1
|
Schettini F, Sirico M, Loddo M, Williams GH, Hardisty KM, Scorer P, Thatcher R, Rivera P, Milani M, Strina C, Ferrero G, Ungari M, Bottin C, Zanconati F, de Manzini N, Aguggini S, Tancredi R, Fiorio E, Fioravanti A, Scaltriti M, Generali D. Next-generation sequencing-based evaluation of the actionable landscape of genomic alterations in solid tumors: the "MOZART" prospective observational study. Oncologist 2025; 30:oyae206. [PMID: 39177668 PMCID: PMC11783315 DOI: 10.1093/oncolo/oyae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The identification of the most appropriate targeted therapies for advanced cancers is challenging. We performed a molecular profiling of metastatic solid tumors utilizing a comprehensive next-generation sequencing (NGS) assay to determine genomic alterations' type, frequency, actionability, and potential correlations with PD-L1 expression. METHODS A total of 304 adult patients with heavily pretreated metastatic cancers treated between January 2019 and March 2021 were recruited. The CLIA-/UKAS-accredit Oncofocus assay targeting 505 genes was used on newly obtained or archived biopsies. Chi-square, Kruskal-Wallis, and Wilcoxon rank-sum tests were used where appropriate. Results were significant for P < .05. RESULTS A total of 237 tumors (78%) harbored potentially actionable genomic alterations. Tumors were positive for PD-L1 in 68.9% of cases. The median number of mutant genes/tumor was 2.0 (IQR: 1.0-3.0). Only 34.5% were actionable ESCAT Tier I-II with different prevalence according to cancer type. The DNA damage repair (14%), the PI3K/AKT/mTOR (14%), and the RAS/RAF/MAPK (12%) pathways were the most frequently altered. No association was found among PD-L1, ESCAT, age, sex, and tumor mutational status. Overall, 62 patients underwent targeted treatment, with 37.1% obtaining objective responses. The same molecular-driven treatment for different cancer types could be associated with opposite clinical outcomes. CONCLUSIONS We highlight the clinical value of molecular profiling in metastatic solid tumors using comprehensive NGS-based panels to improve treatment algorithms in situations of uncertainty and facilitate clinical trial recruitment. However, interpreting genomic alterations in a tumor type-specific manner is critical.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori,”47014, Meldola, Italy
| | - Marco Loddo
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | | | - Paul Scorer
- Oncologica UK Ltd, Cambridge CB10 1XL, United Kingdom
| | | | - Pablo Rivera
- Medical Oncology Department, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Manuela Milani
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Carla Strina
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Giuseppina Ferrero
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Marco Ungari
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
| | - Sergio Aguggini
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Richard Tancredi
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| | - Elena Fiorio
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, 37134, Verona, Italy
| | | | - Maurizio Scaltriti
- Neurosurgery Unit, ASST Cremona, 26100, Cremona, Italy
- AstraZeneca, Gaithersburg, MD 20876, United States
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147, Trieste, Italy
- Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, 26100, Cremona, Italy
| |
Collapse
|
2
|
Camargo-Herrera V, Castellanos G, Rangel N, Jiménez-Tobón GA, Martínez-Agüero M, Rondón-Lagos M. Patterns of Chromosomal Instability and Clonal Heterogeneity in Luminal B Breast Cancer: A Pilot Study. Int J Mol Sci 2024; 25:4478. [PMID: 38674062 PMCID: PMC11049937 DOI: 10.3390/ijms25084478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN), defined by variations in the number or structure of chromosomes from cell to cell, is recognized as a distinctive characteristic of cancer associated with the ability of tumors to adapt to challenging environments. CIN has been recognized as a source of genetic variation that leads to clonal heterogeneity (CH). Recent findings suggest a potential association between CIN and CH with the prognosis of BC patients, particularly in tumors expressing the epidermal growth factor receptor 2 (HER2+). In fact, information on the role of CIN in other BC subtypes, including luminal B BC, is limited. Additionally, it remains unknown whether CIN in luminal B BC tumors, above a specific threshold, could have a detrimental effect on the growth of human tumors or whether low or intermediate CIN levels could be linked to a more favorable BC patient prognosis when contrasted with elevated levels. Clarifying these relationships could have a substantial impact on risk stratification and the development of future therapeutic strategies aimed at targeting CIN in BC. This study aimed to assess CIN and CH in tumor tissue samples from ten patients with luminal B BC and compare them with established clinicopathological parameters. The results of this study reveal that luminal B BC patients exhibit intermediate CIN and stable aneuploidy, both of which correlate with lymphovascular invasion. Our results also provide valuable preliminary data that could contribute to the understanding of the implications of CIN and CH in risk stratification and the development of future therapeutic strategies in BC.
Collapse
Affiliation(s)
- Valentina Camargo-Herrera
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Giovanny Castellanos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Guillermo Antonio Jiménez-Tobón
- Laboratorio de Patología, Hospital Universitario Mayor-Méderi, Bogotá 110311, Colombia;
- Grupo BIOmedUR, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110231, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110231, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| |
Collapse
|
3
|
Aldana-Salazar F, Rangel N, Rodríguez MJ, Baracaldo C, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Damage, Chromosome Instability, and Polymorphisms in GSTP1 and XRCC1 as Biomarkers of Effect and Susceptibility in Farmers Exposed to Pesticides. Int J Mol Sci 2024; 25:4167. [PMID: 38673753 PMCID: PMC11050655 DOI: 10.3390/ijms25084167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the department of Boyacá, Colombia, agriculture stands as one of the primary economic activities. However, the escalating utilization of pesticides within this sector has sparked concern regarding its potential correlation with elevated risks of genotoxicity, chromosomal alterations, and carcinogenesis. Furthermore, pesticides have been associated with a broad spectrum of genetic polymorphisms that impact pivotal genes involved in pesticide metabolism and DNA repair, among other processes. Nonetheless, our understanding of the genotoxic effects of pesticides on the chromosomes (as biomarkers of effect) in exposed farmers and the impact of genetic polymorphisms (as susceptibility biomarkers) on the increased risk of chromosomal damage is still limited. The aim of our study was to evaluate chromosomal alterations, chromosomal instability, and clonal heterogeneity, as well as the presence of polymorphic variants in the GSTP1 and XRCC1 genes, in peripheral blood samples of farmers occupationally exposed to pesticides in Aquitania, Colombia, and in an unexposed control group. Our results showed statistically significant differences in the frequency of numerical chromosomal alterations, chromosomal instability, and clonal heterogeneity levels between the exposed and unexposed groups. In addition, we also found a higher frequency of chromosomal instability and clonal heterogeneity in exposed individuals carrying the heterozygous GSTP1 AG and XRCC1 (exon 10) GA genotypes. The evaluation of chromosomal alterations and chromosomal instability resulting from pesticide exposure, combined with the identification of polymorphic variants in the GSTP1 and XRCC1 genes, and further research involving a larger group of individuals exposed to pesticides could enable the identification of effect and susceptibility biomarkers. Such markers could prove valuable for monitoring individuals occupationally exposed to pesticides.
Collapse
Affiliation(s)
- Fernando Aldana-Salazar
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (F.A.-S.); (M.J.R.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María José Rodríguez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (F.A.-S.); (M.J.R.)
| | - César Baracaldo
- Doctoral Program in Biological and Environmental Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia;
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110231, Colombia;
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (F.A.-S.); (M.J.R.)
| |
Collapse
|
4
|
Salokas K, Dashi G, Varjosalo M. Decoding Oncofusions: Unveiling Mechanisms, Clinical Impact, and Prospects for Personalized Cancer Therapies. Cancers (Basel) 2023; 15:3678. [PMID: 37509339 PMCID: PMC10377698 DOI: 10.3390/cancers15143678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer-associated gene fusions, also known as oncofusions, have emerged as influential drivers of oncogenesis across a diverse range of cancer types. These genetic events occur via chromosomal translocations, deletions, and inversions, leading to the fusion of previously separate genes. Due to the drastic nature of these mutations, they often result in profound alterations of cellular behavior. The identification of oncofusions has revolutionized cancer research, with advancements in sequencing technologies facilitating the discovery of novel fusion events at an accelerated pace. Oncofusions exert their effects through the manipulation of critical cellular signaling pathways that regulate processes such as proliferation, differentiation, and survival. Extensive investigations have been conducted to understand the roles of oncofusions in solid tumors, leukemias, and lymphomas. Large-scale initiatives, including the Cancer Genome Atlas, have played a pivotal role in unraveling the landscape of oncofusions by characterizing a vast number of cancer samples across different tumor types. While validating the functional relevance of oncofusions remains a challenge, even non-driver mutations can hold significance in cancer treatment. Oncofusions have demonstrated potential value in the context of immunotherapy through the production of neoantigens. Their clinical importance has been observed in both treatment and diagnostic settings, with specific fusion events serving as therapeutic targets or diagnostic markers. However, despite the progress made, there is still considerable untapped potential within the field of oncofusions. Further research and validation efforts are necessary to understand their effects on a functional basis and to exploit the new targeted treatment avenues offered by oncofusions. Through further functional and clinical studies, oncofusions will enable the advancement of precision medicine and the drive towards more effective and specific treatments for cancer patients.
Collapse
Affiliation(s)
- Kari Salokas
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| |
Collapse
|
5
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
6
|
Sorokin M, Rabushko E, Rozenberg JM, Mohammad T, Seryakov A, Sekacheva M, Buzdin A. Clinically relevant fusion oncogenes: detection and practical implications. Ther Adv Med Oncol 2022; 14:17588359221144108. [PMID: 36601633 PMCID: PMC9806411 DOI: 10.1177/17588359221144108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanistically, chimeric genes result from DNA rearrangements and include parts of preexisting normal genes combined at the genomic junction site. Some rearranged genes encode pathological proteins with altered molecular functions. Those which can aberrantly promote carcinogenesis are called fusion oncogenes. Their formation is not a rare event in human cancers, and many of them were documented in numerous study reports and in specific databases. They may have various molecular peculiarities like increased stability of an oncogenic part, self-activation of tyrosine kinase receptor moiety, and altered transcriptional regulation activities. Currently, tens of low molecular mass inhibitors are approved in cancers as the drugs targeting receptor tyrosine kinase (RTK) oncogenic fusion proteins, that is, including ALK, ABL, EGFR, FGFR1-3, NTRK1-3, MET, RET, ROS1 moieties. Therein, the presence of the respective RTK fusion in the cancer genome is the diagnostic biomarker for drug prescription. However, identification of such fusion oncogenes is challenging as the breakpoint may arise in multiple sites within the gene, and the exact fusion partner is generally unknown. There is no gold standard method for RTK fusion detection, and many alternative experimental techniques are employed nowadays to solve this issue. Among them, RNA-seq-based methods offer an advantage of unbiased high-throughput analysis of only transcribed RTK fusion genes, and of simultaneous finding both fusion partners in a single RNA-seq read. Here we focus on current knowledge of biology and clinical aspects of RTK fusion genes, related databases, and laboratory detection methods.
Collapse
Affiliation(s)
| | - Elizaveta Rabushko
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | | | - Tharaa Mohammad
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia
| | | | - Marina Sekacheva
- I.M. Sechenov First Moscow State Medical
University, Moscow, Russia
| | - Anton Buzdin
- Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow Region, Russia,I.M. Sechenov First Moscow State Medical
University, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic
Chemistry, Moscow, Russia,PathoBiology Group, European Organization for
Research and Treatment of Cancer (EORTC), Brussels, Belgium
| |
Collapse
|
7
|
The Chromatin Remodeler HELLS: A New Regulator in DNA Repair, Genome Maintenance, and Cancer. Int J Mol Sci 2022; 23:ijms23169313. [PMID: 36012581 PMCID: PMC9409174 DOI: 10.3390/ijms23169313] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Robust, tightly regulated DNA repair is critical to maintaining genome stability and preventing cancer. Eukaryotic DNA is packaged into chromatin, which has a profound, yet incompletely understood, regulatory influence on DNA repair and genome stability. The chromatin remodeler HELLS (helicase, lymphoid specific) has emerged as an important epigenetic regulator of DNA repair, genome stability, and multiple cancer-associated pathways. HELLS belongs to a subfamily of the conserved SNF2 ATP-dependent chromatin-remodeling complexes, which use energy from ATP hydrolysis to alter nucleosome structure and packaging of chromatin during the processes of DNA replication, transcription, and repair. The mouse homologue, LSH (lymphoid-specific helicase), plays an important role in the maintenance of heterochromatin and genome-wide DNA methylation, and is crucial in embryonic development, gametogenesis, and maturation of the immune system. Human HELLS is abundantly expressed in highly proliferating cells of the lymphoid tissue, skin, germ cells, and embryonic stem cells. Mutations in HELLS cause the human immunodeficiency syndrome ICF (Immunodeficiency, Centromeric instability, Facial anomalies). HELLS has been implicated in many types of cancer, including retinoblastoma, colorectal cancer, hepatocellular carcinoma, and glioblastoma. Here, we review and summarize accumulating evidence highlighting important roles for HELLS in DNA repair, genome maintenance, and key pathways relevant to cancer development, progression, and treatment.
Collapse
|
8
|
Meléndez-Flórez MP, Valbuena DS, Cepeda S, Rangel N, Forero-Castro M, Martínez-Agüero M, Rondón-Lagos M. Profile of Chromosomal Alterations, Chromosomal Instability and Clonal Heterogeneity in Colombian Farmers Exposed to Pesticides. Front Genet 2022; 13:820209. [PMID: 35281828 PMCID: PMC8908452 DOI: 10.3389/fgene.2022.820209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 12/04/2022] Open
Abstract
Pesticides are a group of environmental pollutants widely used in agriculture to protect crops, and their indiscriminate use has led to a growing public awareness about the health hazards associated with exposure to these substances. In fact, exposure to pesticides has been associated with an increased risk of developing diseases, including cancer. In a study previously published by us, we observed the induction of specific chromosomal alterations and, in general, the deleterious effect of pesticides on the chromosomes of five individuals exposed to pesticides. Considering the importance of our previous findings and their implications in the identification of cytogenetic biomarkers for the monitoring of exposed populations, we decided to conduct a new study with a greater number of individuals exposed to pesticides. Considering the above, the aim of this study was to evaluate the type and frequency of chromosomal alterations, chromosomal variants, the level of chromosomal instability and the clonal heterogeneity in a group of thirty-four farmers occupationally exposed to pesticides in the town of Simijacá, Colombia, and in a control group of thirty-four unexposed individuals, by using Banding Cytogenetics and Molecular Cytogenetics (Fluorescence in situ hybridization). Our results showed that farmers exposed to pesticides had significantly increased frequencies of chromosomal alterations, chromosomal variants, chromosomal instability and clonal heterogeneity when compared with controls. Our results confirm the results previously reported by us, and indicate that occupational exposure to pesticides induces not only chromosomal instability but also clonal heterogeneity in the somatic cells of people exposed to pesticides. This study constitutes, to our knowledge, the first study that reports clonal heterogeneity associated with occupational exposure to pesticides. Chromosomal instability and clonal heterogeneity, in addition to reflecting the instability of the system, could predispose cells to acquire additional instability and, therefore, to an increased risk of developing diseases.
Collapse
Affiliation(s)
| | - Duvan Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sebastián Cepeda
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Maribel Forero-Castro
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
9
|
Rampias T. Exploring the Eco-Evolutionary Dynamics of Tumor Subclones. Cancers (Basel) 2020; 12:cancers12113436. [PMID: 33228073 PMCID: PMC7699358 DOI: 10.3390/cancers12113436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
Mutational processes constantly shape the cancer genome and defects in DNA repair pathways of tumor cells facilitate the accumulation of genomic alterations [...].
Collapse
Affiliation(s)
- Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, Basic Research Center, 11527 Athens, Greece
| |
Collapse
|
10
|
Vargas-Rondón N, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Role of chromosomal instability and clonal heterogeneity in the therapy response of breast cancer cell lines. Cancer Biol Med 2020; 17:970-985. [PMID: 33299647 PMCID: PMC7721098 DOI: 10.20892/j.issn.2095-3941.2020.0028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Chromosomal instability (CIN) is a hallmark of cancer characterized by cell-to-cell variability in the number or structure of chromosomes, frequently observed in cancer cell populations and is associated with poor prognosis, metastasis, and therapeutic resistance. Breast cancer (BC) is characterized by unstable karyotypes and recent reports have indicated that CIN may influence the response of BC to chemotherapy regimens. However, paradoxical associations between extreme CIN and improved outcome have been observed. Methods This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC, TAM/DOX, TAM/HT, HT/DOC, and HT/DOX) by using fluorescence in situ hybridization (FISH), and 2) examine the association with response to treatments by comparing FISH results with cell proliferation. Results Intermediate CIN was linked to drug sensitivity according to three characteristics: estrogen receptor α (ERα) and HER2 status, pre-existing CIN level in cancer cells, and the CIN induced by the treatments. ERα+/HER2- cells with intermediate CIN were sensitive to treatment with taxanes (DOC) and anthracyclines (DOX), while ERα-/HER2-, ERα+/HER2+, and ERα-/HER2+ cells with intermediate CIN were resistant to these treatments. Conclusions A greater understanding of CIN and CH in BC could assist in the optimization of existing therapeutic regimens and/or in supporting new strategies to improve cancer outcomes.
Collapse
Affiliation(s)
- Natalia Vargas-Rondón
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Erika Pérez-Mora
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Victoria E. Villegas
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| |
Collapse
|
11
|
Ospina D, Villegas VE, Rodríguez-Leguizamón G, Rondón-Lagos M. Analyzing biological and molecular characteristics and genomic damage induced by exposure to asbestos. Cancer Manag Res 2019; 11:4997-5012. [PMID: 31239765 PMCID: PMC6556979 DOI: 10.2147/cmar.s205723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/19/2019] [Indexed: 12/24/2022] Open
Abstract
Asbestos is one of the most important occupational carcinogens. Currently, about 125 million people worldwide are exposed to asbestos in the workplace. According to global estimates, at least 107,000 people die each year from lung cancer, mesothelioma, and asbestosis as a result of occupational exposure to asbestos. The high pathogenicity of this material is currently known, being associated with the development of pulmonary diseases, of which lung cancer is the main cause of death due to exposure to this mineral. Pulmonary diseases related to asbestos are a common clinical problem and a major health concern worldwide. Extensive research has identified many important pathogenic mechanisms; however, the precise molecular mechanisms involved, and the generated genomic damage that lead to the development of these diseases, are not completely understood. The modes of action that underlie this type of disease seem to differ depending on the type of fiber, lung clearance, and genetics. This evidences the need to increase our knowledge about these effects on human health. This review focuses on the characteristics of asbestos and the cellular and genomic damage generated in humans via exposure.
Collapse
Affiliation(s)
- Diana Ospina
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá111221,Colombia
| | - Victoria Eugenia Villegas
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá111221,Colombia
| | - Giovanni Rodríguez-Leguizamón
- Hospital Universitario Mayor Méderi – Universidad del Rosario. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| |
Collapse
|
12
|
Shiroma N, Arihiro K, Oda M, Orita M. KRAS fluorescence in situ hybridisation testing for the detection and diagnosis of pancreatic adenocarcinoma. J Clin Pathol 2018; 71:865-873. [PMID: 29695486 DOI: 10.1136/jclinpath-2018-205002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/02/2023]
Abstract
AIMS The aim of our study was to analyse correlations between KRAS mutation status, chromosomal changes that affect KRAS status in cells from pancreatic tumours. METHODS We collected 69 cases of surgically resected pancreatic ductal adenocarcinoma (PDA) and seven cases of chronic pancreatitis (CP). Chromosomal abnormalities of KRAS and CEP12 were detected using fluorescence in situ hybridisation (FISH). RESULTS The number of CEP12 signals per cell ranged from 1.78 to 2.04 and 1.46 to 4.88 in CP and PDA samples, respectively, while the number of KRAS signals per cell ranged from 1.94 to 2.06 and 1.88 to 8.18 in CP and PDA samples, respectively. The 'chromosomal instability index', which was defined as the percentage of cells with any chromosomal abnormality, was over 5.7 times greater in PDA than in CP. We performed KRAS mutation analysis by direct sequencing and found that tumours with KRAS mutations have a significantly higher mean KRAS signal per cell from PDA samples compared with tumours with wild-type KRAS. KRAS amplification was noted in 10% of cases. Although we found that lymph node metastasis and distal metastasis of PDA were more frequent in cases with KRAS amplification, this was not correlated with overall survival. Using a threshold of 40%, we found that the chromosomal instability index robustly discriminated PDA cells from CP cells. CONCLUSIONS Based on these findings, we concluded that FISH testing of KRAS using cytology samples may represent an accurate approach for the diagnosis of PDA.
Collapse
Affiliation(s)
- Noriyuki Shiroma
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Miyo Oda
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Makoto Orita
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
13
|
Pilyugin M, André PA, Ratajska M, Kuzniacka A, Limon J, Tournier BB, Colas J, Laurent G, Irminger-Finger I. Antagonizing functions of BARD1 and its alternatively spliced variant BARD1δ in telomere stability. Oncotarget 2018; 8:9339-9353. [PMID: 28030839 PMCID: PMC5354735 DOI: 10.18632/oncotarget.14068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022] Open
Abstract
Previous reports have shown that expression of BARD1δ, a deletion-bearing isoform of BARD1, correlates with tumor aggressiveness and progression. We show that expression of BARD1δ induces cell cycle arrest in vitro and in vivo in non-malignant cells. We investigated the mechanism that leads to proliferation arrest and found that BARD1δ overexpression induced mitotic arrest with chromosome and telomere aberrations in cell cultures, in transgenic mice, and in cells from human breast and ovarian cancer patients with BARD1 mutations. BARD1δ binds more efficiently than BARD1 to telomere binding proteins and causes their depletion from telomeres, leading to telomere and chromosomal instability. While this induces cell cycle arrest, cancer cells lacking G2/M checkpoint controls might continue to proliferate despite the BARD1δ-induced chromosomal instability. These features of BARD1δ may make it a genome permutator and a driver of continuous uncontrolled proliferation of cancer cells.
Collapse
Affiliation(s)
- Maxim Pilyugin
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Pierre-Alain André
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Magdalena Ratajska
- Department of Biology and Genetics, Medical University of Gdansk, Poland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Alina Kuzniacka
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Janusz Limon
- Department of Biology and Genetics, Medical University of Gdansk, Poland
| | - Benjamin B Tournier
- Department of Neuropsychiatry, Vulnerability Biomarkers Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Julien Colas
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland
| | - Geoff Laurent
- Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia
| | - Irmgard Irminger-Finger
- Department of Gynecology and Obstetrics Geneva University Hospitals, Geneva, Switzerland.,Centre for Cell Therapy and Regenerative Medicine, University of Western Australia and Institute of Respiratory Health, Nedlands, Australia.,Department of Genetic and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Vargas-Rondón N, Villegas VE, Rondón-Lagos M. The Role of Chromosomal Instability in Cancer and Therapeutic Responses. Cancers (Basel) 2017; 10:cancers10010004. [PMID: 29283387 PMCID: PMC5789354 DOI: 10.3390/cancers10010004] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer is one of the leading causes of death, and despite increased research in recent years, control of advanced-stage disease and optimal therapeutic responses remain elusive. Recent technological improvements have increased our understanding of human cancer as a heterogeneous disease. For instance, four hallmarks of cancer have recently been included, which in addition to being involved in cancer development, could be involved in therapeutic responses and resistance. One of these hallmarks is chromosome instability (CIN), a source of genetic variation in either altered chromosome number or structure. CIN has become a hot topic in recent years, not only for its implications in cancer diagnostics and prognostics, but also for its role in therapeutic responses. Chromosomal alterations are mainly used to determine genetic heterogeneity in tumors, but CIN could also reveal treatment efficacy, as many therapies are based on increasing CIN, which causes aberrant cells to undergo apoptosis. However, it should be noted that contradictory findings on the implications of CIN for the therapeutic response have been reported, with some studies associating high CIN with a better therapeutic response and others associating it with therapeutic resistance. Considering these observations, it is necessary to increase our understanding of the role CIN plays not only in tumor development, but also in therapeutic responses. This review focuses on recent studies that suggest possible mechanisms and consequences of CIN in different disease types, with a primary focus on cancer outcomes and therapeutic responses.
Collapse
Affiliation(s)
- Natalia Vargas-Rondón
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia.
| | - Victoria E Villegas
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia.
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia.
| |
Collapse
|
15
|
New Insights in the Cytogenetic Practice: Karyotypic Chaos, Non-Clonal Chromosomal Alterations and Chromosomal Instability in Human Cancer and Therapy Response. Genes (Basel) 2017; 8:genes8060155. [PMID: 28587191 PMCID: PMC5485519 DOI: 10.3390/genes8060155] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/17/2022] Open
Abstract
Recently, non-clonal chromosomal alterations previously unappreciated are being proposed to be included in cytogenetic practice. The aim of this inclusion is to obtain a greater understanding of chromosomal instability (CIN) and tumor heterogeneity and their role in cancer evolution and therapy response. Although several genetic assays have allowed the evaluation of the variation in a population of cancer cells, these assays do not provide information at the level of individual cells, therefore limiting the information of the genomic diversity within tumors (heterogeneity). The karyotype is one of the few available cytogenetic techniques that allow us not only to identify the chromosomal alterations present within a single cell, but also allows us to profile both clonal (CCA) and non-clonal chromosomal alterations (NCCAs). A greater understanding of CIN and tumor heterogeneity in cancer could not only improve existing therapeutic regimens but could also be used as targets for the design of new therapeutic approaches. In this review we indicate the importance and significance of karyotypic chaos, NCCAs and CIN in the prognosis of human cancers.
Collapse
|
16
|
Lorenzini A, Maier AB. Influence of Donor Age and Species Longevity on Replicative Cellular Senescence. CELLULAR AGEING AND REPLICATIVE SENESCENCE 2016. [DOI: 10.1007/978-3-319-26239-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Hsieh YH, Chang YY, Su IJ, Yen CJ, Liu YR, Liu RJ, Hsieh WC, Tsai HW, Wang LHC, Huang W. Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis. J Pathol 2015; 236:337-47. [PMID: 25775999 DOI: 10.1002/path.4531] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/25/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022]
Abstract
Although hepatitis B virus (HBV) has been established to cause hepatocellular carcinoma (HCC), the exact mechanism remains to be clarified. Type II ground glass hepatocytes (GGHs) harbouring the HBV pre-S2 mutant large surface protein (LHBS) have been recognized as a morphologically distinct hallmark of HCC in the advanced stages of chronic HBV infection. Considering its preneoplastic nature, we hypothesized that type II GGH may exhibit high genomic instability, which is important for the carcinogenic process in chronic HBV carriers. In this study we found that pre-S2 mutant LHBS directly interacted with importin α1, the key factor that recognizes cargos undergoing nuclear transportation mediated by the importin α/β-associated nuclear pore complex (NPC). By interacting with importin α1, which inhibits its function as an NPC factor, pre-S2 mutant LHBS blocked nuclear transport of an essential DNA repair and recombination factor, Nijmegen breakage syndrome 1 (NBS1), upon DNA damage, thereby delaying the formation of nuclear foci at the sites of DNA double-strand breaks (DSBs). Pre-S2 mutant LHBS was also found to block NBS1-mediated homologous recombination repair and induce multi-nucleation of cells. In addition, pre-S2 mutant LHBS transgenic mice showed genomic instability, indicated by increased global gene copy number variations (CNVs), which were significantly higher than those in hepatitis B virus X mice, indicating that pre-S2 mutant LHBS is the major viral oncoprotein inducing genomic instability in HBV-infected hepatocytes. Consistently, the human type II GGHs in HCC patients exhibited increased DNA DSBs representing significant genomic instability. In conclusion, type II GGHs harbouring HBV pre-S2 mutant oncoprotein represent a high-risk marker for the loss of genome integrity in chronic HBV carriers and explain the complex chromosome changes in HCCs. Mouse array CGH raw data: GEO Accession No. GSE61378 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61378).
Collapse
Affiliation(s)
- Yi-Hsuan Hsieh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ih-Jen Su
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Chia-Jui Yen
- Department of Haematology and Oncology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yi-Ru Liu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ren-Jei Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chuan Hsieh
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medicine, National Cheng Kung University, Tainan, Taiwan.,Centre of Infectious Disease and Signalling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Abstract
Genomic instability is a hallmark of cancer that leads to an increase in genetic alterations, thus enabling the acquisition of additional capabilities required for tumorigenesis and progression. Substantial heterogeneity in the amount and type of instability (nucleotide, microsatellite, or chromosomal) exists both within and between cancer types, with epithelial tumors typically displaying a greater degree of instability than hematological cancers. While high-throughput sequencing studies offer a comprehensive record of the genetic alterations within a tumor, detecting the rate of instability or cell-to-cell viability using this and most other available methods remains a challenge. Here, we discuss the different levels of genomic instability occurring in human cancers and touch on the current methods and limitations of detecting instability. We have applied one such approach to the surveying of public tumor data to provide a cursory view of genome instability across numerous tumor types.
Collapse
Affiliation(s)
- Larissa Pikor
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Ave, Vancouver, BC, Canada, V5Z 1L3,
| | | | | | | |
Collapse
|
19
|
Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction. Neoplasia 2014; 15:1301-13. [PMID: 24339742 DOI: 10.1593/neo.131574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/23/2022] Open
Abstract
Human tumors using the alternative lengthening of telomeres (ALT) exert high rates of telomere dysfunction. Numerical chromosomal aberrations are very frequent, and structural rearrangements are widely scattered among the genome. This challenging context allows the study of telomere dysfunction-driven chromosomal instability in neoplasia (CIN) in a massive scale. We used molecular cytogenetics to achieve detailed karyotyping in 10 human ALT neoplastic cell lines. We identified 518 clonal recombinant chromosomes affected by 649 structural rearrangements. While all human chromosomes were involved in random or clonal, terminal, or pericentromeric rearrangements and were capable to undergo telomere healing at broken ends, a differential recombinatorial propensity of specific genomic regions was noted. We show that ALT cells undergo epigenetic modifications rendering polycentric chromosomes functionally monocentric, and because of increased terminal recombinogenicity, they generate clonal recombinant chromosomes with interstitial telomeric repeats. Losses of chromosomes 13, X, and 22, gains of 2, 3, 5, and 20, and translocation/deletion events involving several common chromosomal fragile sites (CFSs) were recurrent. Long-term reconstitution of telomerase activity in ALT cells reduced significantly the rates of random ongoing telomeric and pericentromeric CIN. However, the contribution of CFS in overall CIN remained unaffected, suggesting that in ALT cells whole-genome replication stress is not suppressed by telomerase activation. Our results provide novel insights into ALT-driven CIN, unveiling in parallel specific genomic sites that may harbor genes critical for ALT cancerous cell growth.
Collapse
|
20
|
Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis. Cancers (Basel) 2014; 6:1208-19. [PMID: 24901304 PMCID: PMC4074825 DOI: 10.3390/cancers6021208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022] Open
Abstract
The fragile FHIT gene, encompassing the chromosomal fragile site FRA3B, is an early target of DNA damage in precancerous cells. While vulnerable to DNA damage itself, FHIT protein expression is essential to protect from DNA damage-induced cancer initiation and progression by modulating genome stability, oxidative stress and levels of accumulating DNA damage. Thus, FHIT, whose expression is lost or reduced in many human cancers, is a tumor suppressor and genome caretaker whose loss initiates genome instability in preneoplastic lesions. Ongoing studies are seeking more detailed understanding of the role of FHIT in the cellular response to oxidative damage. This review discusses the relationship between FHIT, reactive oxygen species production, and DNA damage in the context of cancer initiation and progression.
Collapse
|
21
|
The roles of telomerase in the generation of polyploidy during neoplastic cell growth. Neoplasia 2013; 15:156-68. [PMID: 23441130 DOI: 10.1593/neo.121398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 01/20/2023] Open
Abstract
Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite), as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres), telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA component (hTERC), exert both reverse transcriptase-related (canonical) and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions.
Collapse
|
22
|
Villamón E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, Martinsson T, Navarro S, Noguera R. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS One 2013; 8:e53740. [PMID: 23341988 PMCID: PMC3544899 DOI: 10.1371/journal.pone.0053740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background/Aim Genetic analysis in neuroblastoma has identified the profound influence of MYCN amplification and 11q deletion in patients’ prognosis. These two features of high-risk neuroblastoma usually occur as mutually exclusive genetic markers, although in rare cases both are present in the same tumor. The purpose of this study was to characterize the genetic profile of these uncommon neuroblastomas harboring both these high-risk features. Methods We selected 18 neuroblastomas with MNA plus 11q loss detected by FISH. Chromosomal aberrations were analyzed using Multiplex Ligation-dependent Probe Amplification and Single Nucleotide Polymorphism array techniques. Results and Conclusion This group of tumors has approximately the same high frequency of aberrations as found earlier for 11q deleted tumors. In some cases, DNA instability generates genetic heterogeneity, and must be taken into account in routine genetic diagnosis.
Collapse
Affiliation(s)
- Eva Villamón
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Ana P. Berbegall
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Marta Piqueras
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Irene Tadeo
- Research Foundation of Hospital Clínico Universitario of Valencia, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario La Fe, Valencia, Spain
| | - Anna Djos
- Department of Clinical Genetics, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Clinical Genetics, The Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
23
|
Bodvarsdottir SK, Steinarsdottir M, Bjarnason H, Eyfjord JE. Dysfunctional telomeres in human BRCA2 mutated breast tumors and cell lines. Mutat Res 2011; 729:90-9. [PMID: 22019625 DOI: 10.1016/j.mrfmmm.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/16/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
Abstract
In the present study the possible involvement of telomeres in chromosomal instability of breast tumors and cell lines from BRCA2 mutation carriers was examined. Breast tumors from BRCA2 mutation carriers showed significantly higher frequency of chromosome end-to-end fusions (CEFs) than tumors from non-carriers despite normal telomere DNA content. Frequent CEFs were also found in four different BRCA2 heterozygous breast epithelial cell lines, occasionally with telomere signal at the fusion point, indicating telomere capping defects. Extrachromosomal telomeric repeat (ECTR) DNA was frequently found scattered around metaphase chromosomes and interstitial telomere sequences (ITSs) were also common. Telomere sister chromatid exchanges (T-SCEs), characteristic of cells using alternative lengthening of telomeres (ALT), were frequently detected in all heterozygous BRCA2 cell lines as well as the two ALT positive cell lines tested. Even though T-SCE frequency was similar in BRCA2 heterozygous and ALT positive cell lines they differed in single telomere signal loss and ITSs. Chromatid type alterations were more prominent in the BRCA2 heterozygous cell lines that may have propensity for telomere based chromosome healing. Telomere dysfunction-induced foci (TIFs) formation, identified by co-localization of telomeres and γ-H2AX, supported telomere associated DNA damage response in BRCA2 heterozygous cell lines. TIFs were found in interphase nuclei, at chromosome ends, ITSs and ECTR DNA. In conclusion, our results suggest that BRCA2 has an important role in telomere stabilization by repressing CEFs through telomere capping and the prevention of telomere loss by replication stabilization.
Collapse
|
24
|
Thomas R, Rebbeck C, Leroi AM, Burt A, Breen M. Extensive conservation of genomic imbalances in canine transmissible venereal tumors (CTVT) detected by microarray-based CGH analysis. Chromosome Res 2009; 17:927-34. [PMID: 19798471 DOI: 10.1007/s10577-009-9080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/01/2009] [Indexed: 01/06/2023]
Abstract
Canine transmissible venereal tumor (CTVT) is an intriguing cancer that is transmitted naturally as an allograft by transplantation of viable tumor cells from affected to susceptible dogs. At least initially, the tumor is able to evade the host's immune response; thus, CTVT has potential to provide novel insights into tumor immunobiology. The nature of CTVT as a "contagious" cancer, originating from a common ancestral source of infection, has been demonstrated previously by a series of studies comparing geographically distinct tumors at the molecular level. While these studies have revealed that apparently unrelated tumors share a striking degree of karyotypic conservation, technological restraints have limited the ability to investigate the chromosome composition of CTVTs in any detail. We present characterization of a strategically selected panel of CTVT cases using microarray-based comparative genomic hybridization analysis at ~one-megabase resolution. These data show for the first time that the tumor presents with an extensive range of non-random chromosome copy number aberrations that are distributed widely throughout the dog genome. The majority of abnormalities detected were imbalances of small subchromosomal regions, often involving centromeric and telomeric sequences. All cases also showed the sex chromosome complement XO. There was remarkable conservation in the cytogenetic profiles of the tumors analyzed, with only minor variation observed between different cases. These data suggest that the CTVT genome demonstrates a vast degree of both structural and numerical reorganization that is maintained during transmission among the domestic dog population.
Collapse
Affiliation(s)
- Rachael Thomas
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC, 27606, USA
| | | | | | | | | |
Collapse
|
25
|
Mathematical modeling of carcinogenesis based on chromosome aberration data. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-009-0240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
26
|
Aberrations of chromosome 13q in gastrointestinal stromal tumors: analysis of 91 cases by fluorescence in situ hybridization (FISH). ACTA ACUST UNITED AC 2009; 18:72-80. [PMID: 19430298 DOI: 10.1097/pdm.0b013e318181fa1f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical behavior of gastrointestinal stromal tumors (GISTs) ranges from benign to malignant. Recent studies suggest that loss of 13q could be correlated with GIST progression. Our objectives were: (1) to detect chromosome 13q aberrations and determine the corresponding gene status in GISTs; and (2) to assess potential roles of 13q aberrations in GIST by correlating various 13q aberrations with various histologic parameters and disease-free survival in a group of GIST patients. Ninety-one cases of primary GISTs in Chinese patients were studied by dual color fluorescence in situ hybridization (FISH), through use of a panel of bacterial artificial chromosome clones RP11-685I15, RP11-352N7, and RP11-505F3 covering the Rb, RFP2, KCNRG, and KLF5 genes, respectively. Loss of RP11-685I15 was detected in 17/91 (18.7%) cases, loss of RP11-352N7 in 11/91 (12.1%) cases, and loss of RP11-505F3 in 5/91 (5.5%) cases. Chromosome 13 polysomy was observed in 22/91 (24.2%) cases. The frequency of RP11-685I15 deletion was positively correlated with tumor risk (P=0.0460). The frequency of RP11-352N7 deletion, RP11-505F3 deletion, and chromosome 13 polysomy tended to be higher in the high-risk GISTs. Shorter disease-free survival was significantly associated with RP11-352N7 deletion (P=0.0361) and high-risk grade (P=0.0003). Chromosome 13 instability of GISTs may play a role in tumor progression. Loss of 13q, especially loss of Rb, RFP2, KCNRG, and KLF5 genes are frequent events in high-risk GISTs. Loss of 13q may be associated with tumor progression.
Collapse
|
27
|
Chi YH, Ward JM, Cheng LI, Yasunaga J, Jeang KT. Spindle assembly checkpoint and p53 deficiencies cooperate for tumorigenesis in mice. Int J Cancer 2009; 124:1483-9. [PMID: 19065665 DOI: 10.1002/ijc.24094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The spindle assembly checkpoint (SAC) guards against chromosomal missegregation during mitosis. To investigate the role of SAC in tumor development, mice heterozygously knocked out for the mitotic arrest deficient (Mad) genes Mad1 and/or Mad2 were mated with p53(+/) (-) mice. Increased tumor frequencies were reproducibly observed in Mad2(+/) (-)p53(+/) (-) (88.2%) and Mad1(+/) (-)Mad2(+/) (-)p53(+/) (-) (95.0%) mice compared with p53(+/) (-) (66.7%) mice. Moreover, 53% of Mad2(+/) (-)p53(+/) (-) mice developed lymphomas compared with 11% of p53(+/) (-) mice. By examining chromosome content, increased loss in diploidy was seen in cells from Mad2(+/) (-)p53(+/) (-) versus p53(+/) (-) mice, correlating loss of SAC function, in a p53(+/) (-) context, with increased aneuploidy and tumorigenesis. The findings here provide evidence for a cooperative role of Mad1/Mad2 and p53 genes in preventing tumor development.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
28
|
Panigrahi AK, Pati D. Road to the crossroads of life and death: linking sister chromatid cohesion and separation to aneuploidy, apoptosis and cancer. Crit Rev Oncol Hematol 2009; 72:181-93. [PMID: 19162508 DOI: 10.1016/j.critrevonc.2008.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/02/2008] [Accepted: 12/11/2008] [Indexed: 01/22/2023] Open
Abstract
Genomic instability, aberrant cell proliferation and defects in apoptotic cell death are critical issues in cancer. The two most prominent hallmarks of cancer cells are multiple mutations in key genes encoding proteins that regulate important cell-survival pathways, and marked restructuring or redistribution of the chromosomes (aneuploidy) indicative of genomic instability. Both these aspects have been suggested to cause cancer, though a causal role for chromosomal restructuring in tumorigenesis has not been experimentally fully substantiated. This review is aimed at understanding the mechanisms of cell cycle (proliferation) and programmed cell death (apoptosis) and chromosomal instability governed by cohesin and other aneuploidy promoters, which will provide new insights into the process of carcinogenesis and new avenues for targeted treatment.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Department of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 6621 Fannin St., MC3-3320, Houston, TX 77030, USA
| | | |
Collapse
|
29
|
Makridakis M, Gagos S, Petrolekas A, Roubelakis MG, Bitsika V, Stravodimos K, Pavlakis K, Anagnou NP, Coleman J, Vlahou A. Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer. Proteomics 2008; 9:287-98. [DOI: 10.1002/pmic.200800121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin Exp Gastroenterol 2008; 1:19-47. [PMID: 21677822 PMCID: PMC3108627 DOI: 10.2147/ceg.s4343] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic colon cancer is caused predominantly by dietary factors. We have selected bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-induced stresses cause cell death in susceptible cells, contribute to genomic instability in surviving cells, impose Darwinian selection on survivors and enhance initiation and progression to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result in the activation of pro-survival stress-response pathways, and the modulation of numerous genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms by which hydrophobic bile acids contribute to genomic instability are discussed, and include oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and increased genomic instability through this mechanism is also described. This review provides a mechanistic explanation for the important link between a Western-style diet and associated increased levels of colon cancer.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
31
|
Gagos S, Chiourea M, Christodoulidou A, Apostolou E, Raftopoulou C, Deustch S, Jefford CE, Irminger-Finger I, Shay JW, Antonarakis SE. Pericentromeric instability and spontaneous emergence of human neoacrocentric and minute chromosomes in the alternative pathway of telomere lengthening. Cancer Res 2008; 68:8146-55. [PMID: 18829574 DOI: 10.1158/0008-5472.can-08-0945] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the alternative pathway of telomere lengthening (ALT), neoplastic cell growth is prolonged by telomere recombination. We show that ALT is unexpectedly characterized by high rates of ongoing pericentromeric chromosomal instability. Combined with telomeric recombination, ALT pericentromeric instability generates neoacrocentric chromosomes. In the present studies, we describe a subgroup of ALT neoacrocentric minute chromosomes, composed of DNA entities two to five times smaller in size than human chromosome 21. The frequencies of ALT minute chromosomes were increased by gamma-irradiation and suppressed by telomerase. Continuous growth after telomerase inhibition/depletion was followed by increased rates of telomeric sister chromatid recombination and the emergence of minute chromosomes. We show that ALT minute chromosomes were derived from true centromeric fissions and/or chromosomal breakage/fusion/bridge cycles. They exhibit a two-chromatid structure, carry genomic DNA, centromeric and telomeric repeats, and display regular mitotic functionality. These observations are important in understanding the global genomic instability that characterizes most human advanced malignancies.
Collapse
Affiliation(s)
- Sarantis Gagos
- Laboratory of Genetics, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Korenstein-Ilan A, Barbul A, Hasin P, Eliran A, Gover A, Korenstein R. Terahertz radiation increases genomic instability in human lymphocytes. Radiat Res 2008; 170:224-34. [PMID: 18666810 DOI: 10.1667/rr0944.1] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 03/12/2008] [Indexed: 11/03/2022]
Abstract
Terahertz radiation is increasingly being applied in new and evolving technologies applied in areas such as homeland security and medical imaging. Thus a timely assessment of the potential hazards and health effects of occupational and general population exposure to THz radiation is required. We applied continuous-wave (CW) 0.1 THz radiation (0.031 mW/ cm(2)) to dividing lymphocytes for 1, 2 and 24 h and examined the changes in chromosome number of chromosomes 1, 10, 11 and 17 and changes in the replication timing of their centromeres using interphase fluorescence in situ hybridization (FISH). Chromosomes 11 and 17 were most vulnerable (about 30% increase in aneuploidy after 2 and 24 h of exposure), while chromosomes 1 and 10 were not affected. We observed changes in the asynchronous mode of replication of centromeres 11, 17 and 1 (by 40%) after 2 h of exposure and of all four centromeres after 24 h of exposure (by 50%). It is speculated that these effects are caused by radiation-induced low-frequency collective vibrational modes of proteins and DNA. Our results demonstrate that exposure of lymphocytes in vitro to a low power density of 0.1 THz radiation induces genomic instability. These findings, if verified, may suggest that such exposure may result in an increased risk of cancer.
Collapse
Affiliation(s)
- Avital Korenstein-Ilan
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Biswas S, Trobridge P, Romero-Gallo J, Billheimer D, Myeroff LL, Willson JKV, Markowitz SD, Grady WM. Mutational inactivation of TGFBR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor beta resistant cells. Genes Chromosomes Cancer 2008; 47:95-106. [PMID: 17985359 DOI: 10.1002/gcc.20511] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mutational inactivation of transforming growth factor beta receptor type II (TGFBR2) occurs in approximately 30% of colon cancers and promotes the formation of colon cancer by inhibiting the tumor suppressor activity of the TGFB signaling pathway. TGFBR2 mutations occur in >90% of microsatellite unstable (MSI) colon cancers and affect a polyadenine tract in exon 3 of TGFBR2, called BAT-RII, which is vulnerable to mutation in the setting of DNA mismatch repair (MMR) system deficiency. In light of the vulnerable nature of the BAT-RII tract in the setting of MMR inactivation and the favorable effects of TGFBR2 inactivation in colon cancer, analysis of TGFBR2 inactivation provides an opportunity to assess the roles of genomic instability vs. clonal selection in cells acquiring TGFBR2 BAT-RII tract mutations in MSI colon cancer formation. The contribution of genomic instability and/or clonal evolution to the mutational inactivation of TGBFR2 in MSI colon cancers has not been studied in a systematic way that would allow a determination of the relative contribution of these two mechanisms in the formation of MSI colon cancer. It has not been demonstrated whether the BAT-RII tract mutations are strictly a consequence of the BAT-RII region being hypermutable in the setting of MMR deficiency or if the mutations are rather a consequence of clonal selection pressure against the TGFB receptor. Through the use of defined cell line systems, we show that both genomic instability and clonal selection of TGFB resistant cells contribute to the high frequency of TGFBR2 mutations in MSI colon cancer.
Collapse
Affiliation(s)
- Swati Biswas
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Unusually stable abnormal karyotype in a highly aggressive melanoma negative for telomerase activity. Mol Cytogenet 2008; 1:20. [PMID: 18718029 PMCID: PMC2533344 DOI: 10.1186/1755-8166-1-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/22/2008] [Indexed: 12/27/2022] Open
Abstract
Malignant melanomas are characterized by increased karyotypic complexity, extended aneuploidy and heteroploidy. We report a melanoma metastasis to the peritoneal cavity with an exceptionally stable, abnormal pseudodiploid karyotype as verified by G-Banding, subtelomeric, centromeric and quantitative Fluorescence in Situ Hybridization (FISH). Interestingly this tumor had no detectable telomerase activity as indicated by the Telomere Repeat Amplification Protocol. Telomeric Flow-FISH and quantitative telomeric FISH on mitotic preparations showed that malignant cells had relatively short telomeres. Microsatellite instability was ruled out by the allelic pattern of two major mononucleotide repeats. Our data suggest that a combination of melanoma specific genomic imbalances were sufficient and enough for this fatal tumor progression, that was not accompanied by genomic instability, telomerase activity, or the engagement of the alternative recombinatorial telomere lengthening pathway.
Collapse
|
35
|
Kligerman AD, Tennant AH. Insights into the carcinogenic mode of action of arsenic. Toxicol Appl Pharmacol 2007; 222:281-8. [PMID: 17118416 DOI: 10.1016/j.taap.2006.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/05/2006] [Accepted: 10/05/2006] [Indexed: 12/14/2022]
Abstract
That arsenic can induce cancer in humans has been known since the late 17th century, yet how arsenic induces cancer has been the subject of numerous scientific publications. Various modes of action (MOA) have been proposed for arsenic's carcinogenicity. In this paper we review our previous studies on the ability of arsenicals to cause DNA damage, the relative inability of these arsenicals to induce point mutations, and the involvement of arsenicals in spindle disruption. We present new evidence that shows that reduced glutathione (GSH) can chemically reduce inactive pentavalent arsenicals to trivalent arsenicals which can disrupt tubulin polymerization, and show that reactive oxygen species (ROS) are most likely not involved in tubulin disruption. A hypothesis is also presented on how arsenic may induce stable chromosome aberrations (CAs) that can lead to cancer, thus supporting a role for genetic damage in the MOA for arsenic. We then propose promising areas of research that might give insight into the MOA of arsenic.
Collapse
Affiliation(s)
- A D Kligerman
- Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, B143-06 US Environmental Protection Agency Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
36
|
Yan T, Wunder JS, Gokgoz N, Gill M, Eskandarian S, Parkes RK, Bull SB, Bell RS, Andrulis IL. COPS3 amplification and clinical outcome in osteosarcoma. Cancer 2007; 109:1870-6. [PMID: 17366602 DOI: 10.1002/cncr.22595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Amplification of several genes that map to a region of chromosome 17p11.2, including COPS3, was observed in high-grade osteosarcoma. These genes were also shown to be overexpressed and may be involved in osteosarcoma tumorigenesis. COPS3 encodes a subunit of the COP9 signalosome implicated in the ubiquitination and ultimately degradation of the P53 tumor suppressor. To determine the relation between COPS3 amplification, P53 mutation, and patient outcome in osteosarcoma, tumors from a large cohort of patients with high-grade osteosarcoma and long-term clinical follow-up were examined. METHODS Quantitative real-time polymerase chain reaction (PCR) was performed to detect copy number changes for COPS3, as well as additional genes (NCOR1, TOM1L2, and PMP22) from the 17p11.2 amplicon, in 155 osteosarcomas from a prospective collection of tumors with corresponding clinical data. Univariate and multivariate analyses were performed to assess differences in survival between groups. RESULTS Amplification of COPS3, detected in 31% of the osteosarcomas, was strongly associated with large tumor size (P=.0009), but was not associated with age at diagnosis, site, sex, and tumor necrosis. COPS3 amplification was significantly correlated with a shorter time to metastasis with an estimated hazard ratio (HR) of 1.61 (95% confidence interval [CI], 1.02-2.55) in univariate analysis (log-rank test, P=.042). However, in an a priori multivariate Cox model including the other clinical parameters, the HR for COPS3 amplification decreased to 1.32 (95% CI, 0.82-2.13, P=.25), mainly due to the strong correlation with tumor size. COPS3 amplification and P53 mutation frequently occurred in the same tumors, suggesting that these are not mutually exclusive events in osteosarcoma. Although not statistically significant, patients whose tumors exhibited both molecular alterations tended to be more likely to develop metastasis compared with patients with either COPS3 amplification or P53 mutation alone. CONCLUSIONS COPS3 is the likely target of the 17p11.2 amplicon. COPS3 may function as an oncogene in osteosarcoma, and an increased copy number may lead to an unfavorable prognosis.
Collapse
Affiliation(s)
- Taiqiang Yan
- Fred A. Litwin Centre for Cancer Genetics, Mount Sinai Hospital, and University Musculoskeletal Oncology Unit, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This review provides an overview of a selection of the most pertinent molecular pathways that link cancer and aging and focuses on those where recent advances were most important. When organizing the bulk of information on this subject, I became aware of the fact that the most evident partition, namely, mechanisms that influence aging and mechanisms that influence cancer occurrence, is difficult to apply. Most mechanisms explaining the aging process are also those that influence carcinogenesis. Mechanisms that are described in tumor suppressor pathways are also contributors to the aging process. From an intuitive point of view, there are phenomena that have traditionally been contributed to aging others to cancer-inducing factors and they are presented herein.
Collapse
Affiliation(s)
- Irmgard Irminger-Finger
- Laboratory of Molecular Gynecology and Obstetrics, Department of Gynecology and Obstetrics, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
38
|
Henry IM, Dilkes BP, Comai L. Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet 2007; 3:e70. [PMID: 17465685 PMCID: PMC1857734 DOI: 10.1371/journal.pgen.0030070] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 03/16/2007] [Indexed: 11/19/2022] Open
Abstract
Aneuploidy, the relative excess or deficiency of specific chromosome types, results in gene dosage imbalance. Plants can produce viable and fertile aneuploid individuals, while most animal aneuploids are inviable or developmentally abnormal. The swarms of aneuploid progeny produced by Arabidopsis triploids constitute an excellent model to investigate the mechanisms governing dosage sensitivity and aneuploid syndromes. Indeed, genotype alters the frequency of aneuploid types within these swarms. Recombinant inbred lines that were derived from a triploid hybrid segregated into diploid and tetraploid individuals. In these recombinant inbred lines, a single locus, which we call SENSITIVE TO DOSAGE IMBALANCE (SDI), exhibited segregation distortion in the tetraploid subpopulation only. Recent progress in quantitative genotyping now allows molecular karyotyping and genetic analysis of aneuploid populations. In this study, we investigated the causes of the ploidy-specific distortion at SDI. Allele frequency was distorted in the aneuploid swarms produced by the triploid hybrid. We developed a simple quantitative measure for aneuploidy lethality and using this measure demonstrated that distortion was greatest in the aneuploids facing the strongest viability selection. When triploids were crossed to euploids, the progeny, which lack severe aneuploids, exhibited no distortion at SDI. Genetic characterization of SDI in the aneuploid swarm identified a mechanism governing aneuploid survival, perhaps by buffering the effects of dosage imbalance. As such, SDI could increase the likelihood of retaining genomic rearrangements such as segmental duplications. Additionally, in species where triploids are fertile, aneuploid survival would facilitate gene flow between diploid and tetraploid populations via a triploid bridge and prevent polyploid speciation. Our results demonstrate that positional cloning of loci affecting traits in populations containing ploidy and chromosome number variants is now feasible using quantitative genotyping approaches.
Collapse
Affiliation(s)
- Isabelle M Henry
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Brian P Dilkes
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Luca Comai
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
39
|
Vukovic B, Beheshti B, Park P, Lim G, Bayani J, Zielenska M, Squire JA. Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer. Cytogenet Genome Res 2007; 116:1-11. [PMID: 17268171 DOI: 10.1159/000097411] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/07/2006] [Indexed: 01/20/2023] Open
Abstract
Chromosomal instability (CIN) is thought to underlie the generation of chromosomal changes and genomic heterogeneity during prostatic tumorigenesis. The breakage-fusion-bridge (BFB) cycle is one of the CIN mechanisms responsible for characteristic mitotic abnormalities and the occurrence of specific classes of genomic rearrangements. However, there is little detailed information concerning the role of BFB and CIN in generating genomic diversity in prostate cancer. In this study we have used molecular cytogenetic methods and array comparative genomic hybridization analysis (aCGH) of DU145, PC3, LNCaP, 1532T and 1542T to investigate the in vitro role of BFB as a CIN mechanism in karyotype evolution. Analysis of mitotic structures in all five prostate cancer cell lines showed increased frequency of anaphase bridges and nuclear strings. Structurally rearranged dicentric chromosomes were observed in all of the investigated cell lines, and Spectral Karyotyping (SKY) analysis was used to identify the participating rearranged chromosomes. Multicolor banding (mBAND) and aCGH analysis of some of the more complex chromosomal rearrangements and associated amplicons identified inverted duplications, most frequently involving chromosome 8. Chromosomal breakpoint analysis showed there was a higher frequency of rearrangement at centromeric and pericentromeric genomic regions. The distribution of inverted duplications and ladder-like amplifications was mapped by mBAND and by aCGH. Adjacent spacing of focal amplifications and microdeletions were observed, and focal amplification of centromeric and end sequences was present, particularly in the most unstable line DU145. SKY analysis of this line identified chromosome segments fusing with multiple recipient chromosomes (jumping translocations) identifying potential dicentric sources. Telomere free end analysis indicated loss of DNA sequence. Moreover, the cell lines with the shortest telomeres had the most complex karyotypes, suggesting that despite the expression of telomerase, the reduced telomere length could be driving the observed BFB events and elevated levels of CIN in these lines.
Collapse
Affiliation(s)
- B Vukovic
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Finley JC, Reid BJ, Odze RD, Sanchez CA, Galipeau P, Li X, Self SG, Gollahon KA, Blount PL, Rabinovitch PS. Chromosomal instability in Barrett's esophagus is related to telomere shortening. Cancer Epidemiol Biomarkers Prev 2006; 15:1451-7. [PMID: 16896031 DOI: 10.1158/1055-9965.epi-05-0837] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Barrett's esophagus is a useful model for the study of carcinogenesis, as the metaplastic columnar epithelium that replaces squamous esophageal epithelium is at elevated risk for development of adenocarcinoma. We examined telomere length and chromosomal instability (CIN) in Barrett's esophagus biopsies using fluorescence in situ hybridization. To study CIN, we selected centromere and locus-specific arm probes to chromosomes 17/17p (p53), 11/11q (cyclin D1), and 9/9p (p16 INK4A), loci reported to be involved in early stages of Barrett's esophagus neoplasia. Telomere shortening was observed in Barrett's esophagus epithelium at all histologic grades, whereas CIN was highest in biopsies with dysplastic changes; there was, however, considerable heterogeneity between patients in each variable. Alterations on chromosome 17 were strongly correlated with telomere length (r = 0.55; P < 0.0001) and loss of the 17p arm signal was the most common event. CIN on chromosome 11 was also associated with telomere shortening (r =0.3; P = 0.05), although 11q arm gains were most common. On chromosome 9p, arm losses were the most common finding, but chromosome 9 CIN was not strongly correlated with telomere length. We conclude that CIN is related to telomere shortening in Barrett's esophagus but varies by chromosome. Whether instability is manifested as loss or gain seems to be influenced by the chromosomal loci involved. Because telomere shortening and CIN are early events in Barrett's esophagus neoplastic progression and are highly variable among patients, it will be important to determine whether they identify a subset of patients that is at risk for more rapid neoplastic evolution.
Collapse
Affiliation(s)
- Jennifer C Finley
- Department of Pathology, University of Washington, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen JY, Huang WG, Tao KX, Wang GB. Deregulation of Cyclin E induces chromosomal instability in human colon cancer. Shijie Huaren Xiaohua Zazhi 2006; 14:2164-2168. [DOI: 10.11569/wcjd.v14.i22.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the influence of stably inducible expression of Cyclin E on the chromosomal instability in human colon cancer cell line DLD1.
METHODS: Tetracycline-responsive gene-inducible cell line DLD1tTA-cyclin E was generated. Western blot was used to examine the induction of Cyclin E expression upon removal of doxycycline. 4'-6-Diamidino-2-phenylindole (DAPI) staining was performed to detect the percentage of cells with chromosomal instability 1, 3, 5, 7 and 14 d after the induction of Cyclin E expression.
RESULTS: Western blot showed that the peak of Cyclin E expression appeared 96 h after induction. The percentage of cells with chromosomal instability in tet-off DLD1tTA-Cyclin E cells ranged from 0.97% to 1.22% (t = 3.81, P > 0.01). However, the percentages of cells with chromosomal instability were 2.41%, 3.63%, 3.92%, 6.17% and 8.34%, respectively, 1, 3, 5, 7 and 14 d after the induction of Cyclin E expression (t = 4.77, P < 0.01).
CONCLUSION: Deregulation of cyclin E can induce the formation of aneuploidy in human colon cancer cell line DLD1, and it also plays an important role in the pathway of chromosomal instability.
Collapse
|
42
|
Jefford CE, Irminger-Finger I. Mechanisms of chromosome instability in cancers. Crit Rev Oncol Hematol 2006; 59:1-14. [PMID: 16600619 DOI: 10.1016/j.critrevonc.2006.02.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 12/31/2022] Open
Abstract
Most tumours arise through clonal selection and waves of expansion of a somatic cell that has acquired genetic alterations in essential genes either controlling cell death or cell proliferation. Furthermore, stability of the genome in cancer cells becomes precarious and compromised because several cancer-predisposing mutations affect genes that are responsible for maintaining the integrity and number of chromosomes during cell division. Consequently, the archetypical transformation in tumour cells results in aneuploidy. Indeed, almost all tumour cells display a host of karyotype alterations, showing translocations, gains or losses of entire or large parts of chromosomes. Cancers do not necessarily have a higher mutation rate than normal tissue at the nucleotide level, unless they have gained a mutator phenotype through exposure to environmental stress, but rather exhibit gross chromosomal changes. Therefore, it appears that the main mechanism of tumour progression stems from chromosome instability. Chromosomal instability prevailing in tumour cells arises through several different pathways and is probably controlled by hundreds of genes. Therefore, this review describes the main factors that control chromosome stability through telomere maintenance, mechanisms of cell division, and the mitotic checkpoints that govern centrosome duplication and correct chromosome segregation.
Collapse
Affiliation(s)
- Charles Edward Jefford
- Biology of Aging Laboratory, Department of Geriatrics, University Hospitals Geneva HUG, Switzerland.
| | | |
Collapse
|
43
|
Buim ME, Soares FA, Sarkis AS, Nagai MA. The Transcripts of SFRP1,CEP63 and EIF4G2 Genes Are Frequently Downregulated in Transitional Cell Carcinomas of the Bladder. Oncology 2006; 69:445-54. [PMID: 16410684 DOI: 10.1159/000090984] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 09/05/2005] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of the present study was to identify differentially expressed genes that might be associated with the phenotype of superficial and invasive bladder cancer. METHODS Differential display reverse transcriptase PCR (DDRT-PCR) was used to compare the expression pattern between normal bladder tissue and 4 groups of transitional cell carcinomas of the bladder regarding clinical stage and grade. RESULTS We were able to identify 72 different transcripts, of which 57 (79%) showed homology to known genes, 12 (17%) to hypothetical proteins and 3 (4%) to human expressed sequence tags. Among the differentially expressed genes, SFRP1,CEP63 and EIF4G2 were further validated by quantitative RT-PCR in a series of 50 transitional cell carcinomas. Overall, the transcripts of these three genes were shown to be downregulated in the bladder tumors analyzed. In accordance with the DDRT-PCR results, the SFRP1 transcripts were shown to be downregulated in 90% (45/50) of the bladder tumors as compared with the normal bladder tissue. Although EIF4G2 and CEP63 transcripts exhibited three different expression patterns, downregulation was found in about 50% of the cases analyzed. In addition, downregulation of both CEP63 and EIF4G2 gene transcription was associated with invasive tumors. CONCLUSION The use of DDRT-PCR analysis to compare expression patterns among different subgroups of bladder tumors allowed us to identify a significant number of genes implicated in different cellular pathways that, when up- or downregulated, might play a role in the tumorigenic process of the bladder.
Collapse
Affiliation(s)
- Marcilei E Buim
- Departamento de Radiologia, Disciplina de Oncologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
44
|
Santos S, Chaves R, Adega F, Bastos E, Guedes-Pinto H. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability. ACTA ACUST UNITED AC 2006; 97:114-8. [PMID: 16469867 DOI: 10.1093/jhered/esj016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Most mammalian chromosomes have satellite DNA sequences located at or near the centromeres, organized in arrays of variable size and higher order structure. The implications of these specific repetitive DNA sequences and their organization for centromere function are still quite cloudy. In contrast to most mammalian species, the domestic cat seems to have the major satellite DNA family (FA-SAT) localized primarily at the telomeres and secondarily at the centromeres of the chromosomes. In the present work, we analyzed chromosome preparations from a fibrosarcoma, in comparison with nontumor cells (epithelial tissue) from the same individual, by in situ hybridization of the FA-SAT cat satellite DNA family. This repetitive sequence was found to be amplified in the cat tumor chromosomes analyzed. The amplification of these satellite DNA sequences in the cat chromosomes with variable number and appearance (marker chromosomes) is discussed and might be related to mitotic instability, which could explain the exhibition of complex patterns of chromosome aberrations detected in the fibrosarcoma analyzed.
Collapse
Affiliation(s)
- Sara Santos
- Department of Genetics and Biotechnology, Centre of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, P-5001-801 Vila Real, Portugal
| | | | | | | | | |
Collapse
|
45
|
Fernandez-Gomez J, Escaf Barmadah S, Gosalbez D, Rodriguez-Faba O, Jalon A, Gonzalez R, Garcia Miralles T, Calas A. Telomere length on bladder washing samples from patients with bladder cancer correlates with tumor characteristics flow cytometry method for quantitative fluorescence in situ hybridization (flow-FISH technique). Eur Urol 2005; 48:432-7. [PMID: 15963630 DOI: 10.1016/j.eururo.2005.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 04/26/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of the present study was to evaluate the length of telomeres in patients with bladder cancer using a quantitative flow cytometry (flow-FISH) technique. METHODS Bladder washing samples from 51 patients with bladder cancer were obtained immediately before transurethral resection. The average length of telomere repeats was measured by flow-FISH, as previously reported. Results were expressed in molecular equivalents of soluble fluorochrome (MESF) units. RESULTS Bladder washing specimens provided adequate cell numbers for flow-FISH in 49 cases. The TEL means were 1014.71, 2343.36, 5567 and 18267.57 for Ta, T1, T2 and T3/4 tumors, respectively. Regarding grade it was obtained a mean MESF value of 1379.46, 3391.29 and 15925.11 for G1, G2 and G3, respectively. ANOVA demonstrated statistically significant differences in stage (p: 0.014) and tumor grades (p: 0.012). In relation to ploidy, we found a mean MESF value of 2701.37 and 16085.44 MESF units for diploid and aneuploid cells, respectively. Significant difference (p: 0.003) was observed between both groups. CONCLUSION To date, this is the first report wherein telomere length was measured using flow-FISH method in exfoliated cells in urine from patients with bladder cancer. Further investigations are required to demonstrate whether flow-FISH technique might be considered as a tumor marker of bladder cancer.
Collapse
Affiliation(s)
- Jesus Fernandez-Gomez
- Department of Urology, Hospital Central of Asturias, University of Oviedo, Asturias, Spain.
| | | | | | | | | | | | | | | |
Collapse
|