneous nuclear ribonucleoprotein K (hnRNP K) indicating that these proteins are probably involved in protein phosphorylation. Indeed, hnRNP K was determined to be phosphorylated on key tyrosine residues as assessed by using antiphosphotyrosine antibodies. In separate experiments we also showed that c-myc is up-regulated in PEITC treated cells, and since hnRNP K is reported to induce overexpression of c-myc, we proposed that PEITC-induced apoptosis may involve a c-myc dependent apoptotic pathway in HepG2 cells.
Collapse
Affiliation(s)
- Jason Chun Hong Neo
- Department of Biochemistry, Faculty of Medicine, National University of Singapore
| | | | | | | |
Collapse
|
30
|
Morrison JJ, Botting NP. The synthesis of [phenyl-2H5]gluconasturtiin and its metabolites for metabolic studies. J Labelled Comp Radiopharm 2005. [DOI: 10.1002/jlcr.1004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|