1
|
Bierhoff H. [Genetics, epigenetics, and environmental factors in life expectancy-What role does nature-versus-nurture play in aging?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:521-527. [PMID: 38637469 PMCID: PMC11093831 DOI: 10.1007/s00103-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
In Germany and worldwide, the average age of the population is continuously rising. With this general increase in chronological age, the focus on biological age, meaning the actual health and fitness status, is becoming more and more important. The key question is to what extent the age-related decline in fitness is genetically predetermined or malleable by environmental factors and lifestyle.Many epigenetic studies in aging research have provided interesting insights in this nature-versus-nurture debate. In most model organisms, aging is associated with specific epigenetic changes, which can be countered by certain interventions like moderate caloric restriction or increased physical activity. Since these interventions also have positive effects on lifespan and health, epigenetics appears to be the interface between environmental factors and the aging process. This notion is supported by the fact that an epigenetic drift occurs through the life course of identical twins, which is related to the different manifestations of aging symptoms. Furthermore, biological age can be determined with high precision based on DNA methylation patterns, further emphasizing the importance of epigenetics in aging.This article provides an overview of the importance of genetic and epigenetic parameters for life expectancy. A major focus will be on the possibilities of maintaining a young epigenome through lifestyle and environmental factors, thereby slowing down biological aging.
Collapse
Affiliation(s)
- Holger Bierhoff
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, 07745, Jena, Deutschland.
- Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut (FLI), Jena, Deutschland.
| |
Collapse
|
2
|
Laffon B, Bonassi S, Costa S, Valdiglesias V. Genomic instability as a main driving factor of unsuccessful ageing: Potential for translating the use of micronuclei into clinical practice. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108359. [PMID: 34083047 DOI: 10.1016/j.mrrev.2020.108359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/23/2023]
Abstract
Genome instability denotes an increased tendency to alterations in the genome during cell life cycle, driven by a large variety of endogenous and exogenous insults. Ageing is characterized by the presence of damage to various cellular constituents, but genome alterations, randomly accumulating with age in different tissues, constitute the key target in this process, and are believed to be the main factor of ageing. Age-related failure of DNA repair pathways allows DNA lesions to occur more frequently, and their accumulation over time contributes to the age-associated decrease in genome integrity in somatic cells. The micronucleus (MN) test is one of the most widely used assays to evaluate genomic instability in different surrogate tissues. A large number of studies has consistently shown a progressive increase in MN frequency with age, starting from very young age groups onwards. Therefore, MN frequency is a suitable biomarker of genomic instability in ageing. Frailty is a multidimensional geriatric syndrome of unsuccessful ageing, characterized by decreased biological reserves and increased vulnerability to external stressors, involving a higher risk of negative health outcomes. Although there is a well-founded belief that genome instability is involved in the frailty syndrome, only two studies investigated the relationship between MN frequency and frailty, not allowing to draw a definite conclusion on the utility of this biomarker for frailty detection. The use of MN and other genomic biomarkers in the detection and follow-up of patients affected by or at risk of frailty has the potential to accumulate evidence on the clinical impact of this approach in the identification and control of frailty in older people.
Collapse
Affiliation(s)
- Blanca Laffon
- Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A, Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A, Coruña, Spain.
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy; Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Solange Costa
- Environmental Health Department, National Health Institute, Rua Alexandre Herculano 321, 4000-055, Porto, Portugal; EPIUnit -Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n◦ 135, 4050-600, Porto, Portugal
| | - Vanessa Valdiglesias
- Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, Oza, 15071 A, Coruña, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A, Coruña, Spain
| |
Collapse
|
3
|
Romero-Ortuno R, Kenny RA, McManus R. Collagens and elastin genetic variations and their potential role in aging-related diseases and longevity in humans. Exp Gerontol 2019; 129:110781. [PMID: 31740390 DOI: 10.1016/j.exger.2019.110781] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Collagens and elastin are 'building blocks' of tissues and extracellular matrix. Mutations in these proteins cause severe congenital syndromes. Adverse genetic variations may accelerate the aging process in adults contributing to premature morbidity, disability and/or mortality. Favorable variants may contribute to longevity and/or healthy aging, but this is much less studied. We reviewed the association between variation in the genes of collagens and elastin and premature aging, accelerated aging, age-related diseases and/or frailty; and the association between genetic variation in those and longevity and/or healthy aging in humans. A systematic search was conducted in MEDLINE and other online databases (OMIM, Genetics Home Reference, Orphanet, ClinVar). Results suggest that genetic variants lead to aging phenotypes of known congenital disease, but also to association with common age-related diseases in adults without known congenital disease. This may be due to the variable penetrance and expressivity of many variants. Some collagen variants have been associated with longevity or healthy aging. A limitation is that most studies had <1000 participants and their criterion for statistical significance was p < 0.05. Results highlight the importance of adopting a lifecourse approach to the study of the genomics of aging. Gerontology can help with new methodologies that operationalize biological aging.
Collapse
Affiliation(s)
- Roman Romero-Ortuno
- Trinity College Dublin, Discipline of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin 8, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland..
| | - Rose Anne Kenny
- Trinity College Dublin, Discipline of Medical Gerontology, Mercer's Institute for Successful Ageing, St James's Hospital, Dublin 8, Ireland; The Irish Longitudinal Study on Ageing (TILDA), Trinity College Dublin, Dublin, Ireland
| | - Ross McManus
- Trinity College Dublin, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|
4
|
Carrero D, Soria-Valles C, López-Otín C. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells. Dis Model Mech 2017; 9:719-35. [PMID: 27482812 PMCID: PMC4958309 DOI: 10.1242/dmm.024711] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid) syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations. Summary: This Review defines the molecular and cellular hallmarks of progeroid syndromes according to the main cellular and animal models, and discusses the therapeutic strategies developed to date.
Collapse
Affiliation(s)
- Dido Carrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Clara Soria-Valles
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo 33006, Spain
| |
Collapse
|
5
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Uchiumi F, Seki M, Furuichi Y. Helicases and human diseases. Front Genet 2015; 6:39. [PMID: 25729389 PMCID: PMC4325929 DOI: 10.3389/fgene.2015.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of ScienceNoda, Japan
| | - Masayuki Seki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical UniversitySendai, Japan
| | | |
Collapse
|
7
|
Miyahara H, Itonaga T, Maeda T, Izumi T, Ihara K. Overexpression of p53 but not Rb in the cytoplasm of neurons and small vessels in an autopsy of a patient with Cockayne syndrome. Neuropathology 2014; 35:266-72. [DOI: 10.1111/neup.12183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Hiroaki Miyahara
- Department of Pediatrics; Oita University Faculty of Medicine; Oita Japan
| | - Tomoyo Itonaga
- Department of Pediatrics; Oita University Faculty of Medicine; Oita Japan
| | - Tomoki Maeda
- Department of Pediatrics; Oita University Faculty of Medicine; Oita Japan
| | - Tatsuro Izumi
- Department of Pediatrics; Oita University Faculty of Medicine; Oita Japan
| | - Kenji Ihara
- Department of Pediatrics; Oita University Faculty of Medicine; Oita Japan
| |
Collapse
|
8
|
Ribeiro-Varandas E, Pereira HS, Monteiro S, Neves E, Brito L, Boavida Ferreira R, Viegas W, Delgado M. Bisphenol A disrupts transcription and decreases viability in aging vascular endothelial cells. Int J Mol Sci 2014; 15:15791-805. [PMID: 25207595 PMCID: PMC4200871 DOI: 10.3390/ijms150915791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 05/04/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a widely utilized endocrine disruptor capable of mimicking endogenous hormones, employed in the manufacture of numerous consumer products, thereby interfering with physiological cellular functions. Recent research has shown that BPA alters epigenetic cellular mechanisms in mammals and may be correlated to enhanced cellular senescence. Here, the effects of BPA at 10 ng/mL and 1 µg/mL, concentrations found in human samples, were analyzed on HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) transcriptional analysis of the Long Interspersed Element-1 (LINE-1) retroelement showed that BPA induces global transcription deregulation in both cell lines, although with more pronounced effects in HUVEC cells. Whereas there was an increase in global transcription in HT29 exclusively after 24 h of exposure, this chemical had prolonged effects on HUVEC. Immunoblotting revealed that this was not accompanied by alterations in the overall content of H3K9me2 and H3K4me3 epigenetic marks. Importantly, cell viability assays and transcriptional analysis indicated that prolonged BPA exposure affects aging processes in senescent HUVEC. To our knowledge this is the first report that BPA interferes with senescence in primary vascular endothelial cells, therefore, suggesting its association to the etiology of age-related human pathologies, such as atherosclerosis.
Collapse
Affiliation(s)
- Edna Ribeiro-Varandas
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - H. Sofia Pereira
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Sara Monteiro
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Elsa Neves
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
- Escola Superior de Tecnologia e Gestão Jean Piaget do Litoral Alentejano (ESTGJPLA), Instituto Piaget, Campus Académico de Santo André, Ap. 38, 7500-999 Vila Nova de Santo André, Portugal
| | - Luísa Brito
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Ricardo Boavida Ferreira
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa (UNL), Av. da República, 2780-157 Oeiras, Portugal
| | - Wanda Viegas
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
| | - Margarida Delgado
- Centro de Botânica Aplicada à Agricultura (CBAA), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; E-Mails: (E.R.-V.); (H.S.P.); (S.M.); (E.N.); (L.B.); (R.B.F.); (W.V.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +351-213-653-100 (ext. 3281); Fax: +351-213-653-195
| |
Collapse
|
9
|
|
10
|
Marrone A, Dokal I. Dyskeratosis congenita: a disorder of telomerase deficiency and its relationship to other diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.3.463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Tivey HSE, Brook AJC, Rokicki MJ, Kipling D, Davis T. p38 (MAPK) stress signalling in replicative senescence in fibroblasts from progeroid and genomic instability syndromes. Biogerontology 2012; 14:47-62. [PMID: 23112078 PMCID: PMC3627027 DOI: 10.1007/s10522-012-9407-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/17/2012] [Indexed: 12/26/2022]
Abstract
Werner Syndrome (WS) is a human segmental progeria resulting from mutations in a DNA helicase. WS fibroblasts have a shortened replicative capacity, an aged appearance, and activated p38 MAPK, features that can be modulated by inhibition of the p38 pathway. Loss of the WRNp RecQ helicase has been shown to result in replicative stress, suggesting that a link between faulty DNA repair and stress-induced premature cellular senescence may lead to premature ageing in WS. Other progeroid syndromes that share overlapping pathophysiological features with WS also show defects in DNA processing, raising the possibility that faulty DNA repair, leading to replicative stress and premature cellular senescence, might be a more widespread feature of premature ageing syndromes. We therefore analysed replicative capacity, cellular morphology and p38 activation, and the effects of p38 inhibition, in fibroblasts from a range of progeroid syndromes. In general, populations of young fibroblasts from non-WS progeroid syndromes do not have a high level of cells with an enlarged morphology and F-actin stress fibres, unlike young WS cells, although this varies between strains. p38 activation and phosphorylated HSP27 levels generally correlate well with cellular morphology, and treatment with the p38 inhibitor SB203580 effects cellular morphology only in strains with enlarged cells and phosphorylated HSP27. For some syndromes fibroblast replicative capacity was within the normal range, whereas for others it was significantly shorter (e.g. HGPS and DKC). However, although in most cases SB203580 extended replicative capacity, with the exception of WS and DKC the magnitude of the effect was not significantly different from normal dermal fibroblasts. This suggests that stress-induced premature cellular senescence via p38 activation is restricted to a small subset of progeroid syndromes.
Collapse
Affiliation(s)
- Hannah S E Tivey
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | | | | | | | | |
Collapse
|
12
|
Arancio W. A bioinformatics analysis of Lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome. Rejuvenation Res 2012; 15:123-7. [PMID: 22533413 DOI: 10.1089/rej.2011.1250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to premature aging. HGPS is caused by mutation in the Lamin-A (LMNA) gene that leads, in affected young individuals, to the accumulation of the progerin protein, usually present only in aging differentiated cells. Bioinformatics analyses of the network of interactions of the LMNA gene and transcripts are presented. The LMNA gene network has been analyzed using the BioGRID database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA ( http://genemania.org/). The network of interaction of LMNA transcripts has been further analyzed following the competing endogenous (ceRNA) hypotheses (RNA cross-talk via microRNAs [miRNAs]) and using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest particular relevance of epigenetic modifiers (via acetylase complexes and specifically HTATIP histone acetylase) and adenosine triphosphate (ATP)-dependent chromatin remodelers (via pBAF, BAF, and SWI/SNF complexes).
Collapse
|
13
|
Falandry C, Gilson E, Rudolph KL. Are aging biomarkers clinically relevant in oncogeriatrics? Crit Rev Oncol Hematol 2012; 85:257-65. [PMID: 22948097 DOI: 10.1016/j.critrevonc.2012.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 07/18/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022] Open
Abstract
Immunosenescence and inflammaging have been depicted for long as age-related heterogeneous blood phenotypic changes ("immunoaging"). Some of them can be reproduced in animal models either by accelerating telomere shortening or by forcing DNA damage response. According to these models, "immunoaging" is the consequence of replicative senescence of hematopoietic stem cells. This increasing knowledge may impact oncogeriatrics in the future since (1) an increasing evidence links hematopoietic and cancer stem cells regulations; (2) immunosenescence may be linked to cancer immunotolerance and the increasing rate of cancer incidence with age; (3) immunoaging has a major consequence during cancer treatment, since it explains increased hematological toxicities observed in the elderly and (4) it favors secondary cancers and mainly hemopathies. For all these reasons, aging biomarkers, among which are telomere length peripheral blood sampling but also analyses of telomere-linked proteins like shelterin complex or DNA-damage markers will probably be clinically relevant in the future.
Collapse
Affiliation(s)
- Claire Falandry
- Geriatrics Unit, Lyon Sud University Hospital, Pierre-Benite, France.
| | | | | |
Collapse
|
14
|
Deakyne JS, Mazin AV. Fanconi anemia: at the crossroads of DNA repair. BIOCHEMISTRY (MOSCOW) 2011; 76:36-48. [PMID: 21568838 DOI: 10.1134/s0006297911010068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fanconi anemia (FA) is an autosomal disorder that causes genome instability. FA patients suffer developmental abnormalities, early-onset bone marrow failure, and a predisposition to cancer. The disease is manifested by defects in DNA repair, hypersensitivity to DNA crosslinking agents, and a high degree of chromosomal aberrations. The FA pathway comprises 13 disease-causing genes involved in maintaining genomic stability. The fast pace of study of the novel DNA damage network has led to the constant discovery of new FA-like genes involved in the pathway that when mutated lead to similar disorders. A majority of the FA proteins act as signal transducers and scaffolding proteins to employ other pathways to repair DNA. This review discusses what is known about the FA proteins and other recently linked FA-like proteins. The goal is to clarify how the proteins work together to carry out interstrand crosslink repair and homologous recombination-mediated repair of damaged DNA.
Collapse
Affiliation(s)
- J S Deakyne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
15
|
Kar B, Liu B, Zhou Z, Lam YW. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast. BMC Cell Biol 2011; 12:33. [PMID: 21835027 PMCID: PMC3163619 DOI: 10.1186/1471-2121-12-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence. Results In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice. Conclusion Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.
Collapse
Affiliation(s)
- Bishnupriya Kar
- Department of Biology and Chemistry, City University of Hong Kong, 88 Tat Chee Avenue, Hong Kong.
| | | | | | | |
Collapse
|
16
|
Lee YF, Liu S, Liu NC, Wang RS, Chen LM, Lin WJ, Ting HJ, Ho HC, Li G, Puzas EJ, Wu Q, Chang C. Premature aging with impaired oxidative stress defense in mice lacking TR4. Am J Physiol Endocrinol Metab 2011; 301:E91-8. [PMID: 21521714 PMCID: PMC3129845 DOI: 10.1152/ajpendo.00701.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Early studies suggest that TR4 nuclear receptor is a key transcriptional factor regulating various biological activities, including reproduction, cerebella development, and metabolism. Here we report that mice lacking TR4 (TR4(-/-)) exhibited increasing genome instability and defective oxidative stress defense, which are associated with premature aging phenotypes. At the cellular level, we observed rapid cellular growth arrest and less resistance to oxidative stress and DNA damage in TR4(-/-) mouse embryonic fibroblasts (MEFs) in vitro. Restoring TR4 or supplying the antioxidant N-acetyl-l-cysteine (NAC) to TR4(-/-) MEFs reduced the DNA damage and slowed down cellular growth arrest. Focused qPCR array revealed alteration of gene profiles in the DNA damage response (DDR) and anti-reactive oxygen species (ROS) pathways in TR4(-/-) MEFs, which further supports the hypothesis that the premature aging in TR4(-/-) mice might stem from oxidative DNA damage caused by increased oxidative stress or compromised genome integrity. Together, our finding identifies a novel role of TR4 in mediating the interplay between oxidative stress defense and aging.
Collapse
Affiliation(s)
- Yi-Fen Lee
- George Whipple Laboratory for Cancer Research, Departments of Pathology, Urology, and Orthopaedics, University of Rochester Medical Center, Rochester, New York 14620, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nelson PT, Head E, Schmitt FA, Davis PR, Neltner JH, Jicha GA, Abner EL, Smith CD, Van Eldik LJ, Kryscio RJ, Scheff SW. Alzheimer's disease is not "brain aging": neuropathological, genetic, and epidemiological human studies. Acta Neuropathol 2011; 121:571-87. [PMID: 21516511 PMCID: PMC3179861 DOI: 10.1007/s00401-011-0826-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/18/2023]
Abstract
Human studies are reviewed concerning whether "aging"-related mechanisms contribute to Alzheimer's disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human "accelerated aging" diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical "dementia" and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an "aging-linked" disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY 40536-0230, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Enabling enrichment analysis with the Human Disease Ontology. J Biomed Inform 2011; 44 Suppl 1:S31-S38. [PMID: 21550421 DOI: 10.1016/j.jbi.2011.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/12/2011] [Accepted: 04/22/2011] [Indexed: 01/30/2023]
Abstract
Advanced statistical methods used to analyze high-throughput data such as gene-expression assays result in long lists of "significant genes." One way to gain insight into the significance of altered expression levels is to determine whether Gene Ontology (GO) terms associated with a particular biological process, molecular function, or cellular component are over- or under-represented in the set of genes deemed significant. This process, referred to as enrichment analysis, profiles a gene set, and is widely used to make sense of the results of high-throughput experiments. Our goal is to develop and apply general enrichment analysis methods to profile other sets of interest, such as patient cohorts from the electronic medical record, using a variety of ontologies including SNOMED CT, MedDRA, RxNorm, and others. Although it is possible to perform enrichment analysis using ontologies other than the GO, a key pre-requisite is the availability of a background set of annotations to enable the enrichment calculation. In the case of the GO, this background set is provided by the Gene Ontology Annotations. In the current work, we describe: (i) a general method that uses hand-curated GO annotations as a starting point for creating background datasets for enrichment analysis using other ontologies; and (ii) a gene-disease background annotation set - that enables disease-based enrichment - to demonstrate feasibility of our method.
Collapse
|
19
|
GLADILIN E, SCHULZ M, KAPPEL C, EILS R. Contactless determination of nuclear compressibility using 3D image- and model-based analysis of drug-induced cellular deformation. J Microsc 2010; 240:216-26. [DOI: 10.1111/j.1365-2818.2010.03394.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Polosak J, Kurylowicz A, Roszkowska-Gancarz M, Owczarz M, Puzianowska-Kuznicka M. Aging is accompanied by a progressive decrease of expression of the WRN gene in human blood mononuclear cells. J Gerontol A Biol Sci Med Sci 2010; 66:19-25. [PMID: 20855428 DOI: 10.1093/gerona/glq162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The WRN gene encodes DNA helicase participating in genome maintenance. We looked for associations of natural aging with expression and methylation of this gene in blood mononuclear cells and with its common polymorphisms. Analyses were performed in ethnically homogenous Polish Caucasians. The mean level of the WRN messenger RNA was significantly lower in long-living individuals than in young and middle-aged controls (p < .001 and p = .025, respectively). Analysis of the 361 bp WRN promoter CpG island showed that aging might be accompanied by a slight increase of its methylation status; however, it seems to be biologically insignificant. Finally, analysis of the WRN R834C, L1074F, and C1367R polymorphisms showed that the frequencies of the L1074F and C1367R polymorphisms were similar in all age groups tested, whereas the R834C polymorphism was absent from Polish Caucasians. We suggest that age-related decrease of the WRN expression but not its common genetic variants might contribute to human immunosenescence.
Collapse
Affiliation(s)
- Jacek Polosak
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warsaw, Poland
| | | | | | | | | |
Collapse
|
21
|
Benson EK, Lee SW, Aaronson SA. Role of progerin-induced telomere dysfunction in HGPS premature cellular senescence. J Cell Sci 2010; 123:2605-12. [PMID: 20605919 PMCID: PMC2908049 DOI: 10.1242/jcs.067306] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2010] [Indexed: 12/27/2022] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature-aging syndrome caused by a dominant mutation in the gene encoding lamin A, which leads to an aberrantly spliced and processed protein termed progerin. Previous studies have shown that progerin induces early senescence associated with increased DNA-damage signaling and that telomerase extends HGPS cellular lifespan. We demonstrate that telomerase extends HGPS cellular lifespan by decreasing progerin-induced DNA-damage signaling and activation of p53 and Rb pathways that otherwise mediate the onset of premature senescence. We show further that progerin-induced DNA-damage signaling is localized to telomeres and is associated with telomere aggregates and chromosomal aberrations. Telomerase amelioration of DNA-damage signaling is relatively rapid, requires both its catalytic and DNA-binding functions, and correlates in time with the acquisition by HGPS cells of the ability to proliferate. All of these findings establish that HGPS premature cellular senescence results from progerin-induced telomere dysfunction.
Collapse
Affiliation(s)
- Erica K. Benson
- Department of Oncological Sciences, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, NY 10012, USA
| | - Sam W. Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charleston, MA 02129, USA
| | - Stuart A. Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, NY 10012, USA
| |
Collapse
|
22
|
Gosselin K, Martien S, Pourtier A, Vercamer C, Ostoich P, Morat L, Sabatier L, Duprez L, T'kint de Roodenbeke C, Gilson E, Malaquin N, Wernert N, Slijepcevic P, Ashtari M, Chelli F, Deruy E, Vandenbunder B, De Launoit Y, Abbadie C. Senescence-associated oxidative DNA damage promotes the generation of neoplastic cells. Cancer Res 2009; 69:7917-25. [PMID: 19826058 DOI: 10.1158/0008-5472.can-08-2510] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on human fibroblasts have led to viewing senescence as a barrier against tumorigenesis. Using keratinocytes, we show here that partially transformed and tumorigenic cells systematically and spontaneously emerge from senescent cultures. We show that these emerging cells are generated from senescent cells, which are still competent for replication, by an unusual budding-mitosis mechanism. We further present data implicating reactive oxygen species that accumulate during senescence as a potential mutagenic motor of this post-senescence emergence. We conclude that senescence and its associated oxidative stress could be a tumor-promoting state for epithelial cells, potentially explaining why the incidence of carcinogenesis dramatically increases with advanced age.
Collapse
Affiliation(s)
- Karo Gosselin
- Université Lille Nord de France, CNRS, UMR8161, UDSL, Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Polosak J, Roszkowska-Gancarz M, Kurylowicz A, Owczarz M, Dobosz P, Mossakowska M, Szybinska A, Puzianowska-Kuznicka M. Decreased expression and the Lys751Gln polymorphism of the XPD gene are associated with extreme longevity. Biogerontology 2009; 11:287-97. [PMID: 19707883 DOI: 10.1007/s10522-009-9246-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/13/2009] [Indexed: 01/07/2023]
Abstract
Aging is associated with progressing genomic instability. The XPD gene encodes a DNA helicase involved in nucleotide excision repair and in transcription. We analyzed the common XPD polymorphisms that were previously shown to affect protein's DNA repair efficiency and to increase the risk of developing various cancers. Analysis was performed in 149 centenarians (mean age 101.1 years old) and in 413 young subjects (mean age 27.1 years old). We showed that the distribution of the Lys751Gln genotypes differed significantly between these groups (P = 0.017). In centenarians, the homozygous genotypes AA and CC were found less frequently than in young controls (29 vs. 36%, OR = 0.71, and 14 vs. 20%, OR = 0.652, respectively). The Arg156Arg and Asp312Asn were not significantly associated with extreme longevity. Analysis of the XPD mRNA level in blood mononuclear cells of people divided into three age groups (mean ages 28.7, 65.8 and 92.7 years old) showed that extreme longevity is associated with the decrease of the mean level of the specific mRNA; the differences between young or middle-aged vs. extremely old group were significant (P < 0.0001, P < 0.0001, respectively). In addition, the methylation pattern of the XPD promoter was analyzed in 30 people divided into three age groups (29.5, 65.9, and 101.4 years old). We showed that overall methylation of the XPD promoter is a rare event; however, aging is associated with the increase of methylation level upstream of the transcription start site. In summary, we showed for the first time that both the XPD polymorphic variants and the decreased level of its expression might be associated with aging.
Collapse
Affiliation(s)
- Jacek Polosak
- Department of Biochemistry and Molecular Biology, Medical Center of Postgraduate Education, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J Invest Dermatol 2009; 129:2340-50. [PMID: 19387478 DOI: 10.1038/jid.2009.103] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite their rarity, diseases of premature aging, or "progeroid" syndromes, have provided important insights into basic mechanisms that may underlie cancer and normal aging. In this review, we highlight these recent developments in Hutchinson-Gilford progeria syndrome (HGPS), Werner syndrome, Bloom syndrome, Cockayne syndrome, trichothiodystrophy, ataxia-telangiectasia, Rothmund-Thomson syndrome, and xeroderma pigmentosum. Though they are caused by different mutations in various genes and often result in quite disparate phenotypes, deciphering the molecular bases of these conditions has served to highlight their underlying basic similarities. Studies of progeroid syndromes, particularly HGPS, the most dramatic form of premature aging, have contributed to our knowledge of fundamental processes of importance to skin biology, including DNA transcription, replication, and repair, genome instability, cellular senescence, and stem-cell differentiation.
Collapse
|
25
|
Doh YJ, Kim HK, Jung ED, Choi SH, Kim JG, Kim BW, Lee IK. Novel LMNA gene mutation in a patient with Atypical Werner's Syndrome. Korean J Intern Med 2009; 24:68-72. [PMID: 19270485 PMCID: PMC2687649 DOI: 10.3904/kjim.2009.24.1.68] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) and Werner's syndrome are representative types of progeroid syndrome. LMNA (Lamin A/C) gene mutation with atypical Werner's syndrome have recently been reported. Atypical Werner's syndrome with the severe metabolic complications, the extent of the lipodystrophy is associated with A133L mutation in the LMNA gene and these patients present with phenotypically heterogeneous disorders. We experienced a 15-yr-old Korean female with progeroid features, generalized lipodystrophy, hypertriglyceridemia, fatty liver, steatohepatitis, and type 2 diabetes mellitus. Skin fibroblasts from the patient showed marked abnormal nuclear morphology, compared with that from normal persons. Gene analysis revealed that this patient had T506del of exon 2 in the LMNA gene. We report here the first case of atypical Werner's syndrome with frameshift mutation that was caused by T506del.
Collapse
Affiliation(s)
- Yun Jeong Doh
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hee Kyoung Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Eui Dal Jung
- Department of Internal Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Seung Hee Choi
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung Guk Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Bo Wan Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - In Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
26
|
Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V. Common gene signature of cancer and longevity. Mech Ageing Dev 2009; 130:33-9. [DOI: 10.1016/j.mad.2008.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/23/2008] [Accepted: 04/06/2008] [Indexed: 11/28/2022]
|
27
|
Callaghan TM, Wilhelm KP. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: Cellular and molecular perspectives of skin ageing. Int J Cosmet Sci 2008; 30:313-22. [DOI: 10.1111/j.1468-2494.2008.00454.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Dereure O, Marque M, Guillot B. Syndromes avec vieillissement cutané prématuré : de l’expression phénotypique au gène. Ann Dermatol Venereol 2008; 135:466-78. [DOI: 10.1016/j.annder.2008.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 04/11/2008] [Indexed: 01/09/2023]
|
29
|
Genome-health nutrigenomics and nutrigenetics: nutritional requirements or ‘nutriomes’ for chromosomal stability and telomere maintenance at the individual level. Proc Nutr Soc 2008; 67:146-56. [DOI: 10.1017/s0029665108006988] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly evident that (a) risk for developmental and degenerative disease increases with more DNA damage, which in turn is dependent on nutritional status, and (b) the optimal concentration of micronutrients for prevention of genome damage is also dependent on genetic polymorphisms that alter the function of genes involved directly or indirectly in the uptake and metabolism of micronutrients required for DNA repair and DNA replication. The development of dietary patterns, functional foods and supplements that are designed to improve genome-health maintenance in individuals with specific genetic backgrounds may provide an important contribution to an optimum health strategy based on the diagnosis and individualised nutritional prevention of genome damage, i.e. genome health clinics. The present review summarises some of the recent knowledge relating to micronutrients that are associated with chromosomal stability and provides some initial insights into the likely nutritional factors that may be expected to have an impact on the maintenance of telomeres. It is evident that developing effective strategies for defining nutrient doses and combinations or ‘nutriomes’ for genome-health maintenance at the individual level is essential for further progress in this research field.
Collapse
|
30
|
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7:83-105. [PMID: 17964225 DOI: 10.1016/j.arr.2007.09.002] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
Innate and adaptive immunity are the major defence mechanisms of higher organisms against inherent and environmental threats. Innate immunity is present already in unicellular organisms but evolution has added novel adaptive immune mechanisms to the defence armament. Interestingly, during aging, adaptive immunity significantly declines, a phenomenon called immunosenescence, whereas innate immunity seems to be activated which induces a characteristic pro-inflammatory profile. This process is called inflamm-aging. The recognition and signaling mechanisms involved in innate immunity have been conserved during evolution. The master regulator of the innate immunity is the NF-kB system, an ancient signaling pathway found in both insects and vertebrates. The NF-kB system is in the nodal point linking together the pathogenic assault signals and cellular danger signals and then organizing the cellular resistance. Recent studies have revealed that SIRT1 (Sir2 homolog) and FoxO (DAF-16), the key regulators of aging in budding yeast and Caenorhabditis elegans models, regulate the efficiency of NF-kB signaling and the level of inflammatory responses. We will review the role of innate immunity signaling in the aging process and examine the function of NF-kB system in the organization of defence mechanisms and in addition, its interactions with the protein products of several gerontogenes. Our conclusion is that NF-kB signaling seems to be the culprit of inflamm-aging, since this signaling system integrates the intracellular regulation of immune responses in both aging and age-related diseases.
Collapse
|
31
|
Abstract
Human embryonic stem cells (hESCs) are unique in that they can proliferate indefinitely in culture in an undifferentiated state as well as differentiate into any somatic cells. Undifferentiated hESCs do not appear to undergo senescence and remain nontransformed over multiple passages. Culture hESCs maintain telomere length and exhibit high telomerase activity after prolonged in vitro culture. The ability of hESCs to bypass senescence is lost as hESCs differentiate into fully differentiated somatic cells. This loss of immortality upon differentiation may be due to a variety aging related factors such as reduction in telomere length, alteration of telomerase activity, changes in cell cycle regulation and decrease in DNA repair ability. Absence of such aging factors as well as the lack of genomic, mitochondrial and epigenetic changes, may contribute to the lack of senescence in hESCs. In this review, we will summarize recent advances in determining changes in these aspects in prolonged hESC cultures. We will in particular discuss the potential roles of several cellular pathways including the telomerase, p53, and Rb pathways in escaping senescence in hESCs. We will also discuss the genomic and epigenetic changes in long-term hESC culture and their potential roles in bypassing senescence, as well as alternative sources of pluripotent stem cells.
Collapse
Affiliation(s)
- Xianmin Zeng
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA, 94945, USA.
| |
Collapse
|
32
|
Salminen A, Suuronen T, Huuskonen J, Kaarniranta K. NEMO shuttle: a link between DNA damage and NF-kappaB activation in progeroid syndromes? Biochem Biophys Res Commun 2008; 367:715-8. [PMID: 18201555 DOI: 10.1016/j.bbrc.2007.11.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 11/15/2007] [Indexed: 12/31/2022]
Abstract
Activation of NF-kappaB transcription factor signaling is one of the hallmarks of genotoxic stress. Recently, the NEMO shuttle was revealed to mediate this nucleo-cytoplasmic signaling linking DNA damage to the activation of NF-kappaB system. DNA damage is the causative factor of several segmental progeroid syndromes, such as Werner syndrome and Hutchinson-Gilford syndrome. Although the gene defects have been well characterized, the molecular mechanisms of premature aging process still need to be defined. Here we review the details of the NEMO shuttle, a dual-signal sensor linking DNA damage to NF-kappaB activation, and present evidence for the hypothesis that DNA damage in progeroid syndromes may activate the NEMO shuttle and subsequently increase the pressure on the activation of NF-kappaB system evoking a premature aging phenotype. The NEMO shuttle may link genotoxic stress to the activation of the innate immunity system and cause premature aging via inflamm-aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
33
|
Impact of aging on the biology of breast cancer. Crit Rev Oncol Hematol 2007; 66:65-74. [PMID: 17949989 DOI: 10.1016/j.critrevonc.2007.09.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/31/2007] [Accepted: 09/05/2007] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is a heterogeneous malignancy; its age-specific incidence profile rises exponentially until menopause and increases more slowly thereafter, reflecting the superimposition of early-onset and late-onset breast cancer rates. While early-onset breast cancers largely represent inherited or early life transforming effects on immature mammary epithelium, late-onset breast cancers likely follow extended exposures to promoting stimuli of susceptible epithelium that has failed to age normally. Among stimuli thought to promote late-onset breast tumorigenesis are the altered extracellular matrix and secreted products of senescent fibroblasts; however, the extent to which these senescent influences exist within the aging breast remains unknown. Clinical observations and biomarker studies indicate that late-onset breast cancers grow more slowly and are biologically less aggressive than early-onset breast cancers, even when controlled for hormone receptor (e.g. estrogen receptor, ER) and growth factor receptor (e.g. HER2) expression, supporting the conclusion that the biology of breast cancer is age-dependent.
Collapse
|
34
|
Melzer D, Hurst AJ, Frayling T. Genetic variation and human aging: progress and prospects. J Gerontol A Biol Sci Med Sci 2007; 62:301-7. [PMID: 17389728 DOI: 10.1093/gerona/62.3.301] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genetics of aging has seen extraordinary progress over the last few decades, with animal models suggesting key roles for a number of metabolic pathways. However, humans outlive laboratory models many times over, and only evidence from humans can ultimately identify the drivers of human aging. In this article we thematically review progress in identifying human genetic variants associated with longevity. We also look at the bigger picture of progress in identifying genetic associates of disease and functioning and healthy aging in older people. Although much of the existing evidence is fragmentary, recent exciting findings and robust methods are taking the field rapidly forward.
Collapse
Affiliation(s)
- David Melzer
- Peninsula Medical School, University of Exeter, Exeter, UK.
| | | | | |
Collapse
|
35
|
Abstract
This review provides an overview of a selection of the most pertinent molecular pathways that link cancer and aging and focuses on those where recent advances were most important. When organizing the bulk of information on this subject, I became aware of the fact that the most evident partition, namely, mechanisms that influence aging and mechanisms that influence cancer occurrence, is difficult to apply. Most mechanisms explaining the aging process are also those that influence carcinogenesis. Mechanisms that are described in tumor suppressor pathways are also contributors to the aging process. From an intuitive point of view, there are phenomena that have traditionally been contributed to aging others to cancer-inducing factors and they are presented herein.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
36
|
Zeng X, Rao MS. Human embryonic stem cells: Long term stability, absence of senescence and a potential cell source for neural replacement. Neuroscience 2007; 145:1348-58. [PMID: 17055653 DOI: 10.1016/j.neuroscience.2006.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/16/2022]
Abstract
Unlike normal somatic cells, human embryonic stem cells (hESCs) can proliferate indefinitely in culture in an undifferentiated state where they do not appear to undergo senescence and yet remain nontransformed. Cells maintain their pluripotency both in vivo and in vitro, exhibit high telomerase activity, and maintain telomere length after prolonged in vitro culture. Thus, hESCs may provide an unlimited cell source for replacement in a number of aging-related neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease as well as other neurological disorders including spinal cord injuries. The ability of hESCs to bypass senescence is lost as hESCs differentiate into fully differentiated somatic cells. Evidence has been accumulated that differences in telomere length, telomerase activity, cell cycle signaling, DNA repair ability, as well as the lack of genomic, mitochondrial and epigenetic changes, may contribute to the lack of senescence in hESC. In this manuscript, we will review recent advances in characterizing hESCs and monitoring changes in these aspects in prolonged cultures. We will focus on the potential roles of several cellular pathways including the telomerase, p53 and the Rb pathways in escaping senescence in hESCs. We will also discuss the genomic and epigenetic changes in long-term hESC culture and their potential roles in bypassing senescence.
Collapse
Affiliation(s)
- X Zeng
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | |
Collapse
|
37
|
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 2007; 128:50-7. [PMID: 17116323 DOI: 10.1016/j.mad.2006.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
38
|
Abstract
Progeroid syndromes (PSs) constitute a group of disorders characterized by clinical features mimicking physiological aging at an early age. In some of these syndromes, biological hallmarks of aging are also present, whereas in others, a link with physiological aging, if any, remains to be elucidated. These syndromes are clinically and genetically heterogeneous and most of them, including Werner syndrome and Hutchinson-Gilford progeria, are known as 'segmental aging syndromes', as they do not feature all aspects usually associated to physiological aging. However, all the characterized PSs enter in the field of rare monogenic disorders and several causative genes have been identified. These can be separated in subcategories corresponding to (i) genes encoding DNA repair factors, in particular, DNA helicases, and (ii) genes affecting the structure or post-translational maturation of lamin A, a major nuclear component. In addition, several animal models featuring premature aging have abnormal mitochondrial function or signal transduction between membrane receptors, nuclear regulatory proteins and mitochondria: no human pathological counterpart of these alterations has been found to date. In recent years, identification of mutations and their functional characterization have helped to unravel the cellular processes associated to segmental PSs. Recently, several studies allowed to establish a functional link between DNA repair and A-type lamins-associated syndromes, evidencing a relation between these syndromes, physiological aging and cancer. Here, we review recent data on molecular and cellular bases of PSs and discuss the mechanisms involved, with a special emphasis on lamin A-associated progeria and related disorders, for which therapeutic approaches have started to be developed.
Collapse
Affiliation(s)
- Claire L Navarro
- Inserm U491, Génétique Médicale et Développement, Université de la Méditerranée, Faculté de Médecine, 13385 Marseille Cedex 05, France
| | | | | |
Collapse
|
39
|
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|