1
|
Boraey NF, Bebars MA, Wahba AA, Abd El Lateef HM, Attia MA, Elsayed AH, Rashed KA, Sorour EI, Ahmed MF, Abd-Elrehim GAB, Soliman AA, Shehab MMM, Elhindawy EM, Ibraheem AAA, Shehata H, Yousif YM, Hashem MIA, Ahmed AA, Emam AA, Gameil DM, Abdelhady EM, Abdelkhalek K, Morsi WEMA, Selim DM, Razek SA, Ashraf B, Saleh ASE, Eltrawy HH, Alanwar MI, Fouad RA, Omar WE, Nabil RM, Abdelhamed MR, Ibrahim MY, Malek MM, Afify MR, Alharbi MT, Nagshabandi MK, Tarabulsi MK, Qashqary ME, Almoraie LM, Salem HF, Rashad MM, El-Gaaly SAA, El-Deeb NA, Abdallah AM, Fakhreldin AR, Hassouba M, Massoud YM, Attaya MSM, Haridi MK. Association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Egyptian children and adolescents. Pediatr Res 2024; 96:1347-1354. [PMID: 38177248 PMCID: PMC11521986 DOI: 10.1038/s41390-023-02982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/19/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Given the sparse data on the renin-angiotensin system (RAS) and its biological effector molecules ACE1 and ACE2 in pediatric COVID-19 cases, we investigated whether the ACE1 insertion/deletion (I/D) polymorphism could be a genetic marker for susceptibility to COVID-19 in Egyptian children and adolescents. METHODS This was a case-control study included four hundred sixty patients diagnosed with COVID-19, and 460 well-matched healthy control children and adolescents. The I/D polymorphism (rs1799752) in the ACE1 gene was genotyped by polymerase chain reaction (PCR), meanwhile the ACE serum concentrations were assessed by ELISA. RESULTS The ACE1 D/D genotype and Deletion allele were significantly more represented in patients with COVID-19 compared to the control group (55% vs. 28%; OR = 2.4; [95% CI: 1.46-3.95]; for the DD genotype; P = 0.002) and (68% vs. 52.5%; OR: 1.93; [95% CI: 1.49-2.5] for the D allele; P = 0.032). The presence of ACE1 D/D genotype was an independent risk factor for severe COVID-19 among studied patients (adjusted OR: 2.6; [95% CI: 1.6-9.7]; P < 0.001. CONCLUSIONS The ACE1 insertion/deletion polymorphism may confer susceptibility to SARS-CoV-2 infection in Egyptian children and adolescents. IMPACT Recent studies suggested a crucial role of renin-angiotensin system and its biological effector molecules ACE1 and ACE2 in the pathogenesis and progression of COVID-19. To our knowledge, ours is the first study to investigate the association of ACE1 I/D polymorphism and susceptibility to COVID-19 in Caucasian children and adolescents. The presence of the ACE1 D/D genotype or ACE1 Deletion allele may confer susceptibility to SARS-CoV-2 infection and being associated with higher ACE serum levels; may constitute independent risk factors for severe COVID-19. The ACE1 I/D genotyping help design further clinical trials reconsidering RAS-pathway antagonists to achieve more efficient targeted therapies.
Collapse
Affiliation(s)
- Naglaa F Boraey
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Marwa A Bebars
- Department of Pediatrics, Princess Alexandra hospital, Harlow, UK
| | - Ali A Wahba
- Department of Pediatrics at SSMC (Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | | | - Mohamed Atif Attia
- Department of Pediatrics at SKMC (Sheikh khalifa Medical City, Abu Dhabi, UAE
| | - Ahmed H Elsayed
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Khalid A Rashed
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Ehab I Sorour
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Mohamed F Ahmed
- Department of Pediatrics, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | | | - Attia A Soliman
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed M M Shehab
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Elhindawy
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A A Ibraheem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hassan Shehata
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yousif M Yousif
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mustafa I A Hashem
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amani A Ahmed
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Emam
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Dalia M Gameil
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Abdelhady
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Khalil Abdelkhalek
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Walaa E M A Morsi
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia M Selim
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Suzan A Razek
- Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Bassem Ashraf
- Department of Otorhinolaryngology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed S E Saleh
- Department of Otorhinolaryngology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Heba H Eltrawy
- Department of Chest diseases, Faculty of Medicine for Girls, Al-Azhar University, Al-Azhar, Egypt
| | - Mohamed I Alanwar
- Department of Cardiothoracic surgery, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A Fouad
- Department of Medical Biochemistry, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa E Omar
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rehab M Nabil
- Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed R Abdelhamed
- Department of Clinical pathology, Faculty of Medicine for Boys, Al-Azhar University, Al-Azhar, Egypt
| | - Mona Yousri Ibrahim
- Department of Clinical pathology, Faculty of Medicine for Girls, Al-Azhar University, Al-Azhar, Egypt
| | - Mai M Malek
- Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona R Afify
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohanned T Alharbi
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohammed K Nagshabandi
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Muyassar K Tarabulsi
- Department of Medical microbiology and Parasitology. Faculty of Medicine, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohammed Esmail Qashqary
- Department of Family and community medicine, University Medical Center, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila M Almoraie
- Department of Family and community medicine, University Medical Center, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanan F Salem
- Department of Anesthesia, Faculty of Medicine, Benha University, Banha, Egypt
| | - Manal M Rashad
- Department of Anesthesia, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sonya A A El-Gaaly
- Department of Internal Medicine, Faculty of Medicine, Ain-Shams University, Ain-Shams, Egypt
| | - Nahawand A El-Deeb
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amany M Abdallah
- Department of Family Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed R Fakhreldin
- Department of Pediatrics, Faculty of Medicine, Aswan University, Aswan, Egypt
| | - Mohamed Hassouba
- Department of Pediatrics, SUNY Downstate Health Science University, Kings County Hospital, Brooklyn, NY, USA
| | - Yasmine M Massoud
- Department of Tropical Medicine, Faculty of Medicine, Ain-Shams University, Ain-Shams, Egypt
| | - Mona S M Attaya
- Department of Pediatrics, Faculty of Medicine for Girls, Al-Azhar University, Al-Azhar, Egypt
| | - Mohammed K Haridi
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Wang P, Ren Z, Wang W, Liu M, Jia Y, Zhang M, Xue Y, Zhang C, Xu J, Wang C, Wang X. Candesartan upregulates angiotensin-converting enzyme 2 in kidneys of male animals by decreased ubiquitination. FASEB J 2024; 38:e23537. [PMID: 38498345 DOI: 10.1096/fj.202302707r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Candesartan is a common angiotensin-II receptor-1 blocker used for patients with cardiovascular and renal diseases. Angiotensin-converting enzyme 2 (ACE2) is a negative regulator of blood pressure (BP), and also a major receptor for coronaviruses. To determine whether and how candesartan upregulates ACE2, we examined BP and ACE2 in multi-organs from male and female C57BL/6J mice treated with candesartan (1 mg/kg, i.p.) for 7 days. Relative to the vehicle, candesartan lowered BP more in males than females; ACE2 protein abundances were increased in kidneys, not lungs, hearts, aorta, liver, spleen, brain, or serum, only from males. Ace2-mRNA was similar in kidneys. Candesartan also decreased BP in normal, hypertensive, and nephrotic male rats. The renal ACE2 was increased by the drug in normal and nephrotic male rats but not spontaneously hypertensive ones. In male mouse kidneys, ACE2 was distributed at sodium-hydrogen-exchanger-3 positive proximal-convoluted-tubules; ACE2-ubiquitination was decreased by candesartan, accompanied with increased ubiquitin-specific-protease-48 (USP48). In candesartan-treated mouse renal proximal-convoluted-tubule cells, ACE2 abundances and activities were increased while ACE2-ubiquitination and colocalization with lysosomal and proteosomal markers were decreased. The silence of USP48 by siRNA caused a reduction of ACE2 in the cells. Thus, the sex-differential ACE2 upregulation by candesartan in kidney from males may be due to the decreased ACE2-ubiquitination, associated with USP48, and consequent degradation in lysosomes and proteosomes. This is a novel mechanism and may shed light on candesartan-like-drug choice in men and women prone to coronavirus infections.
Collapse
Affiliation(s)
- Ping Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingda Liu
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yutao Jia
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Mingzhuo Zhang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xue
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyang Zhang
- Department of Neurology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jianteng Xu
- Laboratory Division, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Wang
- The Department of Pulmonary and Critical Care Medicine, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- The Core Laboratory for Clinical Research, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Aliakbarian M, Ferns GA, Shabestari MM, Ahmadzadeh AM, Abdollahzade A, Rahimi H, Khodashahi R, Arjmand MH. Elucidating the Role of Pro-renin Receptors in Pancreatic Ductal Adenocarcinoma Progression: A Novel Therapeutic Target in Cancer Therapy. Curr Cancer Drug Targets 2024; 24:881-889. [PMID: 38279719 DOI: 10.2174/0115680096279288231205105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Pancreatic cancer is a highly aggressive malignancy with a very poor prognosis. The 5- year survival in these patients is very low, and most patients develop drug resistance to current therapies, so additional studies are needed to identify the potential role of new drug targets for the treatment of pancreatic cancer. Recent investigations have been performed regarding the roles of pro-renin receptors (PRR) in the initiation and development of cancers. PRR is a component of the local renin-angiotensin system (RAS). Local tissue RAS has been known in diverse organ systems, including the pancreas. Various investigations have implicated that PRRs are associated with the upregulation of various signaling pathways, like the renin-angiotensin system pathway, PI3K/Akt/mTOR, and the Wnt-signaling pathways, to contribute to pathological conditions, including cancer. In this review, we presented an overview of the role of PRR in the progression of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Biochemistry, Division of Medical, Brighton & Sussex Medical School, Brighton, UK
| | | | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aref Abdollahzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Rahimi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Sun Z, Chen Z, Liu R, Lu G, Li Z, Sun Y. Research Progress on the Efficacy and Safety of Spironolactone in Reversing Left Ventricular Hypertrophy in Hemodialysis Patients. Drug Des Devel Ther 2023; 17:181-190. [PMID: 36712946 PMCID: PMC9882618 DOI: 10.2147/dddt.s393480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
The mineralocorticoid receptor antagonist spironolactone has been shown to improve cardiac function and reverse left ventricular hypertrophy in heart failure patients, but there are no consistent findings on the efficacy and safety in hemodialysis patients. Abnormal aldosterone secretion plays a critical role in the formation of left ventricular hypertrophy. Because of the existence of "aldosterone escape", the routine use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers does not completely inhibit aldosterone secretion. Low-dose spironolactone (25 mg/d) has been found in small-sample clinical studies to have a significant positive impact with respect to decreasing left ventricular mass index, increasing left ventricular ejection fraction, reversing left ventricular hypertrophy, and improving cardiovascular function while still being safe. More prospective multicenter clinical trials with large sample sizes are needed, however, to provide convincing evidence.
Collapse
Affiliation(s)
- Zuoya Sun
- Department of Family Medicine, the University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zhiyuan Chen
- Department of Family Medicine, the University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ruihong Liu
- Department of Family Medicine, the University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Gang Lu
- Department of Family Medicine, the University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zhuo Li
- Department of Family Medicine, the University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yi Sun
- Department of Nephrology, Beijing Huairou Hospital, Beijing, People’s Republic of China,Correspondence: Yi Sun, Department of Nephrology, Beijing Huairou Hospital, No. 9 Yongtai North Street, Huairou District, Beijing, 101400, People’s Republic of China, Tel +86-010-69644822, Fax +86-010-69622761, Email
| |
Collapse
|
5
|
Shabanian S, Khazaie M, Ferns GA, Arjmand MH. Local renin-angiotensin system molecular mechanisms in intrauterine adhesions formation following gynecological operations, new strategy for novel treatment. J OBSTET GYNAECOL 2022; 42:1613-1618. [PMID: 35260037 DOI: 10.1080/01443615.2022.2036972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has recently been proposed that local tissue renin-angiotensin system activation has a role in post-surgical adhesion. Intrauterine adhesions are scar tissues that form in the endometrial cavity causing the walls of the uterine to adhere together. Women, undergoing major gynecological surgery, are exposed to a high risk of adhesion formation. Post-operative uterine adhesion is associated with chronic pain and infertility that are important problems following post-operation uterine adhesion. A local renin-angiotensin system has been found in the organs of the female reproductive system, for example in the endometrium. Data about the physiological roles of local RAS in the gynecological tract are largely unknown, but dysfunctional local RAS in the endometrium may contribute to this pathological condition. Local AngII/AT1R may be over-activated after surgical injury or hypoxia leading to an up-regulation of the molecular mechanisms that may lead to a chronic immune response, oxidative stress, and increase the expression of fibrotic molecules like TGF-β to induce the risk of connective fibrotic tissues. Based on AngII/AT1R pathological potential to induce pelvic and uterine adhesions, using angiotensin receptor blockers could be a therapeutic strategy for the prevention and treatment of post-surgical adhesions.IMPACT STATEMENTWhat is already known on this subject? Intrauterine adhesions are described as fibrotic scar tissues following gynecological surgeries. It's reported that 55-100% of women are at risk of intrauterine adhesion after gynecological surgeries. Injury to tissues and hypoxia during the surgery, promote molecular mechanisms to contribute post-surgical adhesion. Recently evidence supports the existence of renin-angiotensin system components in the gynecological tract. Abnormal expression of local angiotensin II and AT1R in uterus tissue following gynecological surgeries up-regulate molecular mechanisms to induce post-operative adhesions.What do the results of this study add? Recently there has been an increased focus on the role of the local renin-angiotensin system in organ fibrosis. The results of this Mini-review article refer to the pathological roles of the local renin-angiotensin system in fibrotic bands formation after gynecological operations. Over-activation of local renin-angiotensin systems up-regulate molecular mechanisms such as inflammation and the TGF-β1 signalling pathway. TGF-β as a profibrotic molecule strongly induces the expression of some fibrotic molecules such as PAI and TIMP to increase the risk of intrauterine adhesions.What are the implications of these findings for clinical practice and/or further research? According to the biological roles of local renin-angiotensin system and AT1R following injuries to develop post-operative adhesion, the administration of ARBs may be considered as a new therapeutic strategy for the prevention of IUA.
Collapse
Affiliation(s)
- Sheida Shabanian
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Majid Khazaie
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Mohammad-Hassan Arjmand
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Badoer E. New Insights Into the Role of Inflammation in the Brain in Heart Failure. Front Physiol 2022; 13:837723. [PMID: 35309046 PMCID: PMC8928560 DOI: 10.3389/fphys.2022.837723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure is a growing medical problem. Although the underlying aetiology of heart failure differs according to the phenotype, there are some common characteristics observed in patients with heart failure. These include an increased sympathetic nerve activity, an activated renin–angiotensin system, and inflammation. The mechanisms mediating the increased sympathetic activity are not completely understood but the central nervous system plays a major role. Activation of the renin–angiotensin system plays an active role in the remodelling of the heart and in fluid and electrolyte imbalance. The presence of a central renin–angiotensin system means that locally produced angiotensin in the brain may also play a key role in autonomic dysfunction seen in heart failure. Markers of inflammation in the heart and in the circulation are observed in patients diagnosed with heart failure. Circulating pro-inflammatory cytokines can also influence cardiac function further afield than just locally in the heart including actions within the brain to activate the sympathetic nervous system. Preclinical evidence suggests that targeting the pro-inflammatory cytokines would be a useful therapy to treat heart failure. Most clinical studies have been disappointing. This mini-review suggests that pro-inflammatory cytokines in the brain play a key role and there is a problem associated with access of effective doses of the drugs to the site of action in the brain. The recent advances in nanotechnology delivery techniques may provide exciting future technology to investigate the role of specific pro-inflammatory mediators as novel targets within the brain in the treatment of heart failure.
Collapse
|
7
|
Ethnic Prevalence of Angiotensin-Converting Enzyme Deletion (D) Polymorphism and COVID-19 Risk: Rationale for Use of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers. J Racial Ethn Health Disparities 2020; 8:973-980. [PMID: 32901433 PMCID: PMC7478439 DOI: 10.1007/s40615-020-00853-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022]
Abstract
Rationale Hypertension, obesity and diabetes are major risk factors associated with morbidities underlying COVID-19 infections. Regression analysis correlated presence of ACE insertion/deletion (I/D) polymorphism to COVID-19 incidence and mortality. Furthermore, COVID-19 prevalence correlated to allele frequency of angiotensin-converting enzyme (ACE) deletion (D) polymorphism within the European population. Objective Homozygous ACE deletion polymorphism is associated with increase in ACE and angiotensin II (Ang-II), sustained levels can result in inflammation, fibrosis and organ damage. The ACE DD polymorphism is also associated with hypertension, acute respiratory distress and diabetic nephropathy, all considered high risk for COVID-19 infection and outcomes. The study objective was to describe a biological framework associating ethnic prevalence of ACE deletion polymorphism to COVID-19 comorbidities providing rationale for therapeutic utility of ACE-I/ARBs to improve outcomes. Method and Results The Allele Frequency Database (ALFRED) was queried for frequency of rs4646994 representing ACE I/D polymorphism. In a total of 349 worldwide population samples, frequency of ACE D allele was higher in European, Asian, and Africans cohorts. In the USA, the frequency of ACE D allele was higher in non-Hispanic Black compared with non-Hispanic White and Mexican Americans. Conclusion COVID-19 binding mediated reduction/inactivation of ACE-II can increase ACE/Ang-II signalling pathway and related pathologies. The presence of ACE DD polymorphism with COVID-19 infection likely augments ACE/Ang-II activities, increasing severity of COVID-19 morbidities and impacts outcomes. Thus, ethnic prevalence of ACE DD polymorphism can explain in part the severity of COVID-19 morbidity providing rationale for the use of ACE-I/ARBs to improve outcomes.
Collapse
|
8
|
Ren ZL, Hu R, Wang ZW, Zhang M, Ruan YL, Wu ZY, Wu HB, Hu XP, Hu ZP, Ren W, Li LC, Dai FF, Liu H, Cai X. Epidemiologic and clinical characteristics of heart transplant recipients during the 2019 coronavirus outbreak in Wuhan, China: A descriptive survey report. J Heart Lung Transplant 2020; 39:412-417. [PMID: 32362392 PMCID: PMC7102567 DOI: 10.1016/j.healun.2020.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The epidemiologic and clinical characteristics of heart transplant (HTx) recipients during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic remains unclear. We studied the characteristics of HTx recipients from December 20, 2019, to February 25, 2020, in an effort to understand their risk and outcomes. METHODS All accessible HTx recipients were included in this single-center retrospective study. We collected information on the recipients using a web-based questionnaire as well as the hospital database. RESULTS We followed 87 HTx recipients (72.4% were men, and the average age was 51 years). A total of 79 recipients resided in Hubei, and 57 recipients had a Wuhan-related history of travel or contact. Most took precautionary measures while in contact with suspicious crowds, and 96.6% of the families and communities undertook prevention and quarantine procedures. Four upper airway infections were reported, and 3 of them tested negative for SARS-CoV-2 (the fourth recovered and was not tested). All cases were mild and successfully recovered after proper treatment. Laboratory results of 47 HTx cases within the last 2 months were extracted. Of these, 21.3% of recipients had pre-existing lymphopenia, and 87.2% of recipients had a therapeutic concentration of tacrolimus (5-12 ng/ml). Liver and kidney insufficiency was seen in 5 and 6 recipients, respectively. CONCLUSION HTx recipients who practiced appropriate prevention measures had a low rate of infection with SARS-CoV-2 and transition to the associated disease COVID-19. These early data will require confirmation as the pandemic establishes around the world.
Collapse
Affiliation(s)
- Zong-Li Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yong-Le Ruan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Yong Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Bing Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Peng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luo-Cheng Li
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei-Feng Dai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huan Liu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Cai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Porcari CY, Araujo IG, Urzedo-Rodrigues L, De Luca LA, Menani JV, Caeiro XE, Imboden H, Antunes-Rodrigues J, Reis LC, Vivas L, Godino A, Mecawi AS. Whole body sodium depletion modifies AT1 mRNA expression and serotonin content in the dorsal raphe nucleus. J Neuroendocrinol 2019; 31:e12703. [PMID: 30803087 DOI: 10.1111/jne.12703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
Angiotensin II (Ang II) acts on Ang II type 1 (AT1) receptors located in the organum vasculosum and subfornical organ (SFO) of the lamina terminalis as a main facilitatory mechanism of sodium appetite. The brain serotonin (5-HT) system with soma located in the dorsal raphe nucleus (DRN) provides a main inhibitory mechanism. In the present study, we first investigated the existence of Ang II AT1 receptors in serotonergic DRN neurones. Then, we examined whether whole body sodium depletion affects the gene expression of the AT1a receptor subtype and the presumed functional significance of AT1 receptors. Using confocal microscopy, we found that tryptophan hydroxylase-2 and serotonin neurones express AT1 receptors in the DRN. Immunofluorescence quantification showed a significant reduction in 5-HT content but no change in AT1 receptor expression or AT1/5-HT colocalisation in the DRN after sodium depletion. Whole body sodium depletion also significantly increased Agtr1a mRNA expression in the SFO and DRN. Oral treatment with the AT1 receptor antagonist losartan reversed the changes in Agtr1a expression in the SFO but not the DRN. Losartan injection into either the DRN or the mesencephalic aqueduct had no influence on sodium depletion-induced 0.3 mol L-1 NaCl intake. The results indicate the expression of Agtr1a mRNA in the DRN and SFO as a marker of sodium depletion. They also suggest that serotonergic DRN neurones are targets for Ang II. However, the function of their AT1 receptors remains elusive.
Collapse
Affiliation(s)
- Cintia Yamila Porcari
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Iracema Gomes Araujo
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Lilia Urzedo-Rodrigues
- Department of Physiology and Pathology, School of Dentistry-FOAr, São Paulo State University, UNESP, Araraquara, Brazil
| | - Laurival Antonio De Luca
- Department of Physiology and Pathology, School of Dentistry-FOAr, São Paulo State University, UNESP, Araraquara, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry-FOAr, São Paulo State University, UNESP, Araraquara, Brazil
| | - Ximena Elizabeth Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Hans Imboden
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - José Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luís Carlos Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropedica, Brazil
| | - Laura Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
- Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - André Souza Mecawi
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Casalechi M, Dela Cruz C, Lima LC, Maciel LP, Pereira VM, Reis FM. Angiotensin peptides in the non-gravid uterus: Paracrine actions beyond circulation. Peptides 2018; 101:145-149. [PMID: 29367076 DOI: 10.1016/j.peptides.2018.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
The renin-angiotensin system (RAS) involves a complex network of precursors, peptides, enzymes and receptors comprising a systemic (endocrine) and a local (paracrine/autocrine) system. The local RAS plays important roles in tissue modulation and may operate independently of or in close interaction with the circulatory RAS, acting in a complementary fashion. Angiotensin (Ang) II, its receptor AT1 and Ang-(1-7) expression in the endometrium vary with menstrual cycle, and stromal cell decidualization in vitro is accompanied by local synthesis of angiotensinogen and prorenin. Mas receptor is unlikely to undergo marked changes accompanying the cyclic ovarian steroid hormone fluctuations. Studies investigating the functional relevance of the RAS in the non-gravid uterus show a number of paracrine effects beyond circulation and suggest that RAS peptides may be involved in the pathophysiology of proliferative and fibrotic diseases. Endometrial cancer is associated with increased expression of Ang II, Ang-converting enzyme 1 and AT1 in the tumoral tissue compared to neighboring non-neoplastic endometrium, and also with a gene polymorphism that enhances AT1 signal. Ang II induces human endometrial cells to transdifferentiate into cells with myofibroblast phenotype and to synthetize extracellular matrix components that might contribute to endometrial fibrosis. Altogether, these findings point to a fully operating RAS within the uterus, but since many concepts rely on preliminary evidence further studies are needed to clarify the role of the local RAS in uterine physiology and pathophysiology.
Collapse
Affiliation(s)
- Maíra Casalechi
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cynthia Dela Cruz
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiza C Lima
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana P Maciel
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Virgínia M Pereira
- Department of Veterinary Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Abstract
The presence of local renin angiotensin aldosterone systems (RAAS) in the cardiovascular and renal tissues and their influence in cardiovascular and renal diseases are described. The fundamental role of ACE/Ang II/AT1 receptor axis activation as well the counterregulatory role of ACE2/Ang (1-7)/Mas receptor activation on cardiovascular and renal physiology and pathology are emphasized. The presence of a local RAS and its influence on hypertension is discussed, and finally, the hypothesis that epigenetic factors change the RAAS in utero and induce the expression of renin or Ang II inside the cells of the cardiovascular system is presented.
Collapse
Affiliation(s)
- Walmor C De Mello
- Department of Pharmacology, School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936, USA.
| |
Collapse
|
12
|
De Mello WC, Gerena Y. Measurement of Cardiac Angiotensin II by Immunoassays, HPLC-Chip/Mass Spectrometry, and Functional Assays. Methods Mol Biol 2017; 1527:127-137. [DOI: 10.1007/978-1-4939-6625-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
De Mello WC, Gerena Y, Ayala-Peña S. Angiotensins and Huntington's Disease: A Study on Immortalized Progenitor Striatal Cell Lines. Front Endocrinol (Lausanne) 2017; 8:108. [PMID: 28596754 PMCID: PMC5442183 DOI: 10.3389/fendo.2017.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Neurons from mouse models of Huntington's disease (HD) exhibit altered electrophysiological properties, potentially contributing to neuronal dysfunction and neurodegeneration. The renin-angiotensin system (RAS) is a potential contributor to the pathophysiology of neurodegenerative diseases. However, the role of angiotensin II (Ang II) and angiotensin (1-7) has not been characterized in HD. We investigated the influence of Ang II and angiotensin (1-7) on total potassium current using immortalized progenitor mutant huntingtin-expressing (Q111) and wild-type (Q7) cell lines. Measurements of potassium current were performed using the whole cell configuration of pCLAMP. The results showed that (1) the effect of Ang II administered to the bath caused a negligible effect on potassium current in mutant Q111 cells compared with wild-type Q7 cells and that intracellular administration of Ang II reduced the potassium current in wild type but not in mutant cells; (2) the small effect of Ang II was abolished by losartan; (3) intracellular administration of Ang II performed in mutant huntingtin-expressing Q111 cells revealed a negligible effect of the peptide on potassium current; (4) flow cytometer analysis indicated a low expression of Ang II AT1 receptors in mutant Q111 cells; (5) mutant huntingtin-expressing striatal cells are highly sensitive to Ang (1-7) and that the effect of Ang (1-7) is related to the activation of Mas receptors. In conclusion, mutant huntingtin-expressing cells showed a negligible effect of Ang II on potassium current, a result probably due to the reduced expression of AT1 receptors at the surface cell membrane. In contrast, administration of Ang (1-7) to the bath showed a significant decline of the potassium current in mutant cells, an effect dependent on the activation of Mas receptors. Ang II had an intracrine effect in wild-type cells and Ang (1-7) exerted a significant effect in mutant huntingtin-expressing striatal cells.
Collapse
Affiliation(s)
- Walmor C. De Mello
- Department of Pharmacology and Toxicology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| | - Sylvette Ayala-Peña
- Department of Pharmacology and Toxicology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
- *Correspondence: Sylvette Ayala-Peña,
| |
Collapse
|
14
|
Babiker F, Al-Jarallah A, Joseph S. The Interplay between the Renin Angiotensin System and Pacing Postconditioning Induced Cardiac Protection. PLoS One 2016; 11:e0165777. [PMID: 27814397 PMCID: PMC5096684 DOI: 10.1371/journal.pone.0165777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 10/18/2016] [Indexed: 01/20/2023] Open
Abstract
Background Accumulating evidence suggests a cardioprotective role of pacing postconditioning (PPC) maneuvers in animal models and more recently in humans. The procedure however remains to be optimized and its interaction with physiological systems remains to be further explored. The renin angiotensin system (RAS) plays a dual role in ischemia/reperfusion (I/R) injury. The interaction between RAS and PPC induced cardiac protection is however not clearly understood. We have recently demonstrated that angiotensin (1–7) via Mas receptor played a significant role in PPC mediated cardiac protection against I/R injury. Objective The objective of this study was to investigate the role of angiotensin converting enzyme (ACE)—chymase—angiotensin II (Ang II)—angiotensin receptor 1 (AT1) axes of RAS in PPC mediated cardiac protection. Methods Isolated rat hearts were subjected to I/R (control) or PPC in the presence or absence of Ang II, chymostatin (inhibitor of locally produced Ang II), ACE blocker (captopril) or AT1 antagonist (irbesartan). Hemodynamics data was computed digitally and infarct size was determined histologically using TTC staining and biochemically by measuring creatine kinase (CK) and lactate dehydrogenase levels. Results Cardiac hemodynamics were significantly (P<0.001) improved and infarct size and cardiac enzymes were significantly (P<0.001) reduced in hearts subjected to PPC relative to hearts subjected to I/R injury. Exogenous administration of Ang II did not affect I/R injury or PPC mediated protection. Nonetheless inhibition of endogenously synthesized Ang II protected against I/R induced cardiac damage yet did not block or augment the protective effects of PPC. The administration of AT1 antagonist did not alleviate I/R induced damage. Interestingly it abrogated PPC induced cardiac protection in isolated rat hearts. Finally, PPC induced protection and blockade of locally produced Ang II involved enhanced activation of ERK1/2 and Akt components of the reperfusion injury salvage kinase (RISK) pathway. Conclusions This study demonstrate a novel role of endogenously produced Ang II in mediating I/R injury and highlights the significance of AT1 signaling in PPC mediated cardiac protection in isolated rodents hearts ex vivo. The interaction between Ang II-AT1 and PPC appears to involve alterations in the activation state of ERK1/2 and Akt components of the RISK pathway.
Collapse
Affiliation(s)
- Fawzi Babiker
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
- * E-mail:
| | - Aishah Al-Jarallah
- Department of Biochemistry, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| | - Shaji Joseph
- Departments of Physiology, Faculty of Medicine, Health Science Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
15
|
De Mello W. Intracellular renin increases the inward calcium current in smooth muscle cells of mesenteric artery of SHR. Implications for hypertension and vascular remodeling. Peptides 2016; 84:36-43. [PMID: 27545826 DOI: 10.1016/j.peptides.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Abstract
UNLABELLED The influence of intracellular renin on the inward calcium current in isolated smooth muscle cells from SHR mesenteric arteries was investigated. Measurements of calcium current were performed using the whole cell configuration of pCLAMP. The results indicated that: 1) renin (100nM) dialyzed into smooth muscle cells, increased the inward calcium current; 2) verapamil (10-9M) administered to the bath inhibited the effect of renin on the inward calcium current; 3) concurrently with the increase of calcium current a depolarization of 6.8+/-2.1mV (n=16)(P<0.05) was found in cells dialyzed with renin; 4) intracellular dialysis of renin (100nM) into smooth muscle cells isolated from mesenteric arteries of normal Wystar Kyoto rats showed no significant change on calcium current; 5) aliskiren (10-9M) dialyzed into the cell together with renin (100nM) abolished the effect of the enzyme on the calcium current in SHR; 6) Ang II (100nM) dialyzed into the smooth muscle cell from mesenteric artery of SHR in absence of renin, decreased the calcium current-an effect greatly reduced by valsartan (10-9M) added to the cytosol; 7) administration of renin (100nM) plus angiotensinogen (100nM) into the cytosol of muscles cells from SHR rats reduced the inward calcium current; 8) extracellular administration of Ang II (100nM) increased the inward calcium current in mesenteric arteries of SHR. CONCLUSIONS intracellular renin in vascular resistance vessels from SHR due to internalization or expression, contributes to the regulation of vascular tone and control of peripheral resistance-an effect independently of Ang II. Implications for hypertension and vascular remodeling are discussed.
Collapse
Affiliation(s)
- Walmor De Mello
- School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936, USA.
| |
Collapse
|
16
|
Intracellular angiotensin-(1-12) changes the electrical properties of intact cardiac muscle. Mol Cell Biochem 2016; 422:31-40. [PMID: 27590241 DOI: 10.1007/s11010-016-2801-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
In the present work, the influence of intracellular injection of angiotensin-(1-12) [Ang-(1-12)] on the electrical properties of the intact left ventricle of Wistar Kyoto rats was investigated with electrophysiological methods. Particular attention was given to the role of chymostatin on the effect of the peptide. The results indicated that intracellular administration of the peptide elicited a depolarization of the surface cell membrane and an increase of duration of the action potential followed by the generation of early afterdepolarizations. The increment of action potential duration caused by Ang-(1-12) (100 nM) was due to a decrease of total potassium current recorded from single cardiomyocytes using the whole cell configuration of pCAMP. The decrease of potassium current was related to the activation of protein kinase C (PKC) because the specific inhibitor of kinase C, Bis-1 (10-9 M), abolished Ang-(1-12) effects on the potassium current. The question of whether the effect of Ang-(1-12) was related to the formation of Ang II by chymase was investigated.The results revealed that the intracellular administration of chymostatin, a chymase inhibitor (10-9 M) abolished the effect of intracellular Ang-(1-12) on the potassium current. Moreover, intracellular Ang II (100 nM), by itself, reduced the potassium current, an effect decreased by intracellular valsartan (100 nM). Valsartan (10-9 M) dialyzed into the cell abolished the effect of Ang-(1-12) (100 nM). These observations demonstrate that the effect of Ang-(1-12) on potassium current was related to the formation of Ang II and that the peptide has arrhythmogenic properties.
Collapse
|
17
|
Bratlie SO, Edebo A, Casselbrant A, Helander HF, Fändriks L. The renin-angiotensin system in Barrett's esophagus. Scand J Gastroenterol 2016; 51:1037-42. [PMID: 27174460 DOI: 10.1080/00365521.2016.1174881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Barrett's esophagus (BE) is a risk factor for esophageal adenocarcinoma. In addition to its classical endocrine character known for hemodynamic regulation, the renin-angiotensin system (RAS) can be associated with inflammation, wound healing, and cancer. The aim of this study was to explore a potential expression of the RAS in BE, with or without the presence of dysplasia. MATERIAL AND METHODS Biopsy material was prepared for western blotting and immunohistochemistry. Non-BE patients (controls) were compared with BE patients regarding RAS in the squamous epithelium. In the columnar BE mucosa, RAS expression was studied in patients with and without dysplasia. Key components of the 'classical' RAS were assessed: the angiotensin-converting enzyme (ACE) and the angiotensin II subtype 1 and 2 receptors (AT1R and AT2R). RESULTS The presence of RAS factors was confirmed in the esophageal mucosa of both control and BE patients. ACE protein expression was 48% lower (p = 0.001) whereas AT1R was 45% higher (p = 0.039) in the squamous epithelium of BE patients compared to epithelia from non-BE controls. In the metaplastic intestinal-like epithelium, AT1R expression was 37% higher in BE patients with confirmed dysplasia than in patients without dysplasia (p = 0.009). Immunohistochemistry showed an altered distribution of RAS proteins in BE patients with dysplasia. CONCLUSIONS The differential RAS expression observed may prove to be useful as a biomarker or a pharmaceutical target.
Collapse
Affiliation(s)
- Svein Olav Bratlie
- a Department of Gastrosurgical Research and Education , Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Anders Edebo
- a Department of Gastrosurgical Research and Education , Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Anna Casselbrant
- a Department of Gastrosurgical Research and Education , Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Herbert F Helander
- a Department of Gastrosurgical Research and Education , Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Lars Fändriks
- a Department of Gastrosurgical Research and Education , Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital , Gothenburg , Sweden
| |
Collapse
|
18
|
Duggan DJ, Tabrizchi R. Angiotensin II control of regional haemodynamics in rats with aortocaval fistula. Exp Physiol 2016; 101:1192-1205. [PMID: 27427425 DOI: 10.1113/ep085717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Hyperdynamic circulation because of arteriovenous fistula results in reduction of blood flow to organs but is a model of low circulatory resistance with activated renin-angiotensin system. The aim was to determine contributions of different subtypes of angiotensin II receptors to regional blood flow and vascular conductance in a hyperdynamic circulatory state. What is the main finding and its importance? The renin-angiotensin system plays a pivotal role in control of regional blood flow in animals with arteriovenous fistula and makes a major contribution to the maintenance of normal arterial blood pressure. In this hyperdynamic circulatory state model, angiotensin II type 1 receptors predominated in regulating regional haemodynamics. Regional perfusion is reduced and the renin-angiotensin system activated in rats with aortocaval fistula. The effects of captopril (angiotensin-converting enzyme inhibitor), losartan (angiotensin II type 1 receptor antagonist) and PD 123319 (angiotensin II type 2 receptor antagonist) on regional blood flow and vascular conductance were assessed in rats with aortocaval fistula and sham-operated rats. Control of blood flow and vascular conductance by angiotensin II was evaluated by serial bolus injections of captopril, losartan and PD 123319 in anaesthetized rats. In rats with fistula, PD 123319 significantly decreased, whereas captopril and losartan increased, mesenteric blood flow. The decrease in mesenteric blood flow induced by PD 123319 was significantly greater in rats with fistula compared with sham operation. Captopril and PD 123319 significantly decreased renal blood flow compared with losartan, which increased it. In sham-operated rats, captopril and losartan significantly increased, whereas PD 123319 decreased, mesenteric and renal conductance. In rats with fistula, captopril and losartan significantly increased, whereas PD 123319 decreased, mesenteric conductance. The significant increase produced by losartan on mesenteric conductance was greater in rats with fistula compared with sham operation. PD 123319 produced a significantly greater decrease in renal conductance of rats with aortocaval fistula compared with sham-operated rats. Captopril, losartan and PD 123319 did not significantly affect perfusion in the hindquarter in rats with fistula or sham-operated. The renin-angiotensin system is more active in the control of regional haemodynamics in rats with aortocaval fistula and acts as a mechanism of maintaining normal arterial blood pressure in these animals. In rats with fistula, angiotensin II type 1 receptors predominate in regulating regional haemodynamics.
Collapse
Affiliation(s)
- Daniel J Duggan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
19
|
De Mello WC. Intracellular angiotensin II as a regulator of muscle tone in vascular resistance vessels. Pathophysiological implications. Peptides 2016; 78:87-90. [PMID: 26944358 DOI: 10.1016/j.peptides.2016.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/19/2016] [Accepted: 02/23/2016] [Indexed: 12/26/2022]
Abstract
The influence of intracellular angiotensin II on the regulation of potassium current and membrane potential of smooth muscle cells of mesenteric arteries and its relevance for the regulation of vascular tone was reviewed. The presence of components of the renin angiotensin system (RAS) in different cells of the cardiovascular system, was discussed including their presence in the nuclei and mitochondria. Emphasis was given to the opposite effects of intracellular and extracellular angiotensin II (Ang II) on the regulation of potassium current, membrane potential and contractility of vascular resistance vessels and its implication to vascular physiology and pathology and the possible role of epigenetic factors on the expression of angiotensin II (Ang II) and renin in vascular resistance vessels as well as its possible pathophysiological role in hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Walmor C De Mello
- School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936-5067, USA.
| |
Collapse
|
20
|
Combination Treatment With Antihypertensive Agents Enhances the Effect of Qiliqiangxin on Chronic Pressure Overload-induced Cardiac Hypertrophy and Remodeling in Male Mice. J Cardiovasc Pharmacol 2016; 65:628-39. [PMID: 25806688 PMCID: PMC4461387 DOI: 10.1097/fjc.0000000000000230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is Available in the Text. We previously showed that Qiliqiangxin (QL) capsules could ameliorate cardiac hypertrophy and remodeling in a mouse model of pressure overload. Here, we compared the effects of QL alone with those of QL combined with the following 3 types of antihypertensive drugs on cardiac remodeling and dysfunction induced by pressure overload for 4 weeks in mice: an angiotensin II type 1 receptor (AT1-R) blocker (ARB), an angiotensin-converting enzyme inhibitor (ACEI), and a β-adrenergic receptor (β-AR) blocker (BB). Adult male mice (C57B/L6) were subjected to either transverse aortic constriction or sham operation for 4 weeks, and the drugs (or saline) were orally administered through gastric tubes. Cardiac function and remodeling were evaluated through echocardiography, catheterization, histology, and analysis of hypertrophic gene expression. Cardiomyocyte apoptosis and autophagy, AT1-R and β1-AR expression, and cell proliferation–related molecules were also examined. Although pressure overload–induced cardiac remodeling and dysfunction, hypertrophic gene reprogramming, AT1-R and β1-AR expression, and ERK phosphorylation were significantly attenuated by QL alone, QL + ARB, QL + ACEI, and QL + BB, the attenuation was stronger in the combination treatment groups. Moreover, apoptosis was reduced to a larger extent by each combination treatment than by QL alone, whereas autophagy was more strongly attenuated by either QL + ARB or QL + ACEI. None of the treatments significantly upregulated ErbB2 or ErbB4 phosphorylation, and none significantly downregulated C/EBPβ expression. Therefore, the effects of QL on chronic pressure overload–induced cardiac remodeling may be significantly increased when QL is combined with an ARB, an ACEI, or a BB.
Collapse
|
21
|
Li Q, Sun L, Du J, Ran P, Gao T, Yuan Y, Xiao C. Risk given by AGT polymorphisms in inducing susceptibility to essential hypertension among isolated populations from a remote region of China: A case-control study among the isolated populations. J Renin Angiotensin Aldosterone Syst 2015; 16:1202-17. [PMID: 26391364 DOI: 10.1177/1470320315606315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Hypertension is a serious risk factor affecting up to 30% of the world's population with a heritability of more than 30-50%. The aim of this study was to investigate the contribution of the polymorphisms localized in the angiotensinogen (AGT) gene, a main component of the renin-angiotensin-aldosterone system, in inducing the susceptibility to essential hypertension (EH) among isolated populations (Yi and Hani minorities) with low prevalence rate from the remote region of Yunnan in China. METHODS A case-control association study was performed, and all subjects were genotyped for the seven single nucleotide polymorphisms localized in the AGT region by polymerase chain reaction-restriction fragment length polymorphism analysis. RESULTS Three polymorphisms, i.e. rs5046, rs5049, and rs2478544, were significantly associated with EH among the Hani minority. The associations, found in the Yi minority, did not reach a conclusive level of statistical significance. The polymorphisms of rs2478544 and rs5046 caused the transformations of exonic splicing enhancer sites and transcription factor binding sites, respectively, in the bioinformatic analyses. The haplotype-rs5046T, rs5049A, rs11568020G, rs3789679C, rs2478544C was susceptible for EH among the Hani minority. CONCLUSION Our findings suggested that the AGT polymorphisms have played a vital role in determining an individual's susceptibility to EH among the isolated population, which would be helpful for EH management in the remote mountainous region of Yunnan in China.
Collapse
Affiliation(s)
- Qian Li
- School of Medicine, Yunnan University, Kunming, China
| | - Lijuan Sun
- School of Medicine, Yunnan University, Kunming, China
| | - Jing Du
- School of Medicine, Yunnan University, Kunming, China
| | - Pengzhan Ran
- School of Medicine, Yunnan University, Kunming, China
| | - Tangxin Gao
- School of Medicine, Yunnan University, Kunming, China
| | - Yuncang Yuan
- School of Medicine, Yunnan University, Kunming, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, China
| |
Collapse
|
22
|
De Mello WC. Regulation of cell volume and water transport--an old fundamental role of the renin angiotensin aldosterone system components at the cellular level. Peptides 2014; 58:74-7. [PMID: 24945466 PMCID: PMC7172966 DOI: 10.1016/j.peptides.2014.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022]
Abstract
The expression and the role of renin angiotensin aldosterone system (RAAS) components on regulation of cell volume and water transport on vertebrates and invertebrates were reviewed. The presence of these components even in simple organisms like leeches and their relevance for the control of cellular volume and water transport supports the view that the expression of these components, at cellular level, is an acquisition which was preserved throughout evolution.
Collapse
Affiliation(s)
- Walmor C De Mello
- School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936, USA.
| |
Collapse
|
23
|
Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clin Sci (Lond) 2014; 126:753-74. [DOI: 10.1042/cs20130414] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GPCRs (G-protein-coupled receptors) are among the most important targets for drug discovery due to their ubiquitous expression and participation in cellular events under both healthy and disease conditions. These receptors can be activated by a plethora of ligands, such as ions, odorants, small ligands and peptides, including angiotensins and kinins, which are vasoactive peptides that are classically involved in the pathophysiology of cardiovascular events. These peptides and their corresponding GPCRs have been reported to play roles in other systems and under pathophysiological conditions, such as cancer, central nervous system disorders, metabolic dysfunction and bone resorption. More recently, new mechanisms have been described for the functional regulation of GPCRs, including the transactivation of other signal transduction receptors and the activation of G-protein-independent pathways. The existence of such alternative mechanisms for signal transduction and the discovery of agonists that can preferentially trigger one signalling pathway over other pathways (called biased agonists) have opened new perspectives for the discovery and development of drugs with a higher specificity of action and, therefore, fewer side effects. The present review summarizes the current knowledge on the non-canonical signalling and roles of angiotensins and kinins.
Collapse
|
24
|
De Mello WC, Frohlich ED. Clinical perspectives and fundamental aspects of local cardiovascular and renal Renin-Angiotensin systems. Front Endocrinol (Lausanne) 2014; 5:16. [PMID: 24600438 PMCID: PMC3928588 DOI: 10.3389/fendo.2014.00016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/06/2014] [Indexed: 01/13/2023] Open
Abstract
Evidence for the potential role of organ specific cardiovascular renin-angiotensin systems (RAS) has been demonstrated experimentally and clinically with respect to certain cardiovascular and renal diseases. These findings have been supported by studies involving pharmacological inhibition during ischemic heart disease, myocardial infarction, cardiac failure; hypertension associated with left ventricular ischemia, myocardial fibrosis and left ventricular hypertrophy; structural and functional changes of the target organs associated with prolonged dietary salt excess; and intrarenal vascular disease associated with end-stage renal disease. Moreover, the severe structural and functional changes induced by these pathological conditions can be prevented and reversed by agents producing RAS inhibition (even when not necessarily coincident with alterations in arterial pressure). In this review, we discuss specific fundamental and clinical aspects and mechanisms related to the activation or inhibition of local RAS and their implications for cardiovascular and renal diseases. Fundamental aspects involving the role of angiotensins on cardiac and renal functions including the expression of RAS components in the heart and kidney and the controversial role of angiotensin-converting enzyme 2 on angiotensin peptide metabolism in humans, were discussed.
Collapse
Affiliation(s)
- Walmor C. De Mello
- School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR, USA
- *Correspondence: Walmor C. De Mello, School of Medicine, University of Puerto Rico Medical Sciences Campus, Suite A-322, Main Building, San Juan, PR 00936-5067, USA e-mail:
| | | |
Collapse
|
25
|
Abstract
SIGNIFICANCE Despite recent medical advances, cardiovascular disease and heart failure (HF) continue to be major health concerns, and related mortality remains high. As a result, investigation of the mechanisms involved in the development of HF continues to be an active field of study. RECENT ADVANCES The renin-angiotensin system (RAS) and its effector molecule, angiotensin (Ang) II, affect cardiac function through both systemic and local actions, and have been shown to play a major role in cardiac remodeling and dysfunction in the failing heart. Many of the downstream effects of AngII signaling are mediated by elevated levels of reactive oxygen species (ROS) and oxidative stress, which have also been implicated in the pathology of HF. CRITICAL ISSUES Inhibitors of the RAS have proven beneficial in the treatment of patients at risk for and suffering from HF, but remain only partially effective. ROS can be generated from several different sources, and the oxidative state is normally tightly regulated in the heart. How AngII increases ROS levels and causes dysregulation of the cardiac oxidative state has been the subject of considerable interest in recent years. FUTURE DIRECTIONS A better understanding of this process and the mechanisms involved should lead to the development of more effective HF therapies and improved outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey , Newark, New Jersey
| | | |
Collapse
|
26
|
Gao S, Park BM, Cha SA, Park WH, Park BH, Kim SH. Angiotensin AT2 receptor agonist stimulates high stretch induced- ANP secretion via PI3K/NO/sGC/PKG/pathway. Peptides 2013; 47:36-44. [PMID: 23791669 DOI: 10.1016/j.peptides.2013.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) type 1 receptor (AT1R) mediates the major cardiovascular effects of Ang II. However, the effects mediated via AT2R are still controversial. The aim of the present study is to define the effect of AT2R agonist CGP42112A (CGP) on high stretch-induced ANP secretion and its mechanism using in vitro and in vivo experiments. CGP (0.01, 0.1 and 1μM) stimulated high stretch-induced ANP secretion and concentration from isolated perfused rat atria. However, atrial contractility and the translocation of extracellular fluid did not change. The augmented effect of CGP (0.1μM) on high stretch-induced ANP secretion was attenuated by the pretreatment with AT2R antagonist or inhibitor for phosphoinositol 3-kinase (PI3K), nitric oxide (NO), soluble guanylyl cyclase (sGC), or protein kinase G (PKG). However, antagonist for AT1R or Mas receptor did not influence CGP-induced ANP secretion. In vivo study, acute infusion of CGP for 10min increased plasma ANP level without blood pressure change. In renal hypertensive rat atria, AT2R mRNA and protein levels were up-regulated and the response of plasma ANP level to CGP infusion in renal hypertensive rats augmented. The pretreatment with AT2R antagonist for 10min followed by CGP infusion attenuated an increased plasma ANP level induced by CGP. However, pretreatment with AT1R or Mas receptor antagonist unaffected CGP-induced increase in plasma ANP level. Therefore, we suggest that AT2R agonist CGP stimulates high stretch-induced ANP secretion through PI3K/NO/sGC/PKG pathway and these effects are augmented in renal hypertensive rats.
Collapse
MESH Headings
- Angiotensin II/analogs & derivatives
- Angiotensin II/pharmacology
- Animals
- Atrial Natriuretic Factor/metabolism
- Atrial Pressure/drug effects
- Cyclic GMP-Dependent Protein Kinases/genetics
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Gene Expression Regulation
- Guanylate Cyclase/genetics
- Guanylate Cyclase/metabolism
- Heart Atria/drug effects
- Heart Atria/metabolism
- Hypertension, Renal/genetics
- Hypertension, Renal/metabolism
- Hypertension, Renal/physiopathology
- Imidazoles/pharmacology
- Losartan/pharmacology
- Male
- Nitric Oxide/metabolism
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Soluble Guanylyl Cyclase
- Tissue Culture Techniques
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmacology, Taishan Medical University, Shandong, China
| | | | | | | | | | | |
Collapse
|
27
|
De Mello WC. Intracellular angiotensin II increases the total potassium current and the resting potential of arterial myocytes from vascular resistance vessels of the rat. Physiological and pathological implications. ACTA ACUST UNITED AC 2013; 7:192-7. [PMID: 23538141 DOI: 10.1016/j.jash.2013.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 11/18/2022]
Abstract
The influence of intracellular and extracellular administration of angiotensin II (Ang II; 10(-9) M) on total potassium current of arterial myocytes isolated from mesenteric arteries of Sprague Dawley rats was investigated. Measurements of total potassium current were performed using the voltage clamp whole cell configuration while the effect of intracellular Ang II on the resting potential of arterial myocytes was measured using the current clamp configuration of pCLAMP. The results indicated that: 1) intracellular Ang II (10(-9) M) increased the total potassium current by 73% ± 2.6% (n = 22; P < .05) within 5 minutes; 2) concurrently with the increment of potassium current, the resting potential was increased by 7 ± 1.5 mV (n = 23; P < .05); 3) extracellular administration of Ang II (10(-9) M) reduced the total potassium current by 20% ± 1.6% (n = 21; P < .05) within 5 minutes and depolarized the smooth muscle cells by 9 ± 2.3 mV (n = 26; P < .05); 4) the effects of intracellular Ang II on potassium current and membrane potential were inhibited by dialyzing a PKA inhibitor (10(-9) M) inside the cell together with Ang II (10(-9) M; P > .05); 5) valsartan (10(-9) M) dialyzed into the cell together with Ang II (10(-9) M) abolished the effect of the peptide on potassium current and membrane potential. The presence of endogenous or internalized intracellular Ang II in vascular resistance vessels and its effect on potassium current and resting potential indicates that the peptide present inside the arterial myocytes plays an important role on the regulation of vascular tone and consequently on peripheral resistance, which is a determining factor in the regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Walmor C De Mello
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00936, USA.
| |
Collapse
|
28
|
De Mello WC. Intracellular renin alters the electrical properties of the intact heart ventricle of adult Sprague Dawley rats. ACTA ACUST UNITED AC 2013; 181:45-9. [PMID: 23318498 DOI: 10.1016/j.regpep.2012.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/20/2012] [Accepted: 12/17/2012] [Indexed: 11/26/2022]
Abstract
UNLABELLED The influence of intracellular renin injection on the electrical properties of the intact left ventricle from adult Sprague Dawley rat heart was investigated. Intracellular renin injection was performed using intracellular microelectrodes filled with solution containing renin (120pM). Pressure pulses (40-70psi) for short periods of time (20ms), were applied to the micropipette while recording the action potential simultaneously from the same fiber. The results indicated that intracellular renin caused a depolarization of ventricular fibers of 7.3±2±mV (n=38) (4 animals) (P<0.05) and a decrease of the action potential duration at 50% and at 90% repolarization, respectively. Moreover, the refractoriness was significantly decreased with consequent generation of triggered activity. The effect of intracellular renin was seen within 3min of enzyme injection. The shortening of the action potential was related to an increase of potassium current which was measured in isolated ventricular myocytes before and after intracellular dialysis of renin (10(-9)M) using a voltage whole cell clamp configuration. Valsartan (10(-8)M) dialyzed together with renin (120pM) into the cell decreased drastically the effect of renin on potassium current. An increment of potassium current was also found when intracellular renin was dialyzed into cardiomyocytes exposed to Krebs solution containing valsartan (10(-8)M) for 10min prior to renin administration. Bis-1 which is a specific inhibitor of PKC, abolished the effect of intracellular renin on potassium current. IN CONCLUSION intracellular renin decreases the action potential duration and cardiac refractoriness in the intact left ventricle of adult Sprague Dawley rats. The shortening of the action potential was related to an increase in total potassium current. The effect of renin on total potassium currents was inhibited by valsartan and by Bis-1. Implication for cardiac arrhythmias was discussed.
Collapse
Affiliation(s)
- Walmor C De Mello
- School of Medicine, Medical Sciences Campus, UPR, San Juan, PR 00936-5067, USA.
| |
Collapse
|
29
|
De Mello W, Rivera M, Rabell A, Gerena Y. Aliskiren, at low doses, reduces the electrical remodeling in the heart of the TGR(mRen2)27 rat independently of blood pressure. J Renin Angiotensin Aldosterone Syst 2012; 14:23-33. [PMID: 23118038 DOI: 10.1177/1470320312463832] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
METHODS The influence of chronic administration of low doses of aliskiren (5 mg/kg/day, i.p.) for a period of eight weeks on cardiac electrophysiological and structural remodeling was investigated in transgenic (TGR)(mRen-2)27 rats. Cardiac and plasma angiotensin II (Ang II) levels were determined by ELISA before and after administration of the drug. Moreover, histological, electrophysiological and echocardiographic studies were performed in controls and at the end of eight weeks of aliskiren administration. RESULTS 1) The cardiac Ang II levels were significantly reduced while the plasma Ang II levels were not significantly decreased in rats treated with low doses of aliskiren; 2) echocardographic studies showed a decrease of left ventricle diameter (LVD), left ventricle posterior wall thickness (LVPW), left ventricle end diastolic volume (LVEDV) and increased ejection fraction (EF); 3) aliskiren improved the impulse propagation, increased the cardiac refractoriness and reduced the incidence of triggered activity; 4) perivascular and interstitial fibrosis were greatly reduced, which explains the increase in conduction velocity. All these effects of aliskiren were found independently of blood pressure, suggesting that the beneficial effect of aliskiren was related to an inhibition of the local cardiac renin angiotensin system; and 5) the effect of mechanical stretch on action potential duration, conduction velocity and spontaneous rhythmicity was changed by aliskiren, supporting the hypothesis presented here that the beneficial effect of the drug on cardiac remodeling is related to a decreased sensitivity of cardiac muscle to mechanical stress.
Collapse
Affiliation(s)
- Walmor De Mello
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, USA.
| | | | | | | |
Collapse
|
30
|
Free and Protein-Bound Angiotensin II1-7 in the Regulation of Drinking Behavior and Hemodynamics in Rats. Bull Exp Biol Med 2012; 153:623-6. [DOI: 10.1007/s10517-012-1782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Ellis KL, Palmer BR, Frampton CM, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Pilbrow AP, Skelton L, Yandle TG, Richards AM, Cameron VA. Genetic variation in the renin-angiotensin-aldosterone system is associated with cardiovascular risk factors and early mortality in established coronary heart disease. J Hum Hypertens 2012; 27:237-44. [PMID: 22739771 DOI: 10.1038/jhh.2012.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study examined renin-angiotensin-aldosterone (RAAS) system gene variants for associations with cardiovascular risk factors and outcomes in coronary heart disease. Coronary disease patients (n=1186) were genotyped for 21 single-nucleotide polymorphisms (SNPs) within angiotensinogen (AGT), angiotensin-converting enzyme (ACE), angiotensin-II type-1 receptor (AGTR1) and aldosterone synthase (CYP11B2). Associations with all-cause mortality and cardiovascular readmissions were assessed over a median of 3.0 years. The AGT M235T 'T' allele was associated with a younger age of clinical coronary disease onset (P=0.006), and the AGT rs2478545 minor allele was associated with lower circulating natriuretic peptides (P=0.0001-P=0.001) and E/E(1) (P=0.018). Minor alleles of AGT SNPs rs1926723 and rs11122576 were associated with more frequent history of renal disease (P0.04) and type-2 diabetes (P0.02), higher body mass index (P0.02) and greater mortality (P0.007). AGT rs11568054 minor allele carriers had more frequent history of renal disease (P=0.04) and higher plasma creatinine (P=0.033). AGT rs6687360 minor allele carriers exhibited worse survival (P=0.02). ACE rs4267385 was associated with older clinical coronary disease onset (P=0.008) and hypertension (P=0.013) onset, increased plasma creatinine (P=0.01), yet greater mortality (P=0.044). Less history of hypertension was observed with the AGTR1 rs12685977 minor allele (P=0.039). Genetic variation within the RAAS was associated with cardiovascular risk factors and accordingly poorer survival.
Collapse
Affiliation(s)
- K L Ellis
- Christchurch Cardioendocrine Research Group, Department of Medicine, University of Otago-Christchurch, Christchurch, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
De Mello WC, Frohlich ED. On the local cardiac renin angiotensin system. Basic and clinical implications. Peptides 2011; 32:1774-9. [PMID: 21729730 DOI: 10.1016/j.peptides.2011.06.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
In the present review we reevaluated the experimental and clinical evidence that there is a local renin angiotensin system in the heart as well as the presence of a functional intracrine component which is activated during pathological conditions like heart failure and hypertension. The implications of these findings for cardiology were discussed. The novel finding that cell swelling impairs cell coupling and impulse propagation through activation of ionic channels with consequent generation of cardiac arrhythmias and the evidence that AT1 receptors are mechanosensors able to alter the heart function independently of Ang II were discussed. Particular attention was given to the role of salt loading on the activation of a local cardiac renin angiotensin and its consequences.
Collapse
|
33
|
Intracrine action of angiotensin II in the intact ventricle of the failing heart: angiotensin II changes cardiac excitability from within. Mol Cell Biochem 2011; 358:309-15. [PMID: 21744071 DOI: 10.1007/s11010-011-0981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
The influence of intracellular injection of angiotensin II (Ang II) on electrical properties of single right ventricular fibers from the failing heart of cardiomyopathic hamsters (TO2) was investigated in the intact ventricle of 8-month-old animals. Intracellular injection was performed using pressure pulses (40-70 psi) for short periods of time (20 ms) while recoding the action potential simultaneously from the same fiber. The results indicated that intracellular Ang II caused a hyperpolarization of 7.7 mV ± 4.3 mV (n = 39) (4 animals) (P < 0.05) followed by a small fall in membrane potential. The action potential duration was significantly increased at 50% and at 90% repolarization, and the refractoriness was significantly enhanced. The effect of intracellular Ang II on action potential duration was related to the inhibition of potassium conductance through PKC activation because Bis-1 (360 nM), a selective PKC inhibitor, abolished the effect of the peptide. Injections performed in different fibers of the same ventricle showed a variable effect of Ang II on action potential duration and generated spontaneous rhythmicity. The effect of intracellular Ang II on action potential duration and cardiac refractoriness remains for more than 1 h after interruption of the intracellular injection of the peptide.
Collapse
|
34
|
Abstract
Despite ongoing medical advances, cardiovascular disease continues to be a leading health concern. The renin-angiotensin system (RAS) plays an important role in regulating cardiovascular function, and is, therefore, the subject of extensive study. Several drugs currently used to treat hypertension and heart failure are designed to target angiotensin II synthesis and function, but thus far, none have been able to completely block the effects of RAS signaling. This review discusses current and emerging approaches towards inhibiting cardiac RAS function in order to further improve cardiovascular disease outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Medical Science Building G-609, Newark, NJ 07103 USA
| |
Collapse
|
35
|
Use of small angle neutron scattering to study the interaction of angiotensin II with model membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:687-98. [DOI: 10.1007/s00249-011-0675-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/30/2010] [Accepted: 01/06/2011] [Indexed: 01/17/2023]
|
36
|
Novel aspects of angiotensin II action in the heart. Implications to myocardial ischemia and heart failure. ACTA ACUST UNITED AC 2011; 166:9-14. [DOI: 10.1016/j.regpep.2010.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/18/2010] [Accepted: 10/04/2010] [Indexed: 02/01/2023]
|
37
|
De Mello WC. Angiotensin (1-7) reduces the cell volume of swollen cardiac cells and decreases the swelling-dependent chloride current. Implications for cardiac arrhythmias and myocardial ischemia. Peptides 2010; 31:2322-4. [PMID: 20816713 DOI: 10.1016/j.peptides.2010.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/29/2022]
Abstract
The influence of angiotensin II and angiotensin (1-17) on cell volume and on the activation of ionic channels including the swelling-dependent chloride channel was reviewed. Particular emphasis was given to the influence of the balance between the ACE-angiotensin II and of the ACE2-angiotensin (1-7)-Mas receptor axis on heart cell volume regulation and on the swelling-dependent chloride current. The implications for myocardial ischemia and cardiac arrhythmias are discussed.
Collapse
Affiliation(s)
- Walmor C De Mello
- Medical Sciences Campus, UPR, School of Medicine, PO BOX 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|
38
|
Ghelfi E, Wellenius GA, Lawrence J, Millet E, Gonzalez-Flecha B. Cardiac oxidative stress and dysfunction by fine concentrated ambient particles (CAPs) are mediated by angiotensin-II. Inhal Toxicol 2010; 22:963-72. [PMID: 20718632 PMCID: PMC3771644 DOI: 10.3109/08958378.2010.503322] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Inhalation exposure to fine concentrated ambient particles (CAPs) increases cardiac oxidants by mechanisms involving modulation of the sympathovagal tone on the heart. Angiotensin-II is a potent vasoconstrictor and a sympatho-excitatory peptide involved in the regulation of blood pressure. We hypothesized that increases in angiotensin-II after fine particulate matter (PM) exposure could be involved in the development of cardiac oxidative stress. Adult rats were treated with an angiotensin-converting enzyme (ACE) inhibitor (benazepril), or an angiotensin receptor blocker (ARB; valsartan) before exposure to fine PM aerosols or filtered air. Exposures were carried out for 5 hours in the chamber of the Harvard fine particle concentrator (fine PM mass concentration: 440 +/- 80 microg/m(3)). At the end of the exposure the animals were tested for in situ chemiluminescence (CL) of the heart, thiobarbituric acid reactive substances (TBARS) and for plasma levels of angiotensin-II. Also, continuous electrocardiogram (ECG) measurements were collected on a subgroup of exposed animals. PM exposure was associated with statistically significant increases in plasma angiotensin concentrations. Pre-treatment with the ACE inhibitor effectively lowered angiotensin concentration, whereas ARB treatment led to increases in angiotensin above the PM-only level. PM exposure also led to significant increases in heart oxidative stress (CL, TBARS), and a shortening of the T-end to T-peak interval on the ECG that were prevented by treatment with both the ACE inhibitor and ARB. These results show that ambient fine particles can increase plasma levels of angiotensin-II and suggest a role of the renin-angiotensin system in the development of particle-related acute cardiac events.
Collapse
Affiliation(s)
- Elisa Ghelfi
- Harvard School of Public Health, Department of Environmental Health
| | | | - Joy Lawrence
- Harvard School of Public Health, Department of Environmental Health
| | - Emil Millet
- Harvard School of Public Health, Department of Environmental Health
| | | |
Collapse
|
39
|
Pevtsova EI, Tolpygo SM, Obukhova MF, Kotov AV. Complexes of Angiotensin IV with Functionally Different Proteins in the Regulation of Drinking Behavior and Hemodynamics in Rats. Bull Exp Biol Med 2010; 148:738-41. [DOI: 10.1007/s10517-010-0805-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Zablocki D, Sadoshima J. The one-two punch: knocking out angiotensin II in the heart. J Clin Invest 2010; 120:1028-31. [PMID: 20335650 DOI: 10.1172/jci42644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ang II plays an important role in the pathophysiology of cardiovascular disease. Angiotensin-converting enzyme (ACE) inhibitors lower Ang II levels by inhibiting conversion of Ang I to Ang II, but Ang II levels have been shown to return to normal with chronic ACE inhibitor treatment. In this issue of the JCI, Wei et al. show that ACE inhibition induces an increase in chymase activity in cardiac interstitial fluid, providing an alternate pathway for Ang II generation.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
41
|
Abstract
Although initially considered relatively harmless pathogens, human coronaviruses (HCoVs) are nowadays known to be associated with more severe clinical complications. Still, their precise pathogenic potential is largely unknown, particularly regarding the most recently identified species HCoV-NL63 and HCoV-HKU1. HCoVs need host cell proteins to successively establish infections. Proteases of the renin–angiotensin system serve as receptors needed for entry into target cells; this article describes the current knowledge on the involvement of this system in HCoV pathogenesis.
Collapse
Affiliation(s)
- Brigitte A Wevers
- Center for Experimental & Molecular Medicine, Center for Infection & Immunity Amsterdam, Academic Medical Center, University of Amsterdam, PO Box 226600, 1100 DD Amsterdam, The Netherlands.
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam, Academic Medical Center, University of Amsterdam, PO Box 226600, 1100 DD Amsterdam, The Netherlands. Tel.: +31 205 667 510; ;
| |
Collapse
|
42
|
Salgado DR, Rocco JR, Silva E, Vincent JL. Modulation of the renin-angiotensin-aldosterone system in sepsis: a new therapeutic approach? Expert Opin Ther Targets 2010; 14:11-20. [PMID: 20001206 DOI: 10.1517/14728220903460332] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD Severe sepsis is characterized by relative hypotension associated with a high cardiac output, peripheral vasodilation, and organ dysfunction. The renin-angiotensin-aldosterone system (RAAS) is primarily activated to increase blood pressure, but recently potential pro-inflammatory effects of angiotensin II have attracted interest because of the reported association between angiotensin II levels and organ failure and mortality in sepsis. RAAS antagonists could represent a new therapeutic option in this setting. AREAS COVERED IN THIS REVIEW The role of RAAS activation in severe sepsis and septic shock, and the potential benefits (and risks) of using RAAS antagonists. WHAT THE READER WILL GAIN Insight into RAAS function in severe sepsis and the potential for RAAS inhibitors to be used as an adjunctive therapy in patients with severe sepsis, with discussion of promising results from animal models of sepsis. TAKE HOME MESSAGE Use of RAAS antagonists is an emerging therapeutic option in severe sepsis because these agents may reduce endothelial damage, organ failure, and mortality. However, timing of administration of RAAS antagonists is important because reduced RAAS function may contribute to refractive hypotension later on in septic shock and benefits of RAAS antagonists seem to be restricted to the early phases of sepsis.
Collapse
Affiliation(s)
- Diamantino Ribeiro Salgado
- Federal University of Rio de Janeiro, Clementino Fraga Filho University Hospital, Department of Internal Medicine, Cidade Universitària - Ilha do Fundão - Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
43
|
Carl-McGrath S, Gräntzdörffer I, Lendeckel U, Ebert MP, Röcken C. Angiotensin II-generating enzymes, angiotensin-converting enzyme (ACE) and mast cell chymase (CMA1), in gastric inflammation may be regulated by H. pylori and associated cytokines. Pathology 2010; 41:419-27. [PMID: 19424904 DOI: 10.1080/00313020902885037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The local angiotensin II system (LAS) has numerous functions, including the regulation of growth and differentiation in the gastrointestinal tract. Angiotensin II (AngII) may be generated by angiotensin-I-converting enzyme (ACE) or mast cell chymase (CMA1) and plays an important role in inflammatory processes, although opinions differ as to which AngII-generating enzyme is primarily associated with AngII-mediated effects. ACE inhibitors have been shown to have a protective or healing effect on gastric ulcers and colitis in animal models, which could be related to the local expression of ACE. METHODS The localisation of ACE and CMA1 was examined immunohistochemically in Helicobacter pylori gastritis, non-H. pylori gastritis, gastric ulcers and non-lesional gastric tissues. Using real-time qRT-PCR, ACE- and CMA1-mRNA expression in gastric cell lines were examined and changes in ACE levels after exposure to H. pylori or cytokines (IL-1beta, IL-6, IL-8, TNF, TGFbeta1) were quantified. RESULTS ACE and CMA1 were not expressed in the non-lesional foveolar epithelium. Cytoplasmic staining for ACE in fundic chief cells, and apical membranous expression of ACE in the mucin-secreting cells of the antral and pyloric region was observed. ACE was found in endothelial cells of the gastric ulcer granulation tissue and CMA1 was strongly expressed in mast cells. ACE but not CMA1 was expressed in the MKN28, N87 and MKN45 gastric cell lines, and ACE mRNA expression was regulated by both H. pylori and the cytokines. CONCLUSIONS ACE in the gastric mucosa and the microvasculature of granulation tissue may represent a novel therapeutic target for the promotion of healing processes in gastritis and ulceration using ACE inhibitors or AT1R antagonists.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) has undergone continuous advancement since the initial identification of renin as a pressor agent. Traditionally considered a circulatory system, the RAS is now known to exist as a tissue system as well. Recently, the tissue RAS has been further categorized as intracellular and extracellular. Owing to the unique location, the intracellular RAS encompasses new components, such as cathepsin D and chymase, which participate in intracellular angiotensin (Ang) II synthesis. In this review, evidence of the intracellular RAS and the mechanism of Ang II synthesis in various cell types will be discussed. RECENT FINDINGS A physiological role for intracellular Ang II in vascular and cardiac cells has recently been demonstrated. Evidence of intracellular Ang II generation has been shown in several cell types, particularly cardiac, renal, and vascular. Importantly, intracellular synthesis of Ang II is more prominent in hyperglycemic conditions and generally involves angiotensin-converting enzyme-dependent and angiotensin-converting enzyme-independent mechanisms. SUMMARY There is significant diversity in the mechanism of intracellular synthesis of Ang II in various cell types and pathological conditions. These observations suggest that a therapeutic intervention to block the RAS should take into consideration the nature of the disorder and the cell type involved.
Collapse
|
45
|
Imboden H, Patil J, Nussberger J, Nicoud F, Hess B, Ahmed N, Schaffner T, Wellner M, Müller D, Inagami T, Senbonmatsu T, Pavel J, Saavedra JM. Endogenous angiotensinergic system in neurons of rat and human trigeminal ganglia. REGULATORY PEPTIDES 2009; 154:23-31. [PMID: 19323983 PMCID: PMC2727722 DOI: 10.1016/j.regpep.2009.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 01/13/2009] [Accepted: 02/03/2009] [Indexed: 12/21/2022]
Abstract
To clarify the role of Angiotensin II (Ang II) in the sensory system and especially in the trigeminal ganglia, we studied the expression of angiotensinogen (Ang-N)-, renin-, angiotensin converting enzyme (ACE)- and cathepsin D-mRNA, and the presence of Ang II and substance P in the rat and human trigeminal ganglia. The rat trigeminal ganglia expressed substantial amounts of Ang-N- and ACE mRNA as determined by quantitative real time PCR. Renin mRNA was untraceable in rat samples. Cathepsin D was detected in the rat trigeminal ganglia indicating the possibility of existence of pathways alternative to renin for Ang I formation. In situ hybridization in rat trigeminal ganglia revealed expression of Ang-N mRNA in the cytoplasm of numerous neurons. By using immunocytochemistry, a number of neurons and their processes in both the rat and human trigeminal ganglia were stained for Ang II. Post in situ hybridization immunocytochemistry reveals that in the rat trigeminal ganglia some, but not all Ang-N mRNA-positive neurons marked for Ang II. In some neurons Substance P was found colocalized with Ang II. Angiotensins from rat trigeminal ganglia were quantitated by radioimmunoassay with and without prior separation by high performance liquid chromatography. Immunoreactive angiotensin II (ir-Ang II) was consistently present and the sum of true Ang II (1-8) octapeptide and its specifically measured metabolites were found to account for it. Radioimmunological and immunocytochemical evidence of ir-Ang II in neuronal tissue is compatible with Ang II as a neurotransmitter. In conclusion, these results suggest that Ang II could be produced locally in the neurons of rat trigeminal ganglia. The localization and colocalization of neuronal Ang II with Substance P in the trigeminal ganglia neurons may be the basis for a participation and function of Ang II in the regulation of nociception and migraine pathology.
Collapse
Affiliation(s)
- Hans Imboden
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang P, Fedoruk MN, Rupert JL. Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists potential doping agents? Sports Med 2009; 38:1065-79. [PMID: 19026021 DOI: 10.2165/00007256-200838120-00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the decade since the angiotensin-converting enzyme (ACE) gene was first proposed to be a 'human gene for physical performance', there have been numerous studies examining the effects of ACE genotype on physical performance phenotypes such as aerobic capacity, muscle function, trainability, and athletic status. While the results are variable and sometimes inconsistent, and corroborating phenotypic data limited, carriers of the ACE 'insertion' allele (the presence of an alu repeat element in intron 16 of the gene) have been reported to have higher maximum oxygen uptake (VO2max), greater response to training, and increased muscle efficiency when compared with individuals carrying the 'deletion' allele (absence of the alu repeat). Furthermore, the insertion allele has been reported to be over-represented in elite athletes from a variety of populations representing a number of endurance sports. The mechanism by which the ACE insertion genotype could potentiate physical performance is unknown. The presence of the ACE insertion allele has been associated with lower ACE activity (ACEplasma) in number of studies, suggesting that individuals with an innate tendency to have lower ACE levels respond better to training and are at an advantage in endurance sporting events. This could be due to lower levels of angiotensin II (the vasoconstrictor converted to active form by ACE), higher levels of bradykinin (a vasodilator degraded by ACE) or some combination of the two phenotypes. Observations that individuals carrying the ACE insertion allele (and presumably lower ACEplasma) have an enhanced response to training or are over-represented amongst elite athletes raises the intriguing question: would individuals with artificially lowered ACEplasma have similar training or performance potential? As there are a number of drugs (i.e. ACE inhibitors and angiotensin II type 1 receptor antagonists [angiotensin receptor blockers--ARBs]) that have the ability to either reduce ACEplasma activity or block the action of angiotensin II, the question is relevant to the study of ergogenic agents and to the efforts to rid sports of 'doping'. This article discusses the possibility that ACE inhibitors and ARBs, by virtue of their effects on ACE or angiotensin II function, respectively, have performance-enhancing capabilities; it also reviews the data on the effects of these medications on VO2max, muscle composition and endurance capacity in patient and non-patient populations. We conclude that, while the direct evidence supporting the hypothesis that ACE-related medications are potential doping agents is not compelling, there are insufficient data on young, athletic populations to exclude the possibility, and there is ample, albeit indirect, support from genetic studies to suggest that they should be. Unfortunately, given the history of drug experimentation in athletes and the rapid appropriation of therapeutic agents into the doping arsenal, this indirect evidence, coupled with the availability of ACE-inhibiting and ACE-receptor blocking medications may be sufficiently tempting to unscrupulous competitors looking for a shortcut to the finish line.
Collapse
Affiliation(s)
- Pei Wang
- School of Human Kinetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
47
|
Pevtsova EI, Tolpygo SM, Obukhova MF, Kotov AV. Physiological effects of complexes of angiotensins with functionally different carrier proteins. Bull Exp Biol Med 2009; 146:172-5. [PMID: 19145309 DOI: 10.1007/s10517-008-0240-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We compared activity of synthetic complexes of angiotensin II and functionally different proteins (transport protein, serum albumin and neurospecific Ca2+-binding protein S100b) as analogues of endogenous protein-peptide complexes. Physiological activity of angiotensin II was specifically modified by these proteins. It was hypothesized that the complex of angiotensin II and S100b is primarily involved in the regulation of hemodynamics, whereas the complex of angiotensin II and bovine serum albumin plays a role in the formation and realization of drinking behavior.
Collapse
Affiliation(s)
- E I Pevtsova
- P. K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
48
|
Liu HW, Cheng B, Li JF, Wu HJ, Li KY, Sun TZ, Fu XB. Characterization of angiotensin-converting enzyme expression during epidermis morphogenesis in humans: a potential marker for epidermal stem cells. Br J Dermatol 2008; 160:250-8. [PMID: 19120343 DOI: 10.1111/j.1365-2133.2008.08970.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recent evidence has revealed that angiotensin-converting enzyme (ACE) participates in cutaneous wound healing and contributes to the pathophysiological process of some skin diseases. However, little is known about the role of ACE in epidermis morphogenesis during development. OBJECTIVE To clarify the expression pattern of ACE during embryonic development of human skin. METHODS Skin samples were obtained from aborted fetuses at different gestational ages and from healthy individuals. Localization of ACE, together with beta(1)-integrin, keratin 19 (K19) and p63 was examined by immunofluorescence and immunohistochemical staining. RESULTS In human fetal skin, at 11-13 weeks of gestation, ACE-positive cells were observed in the primitive epidermis. As the fetuses developed, ACE-positive cells appeared in all the epidermal layers. From 21 weeks of gestation, ACE expression was largely restricted to the basal layer of the fetal epidermis. In contrast, ACE-positive cells were found only in the adult skin basal layer which harbours epidermal stem cells. To explore the possible link between ACE and epidermal stem cells, we further examined the expression of beta(1)-integrin, K19 and p63, the putative markers for epidermal stem cells. Consistent with the results of ACE expression, from 21 weeks of gestation, the expression of beta(1)-integrin, K19 and p63 was mainly confined to the basal layer. Immunofluorescent double labelling revealed that ACE-positive cells substantially overlapped with beta(1)-integrin-, K19- and p63-positive cells. CONCLUSIONS Our results suggest that ACE may play a role in human epidermis morphogenesis during fetal life and serve as an unrecognized marker for keratinocyte progenitor cells.
Collapse
Affiliation(s)
- H-W Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province 510630, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol 2008; 295:R381-7. [DOI: 10.1152/ajpregu.00933.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control ( n = 6); trained ( n = 6); control + losartan (10 mg·kg−1·day−1, n = 6); trained + losartan ( n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT1 receptor. The exercise protocol consisted of: 4 × 12 bouts, 5×/wk during 8 wk, with 65–75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and αMHC (α-myosin heavy chain)-to-βMHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT2 receptor levels, whereas the AT1 receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 ± 2.4 vs. 22.01 ± 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT1 receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.
Collapse
|
50
|
Hong F, Ming L, Yi S, Zhanxia L, Yongquan W, Chi L. The antihypertensive effect of peptides: a novel alternative to drugs? Peptides 2008; 29:1062-71. [PMID: 18384915 DOI: 10.1016/j.peptides.2008.02.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 01/14/2008] [Accepted: 02/01/2008] [Indexed: 11/21/2022]
Abstract
Many types of bioactive peptides that inhibit angiotensin I, angiotensin I converting enzyme (ACE) and Ang II type 1 receptor (AT1) in the cardiovascular system contribute to the prevention and treatment of hypertension. These inhibitory peptides are derived from many food proteins or artificial synthetic products. Further research examining the bioavailability of ACE inhibitory peptides will lead to the development of more effective ACE inhibitory peptides and foods. Our research also demonstrates that ACE inhibitory peptide LAP may lower blood pressure with no adverse effects.
Collapse
Affiliation(s)
- Fang Hong
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|