1
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
2
|
Mohammadi C, Sameri S, Najafi R. Insight into adipokines to optimize therapeutic effects of stem cell for tissue regeneration. Cytokine 2020; 128:155003. [PMID: 32000014 DOI: 10.1016/j.cyto.2020.155003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Stem cell therapy is considered as a promising regenerative medicine for repairing and treating damaged tissues and/or preventing various diseases. But there are still some obstacles such as low cell migration, poor stem cell engraftment and decreased cell survival that need to be overcome before transplantation. Therefore, a large body of studies has focused on improving the efficiency of stem cell therapy. For instance, preconditioning of stem cells has emerged as an effective strategy to reinforce therapeutic efficacy. Adipokines are signaling molecules, secreted by adipose tissue, which regulate a variety of biological processes in adipose tissue and other organs including the brain, liver, and muscle. In this review article, we shed light on the biological effects of some adipokines including apelin, oncostatin M, omentin-1 and vaspin on stem cell therapy and the most recent preclinical advances in our understanding of how these functions ameliorate stem cell therapy outcome.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Dietrich J, Ott L, Roth M, Witt J, Geerling G, Mertsch S, Schrader S. MSC Transplantation Improves Lacrimal Gland Regeneration after Surgically Induced Dry Eye Disease in Mice. Sci Rep 2019; 9:18299. [PMID: 31797895 PMCID: PMC6892942 DOI: 10.1038/s41598-019-54840-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease characterized by a disrupted tear film homeostasis and inflammation leading to visual impairments and pain in patients. Aqueous-deficient dry eye (ADDE) causes the most severe progressions and depends mainly on the loss of functional lacrimal gland (LG) tissue. Despite a high prevalence, therapies remain palliative. Therefore, it is of great interest to develop new approaches to curatively treat ADDE. Mesenchymal stem/stromal cells (MSC) have been shown to induce tissue regeneration and cease inflammation. Moreover, an increasing amount of MSC was found in the regenerating LG of mice. Therefore, this study investigated the therapeutic effect of MSC transplantation on damaged LGs using duct ligation induced ADDE in mice. Due to the transplantation of sex-mismatched and eGFP-expressing MSC, MSC could be identified and detected until day 21. MSC transplantation significantly improved LG regeneration, as the amount of vital acinar structures was significantly increased above the intrinsic regeneration capacity of control. Additionally, MSC transplantation modulated the immune reaction as macrophage infiltration was delayed and TNFα expression decreased, accompanied by an increased IL-6 expression. Thus, the application of MSC appears to be a promising therapeutic approach to induce LG regeneration in patients suffering from severe DED/ADDE.
Collapse
Affiliation(s)
- Jana Dietrich
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl-von-Ossietzky University, 26121, Oldenburg, Germany.
| | - Lolita Ott
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Mathias Roth
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Joana Witt
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Gerd Geerling
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl-von-Ossietzky University, 26121, Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl-von-Ossietzky University, 26121, Oldenburg, Germany
| |
Collapse
|
4
|
Dietrich J, Roth M, König S, Geerling G, Mertsch S, Schrader S. Analysis of lacrimal gland derived mesenchymal stem cell secretome and its impact on epithelial cell survival. Stem Cell Res 2019; 38:101477. [PMID: 31181482 DOI: 10.1016/j.scr.2019.101477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
In situ regeneration of lacrimal gland (LG) tissue would be a promising approach to curatively treat dry eye disease (DED). Mesenchymal stem cells (MSC) exhibit therapeutic effects in a variety of pathological conditions and our group recently reported that their number increases in regenerating mouse LG. Since the therapeutic effects are suggested to arise from secreted trophic factors, the application of MSC-secreted proteins seems to be a promising approach to induce/enhance LG regeneration. Therefore, this study aims to optimize the isolation of murine LG-MSC and analyze their secretome to investigate its potential for LG epithelial cell survival in vitro. For optimization, LG-MSC were isolated by an explant technique or cell sorting and their secretome was investigated under normal and inflammatory conditions. Results showed that the secretome of MSC had beneficial effects on the viability of ethanol-damaged LG epithelial cells. Additional, Lipocalin-2, prosaposin, ras GTPase-activating protein-binding protein 1 (Rac1) and signal transducer and activator of transcription 1 (STAT1), proteins that were up-regulated under inflammatory conditions, further improved the cell survival of ethanol-damaged LG epithelial cells. Interestingly, recovery of cell viability was highest, when the cells were incubated with STAT1. Summarizing, this study identified promising proteins for further studies on LG regeneration.
Collapse
Affiliation(s)
- Jana Dietrich
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius Hospital, University of Oldenburg, 26121 Oldenburg, Germany.
| | - Mathias Roth
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Gerd Geerling
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University of Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius Hospital, University of Oldenburg, 26121 Oldenburg, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius Hospital, University of Oldenburg, 26121 Oldenburg, Germany
| |
Collapse
|
5
|
Abstract
Aging is the result of two overlapping processes, "intrinsic" and "extrinsic." Intrinsic structural changes occur as a consequence of physiologic aging and are genetically determined; extrinsic relates to exposure to harmful events and habits, like smoking, bad diet, alcohol consumption, lack of sleep, stress, sun exposure, environmental pollution, etc. Aging may be decelerated by improving bad habits or treating signs of aging with various esthetic methods, food supplements, and antioxidants. It is believed that we cannot stop aging entirely due to the intrinsic part, which leads to irreversible cell damage, as well as tissue and organ damage due to their limited ability to regenerate. Stem cells and their ability to exhibit telomerase activity, to self-renew, and to differentiate into all three embryonic tissues challenges aging as a process, which is not inevitable and can even possibly be reversed. Stem cells can promote regeneration of aged tissues and organs by replacing apoptotic and necrotic cells with healthy ones. In addition, they can have antiinflammatory and antiapoptotic properties by paracrine-secreting growth factors and cytokines on the site of administration. Autologous adipose-derived stem cells are the most promising because they can be easily harvested in huge numbers with minimally invasive liposuction and, as such, represent a powerful tool in anti-aging and regenerative medicine. In this contribution, the author discusses their properties and application in clinical practice.
Collapse
|
6
|
Nowwarote N, Sukarawan W, Kanjana K, Pavasant P, Fournier BPJ, Osathanon T. Interleukin 6 promotes an in vitro mineral deposition by stem cells isolated from human exfoliated deciduous teeth. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180864. [PMID: 30473835 PMCID: PMC6227976 DOI: 10.1098/rsos.180864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/05/2018] [Indexed: 06/05/2023]
Abstract
Interleukin 6 (IL-6) plays various roles including stem cell regulation. The present study investigated the effect of IL-6 on cell proliferation, colony forming unit ability, stem cell marker expression and differentiation ability in stem cells isolated from human exfoliated deciduous teeth (SHEDs). We reported that the isolated cells from dental pulp tissues for deciduous teeth expressed CD44, CD90 and CD105 but not CD45. These cells were able to differentiate into osteoblasts, adipocytes and neuronal-like cells. IL-6 treatment resulted in the significant increase of NANOG, SOX2 and REX1 mRNA expression. However, IL-6 had no effect on cell proliferation and colony forming unit ability. IL-6 did not alter adipogenic and neurogenic differentiation potency. IL-6 supplementation in osteogenic medium led to a significant increase of mineralization. Furthermore, IL-6 upregulated ALP, ANKH and PIT1 mRNA levels. In conclusion, IL-6 participates in the regulation of pluripotent marker expression and is also involved in mineralization process of SHEDs. Hence, IL-6 could be employed as a supplementary substance in culture medium to maintain stemness and to induce osteogenic induction in SHEDs for future regenerative cell therapy.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waleerat Sukarawan
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pediatric Dentistry, Faculty of Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kiattipan Kanjana
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Benjamin P. J. Fournier
- Laboratory of Molecular Oral Pathophysiology, INSERM UMRS 1138, Cordeliers Research Center; Paris-Descartes; Pierre and Marie Curie; Paris, F-75006, France; Faculty of Dentistry, Paris Diderot University, Sorbonne Paris Cité, France
| | - Thanaphum Osathanon
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Genomics and Precision Dentistry Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Gentile P, Cervelli V. Adipose-Derived Stromal Vascular Fraction Cells and Platelet-Rich Plasma: Basic and Clinical Implications for Tissue Engineering Therapies in Regenerative Surgery. Methods Mol Biol 2018; 1773:107-122. [PMID: 29687384 DOI: 10.1007/978-1-4939-7799-4_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell-based therapy and regenerative medicine offer a paradigm shift in regard to various diseases causing loss of substance or volume and tissue or organ damage. Recently, many authors have focused their attention on mesenchymal stem cells for their capacity to differentiate into many cell lineages. The most widely studied types are bone marrow mesenchymal stem cells and adipose derived stem cells (ADSCs), which display similar results. Based on the literature, we believe that the ADSCs offer advantages because of lower morbidity during the harvesting procedure. Additionally, platelet-rich plasma can be used in this field for its ability to stimulate tissue regeneration. The aim of this chapter is to describe ADSC preparation and isolation procedures, preparation of platelet-rich plasma, and the application of ADSCs in regenerative plastic surgery. We also discuss the mechanisms and future role of ADSCs in cell-based therapy and tissue engineering.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Rome, Italy.
- Catholic University, Tirane, Albania.
| | - Valerio Cervelli
- Department of Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Simonacci F, Bertozzi N, Raposio E. Off-label use of adipose-derived stem cells. Ann Med Surg (Lond) 2017; 24:44-51. [PMID: 29123656 PMCID: PMC5671395 DOI: 10.1016/j.amsu.2017.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) have a broad range of clinical applications. The ease of cell harvest and high yield with minimal donor-site morbidity makes adipose tissue an ideal source of stem cells. Further, the multi-lineage potential of these cells present significant opportunities within the field of tissue engineering, with studies successfully demonstrating their ability to produce a range of tissue types. Materials and methods Literature review of publications on the use of ASCs, in the context of current European and US regulations. Results According to European and US regulations, many clinical trials reported in literature to date could be considered off-label. Conclusion In Europe, clinical trials involving cultured ASCs and/or the use of collagenase, which causes changes in the structural and functional properties of stem cells, and/or ASCs application in non-homologous tissue, should be considered off-label. ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue. Adipose-derived stem cells hold enormous potential in different fields of regenerative medicine and stem cell therapy. According to European and US regulations, many clinical trials reported in literature could be considered off-label. In Europe, ASCs should be non-cultured, isolated mechanically, and used only in the subcutaneous tissue.
Collapse
Affiliation(s)
- Francesco Simonacci
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
- Corresponding author. Department of Medicine and Surgery, Plastic Surgery Division, Cutaneous, Regenerative, Mininvasive and Plastic Surgery Unit, Parma University and Maggiore Hospital, Via Gramsci 14, 43126 Parma, Italy.Department of Medicine and SurgeryPlastic Surgery DivisionCutaneous, Regenerative, Mininvasive and Plastic Surgery UnitParma University and Maggiore HospitalVia Gramsci 14Parma43126Italy
| | - Nicolò Bertozzi
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| | - Edoardo Raposio
- Department of Medicine and Surgery, Plastic Surgery Division, University of Parma, Parma, Italy
- The Cutaneous, Mininvasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
| |
Collapse
|
9
|
Lan Y, Theng S, Huang T, Choo K, Chen C, Kuo H, Chong K. Oncostatin M-Preconditioned Mesenchymal Stem Cells Alleviate Bleomycin-Induced Pulmonary Fibrosis Through Paracrine Effects of the Hepatocyte Growth Factor. Stem Cells Transl Med 2016; 6:1006-1017. [PMID: 28297588 PMCID: PMC5442768 DOI: 10.5966/sctm.2016-0054] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are widely considered for treatment of pulmonary fibrosis based on the anti‐inflammatory, antifibrotic, antiapoptotic, and regenerative properties of the cells. Recently, elevated levels of oncostatin M (OSM) have been reported in the bronchoalveolar lavage fluid of a pulmonary fibrosis animal model and in patients. In this work, we aimed to prolong engrafted MSC survival and to enhance the effectiveness of pulmonary fibrosis transplantation therapy by using OSM‐preconditioned MSCs. OSM‐preconditioned MSCs were shown to overexpress type 2 OSM receptor (gp130/OSMRβ) and exhibited high susceptibility to OSM, resulting in upregulation of the paracrine factor, hepatocyte growth factor (HGF). Moreover, OSM‐preconditioned MSCs enhanced cell proliferation and migration, attenuated transforming growth factor‐β1‐ or OSM‐induced extracellular matrix production in MRC‐5 fibroblasts through paracrine effects. In bleomycin‐induced lung fibrotic mice, transplantation of OSM‐preconditioned MSCs significantly improved pulmonary respiratory functions and downregulated expression of inflammatory factors and fibrotic factors in the lung tissues. Histopathologic examination indicated remarkable amelioration of the lung fibrosis. LacZ‐tagged MSCs were detected in the lung tissues of the OSM‐preconditioned MSC‐treated mice 18 days after post‐transplantation. Taken together, our data further demonstrated that HGF upregulation played an important role in mediating the therapeutic effects of transplanted OSM‐preconditioned MSCs in alleviating lung fibrosis in the mice. Stem Cells Translational Medicine2017;6:1006–1017
Collapse
Affiliation(s)
- Ying‐Wei Lan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Si‐Min Theng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Tsung‐Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Center for Molecular and Clinical Immunology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| | - Kong‐Bung Choo
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, and Centre for Stem Cell Research, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Chuan‐Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Rong‐Hsing Translational Medicine Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Han‐Pin Kuo
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
| | - Kowit‐Yu Chong
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
- Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Tao‐Yuan, Taiwan, Republic of China
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao‐Yuan, Taiwan, Republic of China
| |
Collapse
|
10
|
Shen H, Zhou E, Wei X, Fu Z, Niu C, Li Y, Pan B, Mathew AV, Wang X, Pennathur S, Zheng L, Wang Y. High density lipoprotein promotes proliferation of adipose-derived stem cells via S1P1 receptor and Akt, ERK1/2 signal pathways. Stem Cell Res Ther 2015; 6:95. [PMID: 25976318 PMCID: PMC4453044 DOI: 10.1186/s13287-015-0090-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/26/2015] [Accepted: 05/07/2015] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models. Survival of these cells after transplant remains a key limiting factor for the success of ADSC transplantation. Circulating factors like High Density Lipoprotein (HDL) has been known to promote survival of other stems cells like bone marrow derived stem cells and endothelial progenitor cells, both by proliferation and by inhibiting cell apoptosis. The effect of HDL on transplanted adipose-derived stem cells in vivo is largely unknown. METHODS This study focused on exploring the effects of plasma HDL on ADSC and delineating the mechanisms involved in their proliferation after entering the bloodstream. Using the MTT and BrdU assays, we tested the effects of HDL on ADSC proliferation. We probed the downstream intracellular Akt and ERK1/2 signaling pathways and expression of cyclin proteins in ADSC using western blot. RESULTS Our study found that HDL promotes proliferation of ADSC, by binding to sphingosine-1- phosphate receptor-1(S1P1) on the cell membrane. This interaction led to activation of intracellular Akt and ERK1/2 signaling pathways, resulting in increased expression of cyclin D1 and cyclin E, and simultaneous reduction in expression of cyclin-dependent kinase inhibitors p21 and p27, therefore promoting cell cycle progression and cell proliferation. CONCLUSIONS These studies raise the possibility that HDL may be a physiologic regulator of stem cells and increasing HDL concentrations may be valuable strategy to promote ADSC transplantation.
Collapse
Affiliation(s)
- Haitao Shen
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Enchen Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | - Xiujing Wei
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, 515041, China.
- Hutchison Medi Pharma (Suzhou), Jiangsu, 215125, China.
| | - Zhiwei Fu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | - Chenguang Niu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | - Yang Li
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | - Anna V Mathew
- Department of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Xu Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | | | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongyu Wang
- Institute of Hypoxia Medicine, Wenzhou Medical University, Zhejiang, 325035, China.
| |
Collapse
|
11
|
Guihard P, Boutet MA, Brounais-Le Royer B, Gamblin AL, Amiaud J, Renaud A, Berreur M, Rédini F, Heymann D, Layrolle P, Blanchard F. Oncostatin m, an inflammatory cytokine produced by macrophages, supports intramembranous bone healing in a mouse model of tibia injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:765-75. [PMID: 25559270 DOI: 10.1016/j.ajpath.2014.11.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/31/2014] [Accepted: 11/12/2014] [Indexed: 12/22/2022]
Abstract
Different macrophage depletion strategies have demonstrated a vital role of macrophages in bone healing, but the underlying molecular mechanisms are poorly understood. Here, with the use of a mouse model of tibia injury, we found that the cytokine oncostatin M [OSM or murine (m)OSM] was overexpressed during the initial inflammatory phase and that depletion of macrophages repressed mOSM expression. In Osm(-/-) mice, by micro-computed tomography and histology we observed a significant reduction in the amount of new intramedullar woven bone formed at the injured site, reduced number of Osterix(+) osteoblastic cells, and reduced expression of the osteoblast markers runt-related transcription factor 2 and alkaline phosphatase. In contrast, osteoclasts were normal throughout the healing period. One day after bone injury, Stat3, the main transcription factor activated by mOSM, was found phosphorylated/activated in endosteal osteoblastic cells located at the hedge of the hematoma. Interestingly, we observed reduced activation of Stat3 in Osm(-/-) mice. In addition, mice deficient in the mOSM receptor (Osmr(-/-)) also had reduced bone formation and osteoblast number within the injury site. These results suggest that mOSM, a product of macrophages, sustains intramembranous bone formation by signaling through Osmr and Stat3, acting on the recruitment, proliferation, and/or osteoblast differentiation of endosteal mesenchymal progenitor cells. Because bone resorption is largely unaltered, OSM could represent a new anabolic treatment for unconsolidated bone fractures.
Collapse
Affiliation(s)
- Pierre Guihard
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Marie-Astrid Boutet
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Bénédicte Brounais-Le Royer
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Anne-Laure Gamblin
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Jérôme Amiaud
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Audrey Renaud
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Martine Berreur
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Françoise Rédini
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Pierre Layrolle
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Frédéric Blanchard
- INSERM, UMR 957, Ligue Team 2012, Nantes, France; Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, Université de Nantes, Nantes Atlantique Universités, Nantes, France.
| |
Collapse
|
12
|
Isolation, characterization, differentiation, and application of adipose-derived stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:55-105. [PMID: 20091288 DOI: 10.1007/10_2009_24] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.Isolation of stromal cell fractions involves centrifugation, digestion, and filtration, resulting in an adherent cell population containing mesenchymal stem cells; these can be subdivided by cell sorting and cultured under common conditions.They seem to have comparable properties to bone marrow-derived mesenchymal stem cells in their differentiation abilities as well as a favorable angiogenic and anti-inflammatory cytokine secretion profile and therefore have become widely used in tissue engineering and clinical regenerative medicine.
Collapse
|
13
|
Gentile P, De Angelis B, Pasin M, Cervelli G, Curcio CB, Floris M, Di Pasquali C, Bocchini I, Balzani A, Nicoli F, Insalaco C, Tati E, Lucarini L, Palla L, Pascali M, De Logu P, Di Segni C, Bottini DJ, Cervelli V. Adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical evaluation for cell-based therapies in patients with scars on the face. J Craniofac Surg 2014; 25:267-272. [PMID: 24406591 DOI: 10.1097/01.scs.0000436746.21031.ba] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Actually, autologous fat grafts have many clinical applications in breast surgery, facial rejuvenation, buttock augmentation, and Romberg syndrome as well as a treatment of liposuction sequelae. OBJECTIVE The aim of this article was to describe the preparation and isolation procedures for stromal vascular fraction (SVF), the preparation of platelet-rich plasma (PRP), and the clinical application in the treatment of the scar on the face. METHODS Ten patients with burns sequelae (n = 6) and post-traumatic scars (n = 4) were treated with SVF-enhanced autologous fat grafts obtained by the Celution System. Another 10 patients with burns sequelae (n = 5) and post-traumatic scars (n = 5) were treated with fat grafting based on the Coleman technique mixed with 0.5 mL of PRP.To assess the effects of their treatment, the authors compared their results with those of a control group consisting of 10 patients treated with centrifuged fat. RESULTS In the patients treated with SVF-enhanced autologous fat grafts, we observed a 63% maintenance of contour restoring after 1 year compared with only 39% of the control group (n = 10) treated with centrifuged fat graft (P < 0.0001). In the patients treated with fat grafting and PRP, we observed a 69% maintenance of contour restoring after 1 year compared with that of the control group (n = 10). CONCLUSIONS Autologous fat grafting is a good method for the correction of scars on the face instead of the traditional scar surgical excision.
Collapse
Affiliation(s)
- Pietro Gentile
- From the *Department of Plastic and Reconstructive Surgery, University of Rome Tor Vergata; †Department of Immunohematology and Transfusion, Casilino Hospital; and ‡Department of Education, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mizuno H. Adipose-derived stem cells for regenerative medicine in the field of plastic and reconstructive surgery. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Kelly KJ, Liu Y, Zhang J, Goswami C, Lin H, Dominguez JH. Comprehensive genomic profiling in diabetic nephropathy reveals the predominance of proinflammatory pathways. Physiol Genomics 2013; 45:710-9. [PMID: 23757392 DOI: 10.1152/physiolgenomics.00028.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite advances in the treatment of diabetic nephropathy (DN), currently available therapies have not prevented the epidemic of progressive chronic kidney disease (CKD). The morbidity of CKD, and the inexorable increase in the prevalence of end-stage renal disease, demands more effective approaches to prevent and treat progressive CKD. We undertook next-generation sequencing in a rat model of diabetic nephropathy to study in depth the pathogenic alterations involved in DN with progressive CKD. We employed the obese, diabetic ZS rat, a model that develops diabetic nephropathy, characterized by progressive CKD, inflammation, and fibrosis, the hallmarks of human disease. We then used RNA-seq to examine the combined effects of renal cells and infiltrating inflammatory cells acting as a pathophysiological unit. The comprehensive systems biology analysis of progressive CKD revealed multiple interactions of altered genes that were integrated into morbid networks. These pathological gene assemblies lead to renal inflammation and promote apoptosis and cell cycle arrest in progressive CKD. Moreover, in what is clearly a major therapeutic challenge, multiple and redundant pathways were found to be linked to renal fibrosis, a major cause of kidney loss. We conclude that systems biology applied to progressive CKD in DN can be used to develop novel therapeutic strategies directed to restore critical anomalies in affected gene networks.
Collapse
Affiliation(s)
- K J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
16
|
Kong N, Zhang X, Wang H, Mu X, Han H, Yan W. Inhibition of Growth and Induction of Differentiation of SMMC-7721 Human Hepatocellular Carcinoma Cells by Oncostatin M. Asian Pac J Cancer Prev 2013; 14:747-52. [DOI: 10.7314/apjcp.2013.14.2.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
17
|
Kaewsuwan S, Song SY, Kim JH, Sung JH. Mimicking the functional niche of adipose-derived stem cells for regenerative medicine. Expert Opin Biol Ther 2012; 12:1575-88. [PMID: 22953993 DOI: 10.1517/14712598.2012.721763] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A stem cell (SC) niche is defined as the microenvironment in which the adult SC resides and includes surrounding cells, low oxygen content and growth factor gradients. Crosstalk between SCs and their niche provides signals that keep SCs quiescent, or modulates their activation. AREAS COVERED This review discusses the characterization of niche conditions in the adipose-derived stem cell (ASC) in vivo environment, and introduces key signalling pathways and autocrine/paracrine regulators of ASCs. EXPERT OPINION Control of in vivo niche factors (such as low oxygen content, generation of reactive oxygen species and activation of platelet-derived growth factor receptor signalling) should increase ASC yields synergistically and reduce production costs. Additionally, the preconditioning of ASCs with these niche factors prior to transplantation might enhance their regenerative potential. ASC niche is complex, and there are components of the niche that we may not yet understand. Therefore, future research needs to focus on identifying the key regulatory factors of the ASC niche in vivo, and developing a novel method to mimic these niche factors for in vitro manipulation.
Collapse
|
18
|
Mizuno H, Tobita M, Uysal AC. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 2012; 30:804-10. [PMID: 22415904 DOI: 10.1002/stem.1076] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in the genetic manipulation of human ESCs, even though these cells are, theoretically, highly beneficial. Mesenchymal stem cells seem to be an ideal population of stem cells for practical regenerative medicine, because they are not subjected to the same restrictions. In particular, large number of adipose-derived stem cells (ASCs) can be easily harvested from adipose tissue. Furthermore, recent basic research and preclinical studies have revealed that the use of ASCs in regenerative medicine is not limited to mesodermal tissue but extends to both ectodermal and endodermal tissues and organs, although ASCs originate from mesodermal lineages. Based on this background knowledge, the primary purpose of this concise review is to summarize and describe the underlying biology of ASCs and their proliferation and differentiation capacities, together with current preclinical and clinical data from a variety of medical fields regarding the use of ASCs in regenerative medicine. In addition, future directions for ASCs in terms of cell-based therapies and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
19
|
Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Cervelli V. Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med 2012; 1:230-236. [PMID: 23197782 PMCID: PMC3659840 DOI: 10.5966/sctm.2011-0054] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/20/2012] [Indexed: 12/11/2022] Open
Abstract
Cell-based therapy and regenerative medicine offer a paradigm shift in regard to various diseases causing loss of substance or volume and tissue or organ damage. Recently, many authors have focused their attention on mesenchymal stem cells for their capacity to differentiate into many cell lineages. The most widely studied types are bone marrow mesenchymal stem cells and adipose-derived stem cells (ADSCs), which display similar results. Based on the literature, we believe that the ADSCs offer advantages because of lower morbidity during the harvesting procedure. Additionally, platelet-rich plasma can be used in this field for its ability to stimulate tissue regeneration. The aims of this article are to describe ADSC preparation and isolation procedures, preparation of platelet-rich plasma, and the application of ADSCs in regenerative plastic surgery. We also discuss the mechanisms and future role of ADSCs in cell-based therapy and tissue engineering.
Collapse
Affiliation(s)
- Pietro Gentile
- Plastic and Reconstructive Surgery Department Tor Vergata University, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Yarak S, Okamoto OK. Human adipose-derived stem cells: current challenges and clinical perspectives. An Bras Dermatol 2011; 85:647-56. [PMID: 21152789 DOI: 10.1590/s0365-05962010000500008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Indexed: 01/22/2023] Open
Abstract
Adult or somatic stem cells hold great promise for tissue regeneration. Currently, one major scientific interest is focused on the basic biology and clinical application of mesenchymal stem cells. Adipose tissue-derived stem cells share similar characteristics with bone marrow mesenchymal stem cells, but have some advantages including harvesting through a less invasive surgical procedure. Moreover, adipose tissue-derived stem cells have the potential to differentiate into cells of mesodermal origin, such as adipocytes, cartilage, bone, and skeletal muscle, as well as cells of non-mesodermal lineage, such as hepatocytes, pancreatic endocrine cells, neurons, cardiomyocytes, and vascular endothelial cells. There are, however, inconsistencies in the scientific literature regarding methods for harvesting adipose tissue and for isolating, characterizing and handling adipose tissue-derived stem cells. Future clinical applications of adipose tissue-derived stem cells rely on more defined and widespread methods for obtaining cells of clinical grade quality. In this review, current methods in adipose tissue-derived stem cell research are discussed with emphasis on strategies designed for future applications in regenerative medicine and possible challenges along the way.
Collapse
Affiliation(s)
- Samira Yarak
- Universidade Federal do Vale do São Francisco, Brazil.
| | | |
Collapse
|
21
|
Beatus P, Jhaveri DJ, Walker TL, Lucas PG, Rietze RL, Cooper HM, Morikawa Y, Bartlett PF. Oncostatin M regulates neural precursor activity in the adult brain. Dev Neurobiol 2011; 71:619-33. [PMID: 21671408 DOI: 10.1002/dneu.20871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The regulation of neural precursor cell (NPC) activity is the major determinant of the rate of neuronal production in neurogenic regions of the adult brain. Here, we show that Oncostatin M (Osm) and its receptor, OsmRβ, are both expressed in the subventricular zone (SVZ) and that in contradistinction to leukemia inhibitory factor and ciliary neutrophic factor, Osm directly inhibits the proliferation of adult NPCs as measured by a decreased level of neurosphere formation in vitro. Similarly, intraventricular infusion of Osm dramatically decreases the pool of NPCs in both the SVZ and the hippocampus. In keeping with the inhibitory action of Osm, we reveal that mice lacking OsmRβ have substantially more NPCs in the SVZ, the hippocampus and the olfactory bulb, demonstrating that endogenous Osm signaling is important for NPC homeostasis. Finally, we show that Osm can also inhibit clonal growth of glioblastoma-derived neurospheres, further supporting the close link between NPCs and tumor stem cells.
Collapse
Affiliation(s)
- Paul Beatus
- The Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jurgens WJFM, van Dijk A, Doulabi BZ, Niessen FB, Ritt MJPF, van Milligen FJ, Helder MN. Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue. Cytotherapy 2010; 11:1052-64. [PMID: 19929469 DOI: 10.3109/14653240903219122] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS Stem cell therapies are being evaluated as promising alternatives for cartilage regeneration. We investigated whether stromal vascular fraction cells (SVF) from the infrapatellar (Hoffa) fat pad are suitable for a one-step surgical procedure to treat focal cartilage defects. METHODS SVF was harvested from patients undergoing knee arthroplasty (n = 53). Colony-forming unit (CFU) assays, growth kinetics and surface marker profiles were determined, and the chondrogenic differentiation capacity of freshly isolated SVF was assessed after seeding in three-dimensional poly (L-lactic-co-epsilon-caprolactone) scaffolds. RESULTS SVF yield per fat pad varied between 0.55 and 16 x 10(6) cells. CFU frequency and population doubling time were 2.6 +/- 0.6% and +/-2 days, respectively. Surface marker profiles matched those of subcutaneous-derived adipose-derived stem cells (ASC). CFU from Hoffa SVF showed differentiation toward osteogenic and adipogenic lineages. Cartilage differentiation was confirmed by up-regulation of the cartilage genes sox9, aggrecan, collagen type II and cartilage oligomeric matrix protein (COMP), collagen II immunostaining, Alcian Blue staining and glycosaminoglycan production. Compared with passaged cells, SVF showed at least similar chondrogenic potential. CONCLUSIONS This study demonstrates that SVF cells from the infrapatellar fat pad are suitable for future application in a one-step surgical procedure to regenerate cartilage tissue. SVF shows similar favorable characteristics as cultured ASC, and chondrogenic differentiation even appears to be slightly better. However, because of variable harvesting volumes and yields, SVF from the infrapatellar fat pad might only be applicable for treatment of small focal cartilage defects, whereas for larger osteoarthritic defects subcutaneous adipose tissue depot would be preferable.
Collapse
Affiliation(s)
- Wouter J F M Jurgens
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 2009; 108:577-88. [PMID: 19650110 PMCID: PMC2774119 DOI: 10.1002/jcb.22289] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult human mesenchymal stem cells (MSCs) hold promise for an increasing list of therapeutic uses due to their ease of isolation, expansion, and multi-lineage differentiation potential. To maximize the clinical potential of MSCs, the underlying mechanisms by which MSC functionality is controlled must be understood. We have taken a deconstructive approach to understand the individual components in vitro, namely the role of candidate "stemness" genes. Our recent microarray gene expression profiling data suggest that interleukin-6 (IL-6) may contribute to the maintenance of MSCs in their undifferentiated state. In this study, we showed that IL-6 gene expression is significantly higher in undifferentiated MSCs as compared to their chondrogenic, osteogenic, and adipogenic derivatives. Moreover, we found that MSCs secrete copious amounts of IL-6 protein, which decreases dramatically during osteogenic differentiation. We further evaluated the role of IL-6 for maintenance of MSC "stemness," using a series of functional assays. The data showed that IL-6 is both necessary and sufficient for enhanced MSC proliferation, protects MSCs from apoptosis, inhibits adipogenic and chondrogenic differentiation of MSCs, and increases the rate of in vitro wound healing of MSCs. We further identified ERK1/2 activation as the key pathway through which IL-6 regulates both MSC proliferation and inhibition of differentiation. Taken together, these findings show for the first time that IL-6 maintains the proliferative and undifferentiated state of bone marrow-derived MSCs, an important parameter for the optimization of both in vitro and in vivo manipulation of MSCs.
Collapse
Affiliation(s)
| | | | - Hana Haleem-Smith
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | - Yingjie Song
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | - Rocky S. Tuan
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J NIPPON MED SCH 2009; 76:56-66. [PMID: 19443990 DOI: 10.1272/jnms.76.56] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stem cell based therapies for the repair and regeneration of various tissues and organs offer a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. Although embryonic stem cells and induced pluripotent stem cells are theoretically highly beneficial, there are various limitations to their use imposed by cell regulations, ethical considerations, and genetic manipulation. Adult stem cells, on the other hand, are more easily available, with neither ethical nor immunoreactive considerations, as long as they are of autologous tissue origin. Much research has focused on mesenchymal stem cells isolated from bone marrow stroma which have been shown to possess adipogenic, osteogenic, chondrogenic, myogenic, and neurogenic potential in vitro. However bone marrow procurement is extremely painful for patients and yields low numbers of harvested cells. When compared with bone marrow-derived mesenchymal stem cells, adipose-derived stem cells are equally capable of differentiating into cells and tissues of mesodermal origin. Because human adipose tissue is ubiquitous and easily obtainable in large quantities under local anesthesia with little patient discomfort, it may provide an alternative source of stem cells for mesenchymal tissue regeneration and engineering. Based on our previous experimental findings, this review highlights the molecular characteristics, the potential for differentiation, the potential for wound healing, and the future role of adipose-derived stem cells in cell-based therapies and tissue engineering.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Plastic, Reconstructive and Regenerative Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
25
|
Whitney MJ, Lee A, Ylostalo J, Zeitouni S, Tucker A, Gregory CA. Leukemia inhibitory factor secretion is a predictor and indicator of early progenitor status in adult bone marrow stromal cells. Tissue Eng Part A 2009; 15:33-44. [PMID: 18637760 DOI: 10.1089/ten.tea.2007.0266] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone marrow-derived stromal cells (BMSCs) are defined by their ability to self-renew and differentiate into at least three mesenchymal cell types (bone, adipose, and cartilage). The inability to isolate a reliably efficacious and homogeneous population of early progenitor cells has limited efforts to increase their therapeutic potential. In this study, we focused on identifying protein markers that may be employed to predict the efficacy of a cultured BMSC population. Markers of progenitor status were identified by comparing BMSCs at early and late passage, donor-matched skin fibroblasts, and commercially available dermal fibroblast cell lines. Differentiation potential was determined according to in vitro assays of osteogenesis, adipogenesis, and chondrogenesis. Early-passage BMSCs differentiated into all three lineages, whereas late-passage BMSCs and both fibroblast preparations did not. To identify novel markers of early progenitors, microarray transcript analysis between early-passage BMSCs and fibroblasts was performed. Messenger RNA encoding the cytokine leukemia inhibitory factor (LIF) was identified as differentially expressed. Enzyme-linked immunosorbent assay on conditioned media confirmed that LIF secretion was much higher from early progenitor BMSCs than donor-matched or commercial lines of fibroblasts and dropped with extensive expansion or induction of differentiation. In clonally expanded BMSCs, colonies that retained progenitor status expressed significantly higher levels of LIF than those that failed to differentiate. Our results indicate that LIF expression may represent a marker to quantify the differentiation potential of BMSCs and may be especially suited for the rapid, noninvasive quality control of clinical preparations.
Collapse
Affiliation(s)
- Mandolin J Whitney
- Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | |
Collapse
|
26
|
Franco Lambert AP, Fraga Zandonai A, Bonatto D, Cantarelli Machado D, Pêgas Henriques JA. Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 2009; 77:221-8. [PMID: 19272520 DOI: 10.1016/j.diff.2008.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 10/03/2008] [Accepted: 10/09/2008] [Indexed: 01/13/2023]
Abstract
Adipose tissue contains many cells and proteins that are of value not only for their potential therapeutic applications, but also for the low cost of their harvest and delivery. Mesenchymal stem cells (MSC) were originally isolated from the bone marrow, although similar populations have been isolated from adipose and other tissues. At one time, neural tissues were not regarded as regenerative populations of cells. Therefore, the identification of cell populations capable of neuronal differentiation has generated immense interest. Adipose tissue may represent an alternative source of cells that are capable of neuronal differentiation, potentially enhancing its use in the treatment of neurological disease. The aim of this review is to cover the current state of knowledge of the differentiation potential of human adipose-derived stem (ADAS) cells, specifically their ability to give rise to neuronal cells in vitro. This review presents and discusses different protocols used for inducing human ADAS cells to differentiate in vitro, and the neuronal markers utilized in each system.
Collapse
Affiliation(s)
- Ana Paula Franco Lambert
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS 91507-970, Brazil
| | | | | | | | | |
Collapse
|
27
|
Metabolic and Functional Characterization of Human Adipose-Derived Stem Cells in Tissue Engineering. Plast Reconstr Surg 2008; 122:725-738. [DOI: 10.1097/prs.0b013e318180ec9f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Song HY, Jeon ES, Kim JI, Jung JS, Kim JH. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 2007; 101:1238-51. [PMID: 17226768 DOI: 10.1002/jcb.21245] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncostatin M (OSM) is a multifunctional cytokine of the interleukin-6 family and has been implicated in embryonic development, differentiation, inflammation, and regeneration of liver and bone. In the present study, we demonstrated that treatment of human adipose mesenchymal stem cells (hADSCs) with OSM-attenuated adipogenic differentiation, as indicated by decreased accumulation of intracellular lipid droplets and down-regulated expression of adipocytic markers, such as lipoprotein lipase and PPARgamma. However, OSM treatment stimulated osteogenic differentiation, as demonstrated by the increase in matrix mineralization and expression levels of osteogenic differentiation markers, including alkaline phosphatase, Runx2, and osteocalcin. OSM treatment induced activation of JAK2, JAK3, and ERK in hADSCs, and pre-treatment of hADSCs with the JAK2 inhibitor, AG490, significantly restored the OSM-induced inhibition of adipogenic differentiation. Whereas, the JAK3 inhibitor, WHI-P131, and the MEK inhibitor, U0126, had no effects on the anti-adipogenic activity of OSM. On the other hand, the pro-osteogenic activity of OSM was prevented by treatment of the cells with WHI-P131 or U0126, but not with AG490. These results indicate that distinct signaling pathways, including JAK2, JAK3, and MEK-ERK, play specific roles in the OSM-induced anti-adipogenic and pro-osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Hae Young Song
- Research Center for Ischemic Tissue Regeneration & Medical Research Institute, Pusan National University, Busan 602-739, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25:818-27. [PMID: 17420225 DOI: 10.1634/stemcells.2006-0589] [Citation(s) in RCA: 766] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared with bone marrow-derived mesenchymal stem cells, adipose tissue-derived stromal cells (ADSC) do have an equal potential to differentiate into cells and tissues of mesodermal origin, such as adipocytes, cartilage, bone, and skeletal muscle. However, the easy and repeatable access to subcutaneous adipose tissue and the simple isolation procedures provide a clear advantage. Since extensive reviews focusing exclusively on ADSC are rare, it is the aim of this review to describe the preparation and isolation procedures for ADSC, to summarize the molecular characterization of ADSC, to describe the differentiation capacity of ADSC, and to discuss the mechanisms and future role of ADSC in cell therapy and tissue engineering. An initial effort has also been made to differentiate ADSC into hepatocytes, endocrine pancreatic cells, neurons, cardiomyocytes, hepatocytes, and endothelial/vascular cells. Whereas the lineage-specific differentiation into cells of mesodermal origin is well understood on a molecular basis, the molecular key events and transcription factors that initially allocate the ADSC to a lineage-specific differentiation are almost completely unknown. Decoding these molecular mechanisms is a prerequisite for developing novel cell therapies.
Collapse
Affiliation(s)
- Andreas Schäffler
- Department of Internal Medicine I, University of Regensburg, D-93042 Regensburg, Germany.
| | | |
Collapse
|
30
|
Hamada T, Sato A, Hirano T, Yamamoto T, Son G, Onodera M, Torii I, Nishigami T, Tanaka M, Miyajima A, Nishiguchi S, Fujimoto J, Tsujimura T. Oncostatin M gene therapy attenuates liver damage induced by dimethylnitrosamine in rats. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:872-81. [PMID: 17640959 PMCID: PMC1959500 DOI: 10.2353/ajpath.2007.060972] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To assess the usefulness of oncostatin M (osm) gene therapy in liver regeneration, we examined whether the introduction of OSM cDNA enhances the regeneration of livers damaged by dimethylnitrosamine (DMN) in rats. Repeated injection of OSM cDNA enclosed in hemagglutinating virus of Japan envelope into the spleen resulted in the exclusive expression of OSM protein in Kupffer cells of the liver, which was accompanied by increases in body weight, liver weight, and serum albumin levels and the reduction of serum liver injury parameters (bilirubin, aspartate aminotransferase, and alanine aminotransferase) and a serum fibrosis parameter (hyaluronic acid). Histological examination showed that osm gene therapy reduced centrilobular necrosis and inflammatory cell infiltration and augmented hepatocyte proliferation. The apoptosis of hepatocytes and fibrosis were suppressed by osm gene therapy. Time-course studies on osm gene therapy before or after DMN treatment showed that this therapy was effective not only in enhancing regeneration of hepatocytes damaged by DMN but in preventing hepatic cytotoxicity caused by subsequent treatment with DMN. These results indicate that OSM is a key mediator for proliferation and anti-apoptosis of hepatocytes and suggest that osm gene therapy is useful, as preventive and curative means, for the treatment of patients with liver damage.
Collapse
Affiliation(s)
- Tetsuhiro Hamada
- Department of Pathology, Hyogo College of Medicine, 1, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Follmar KE, Decroos FC, Prichard HL, Wang HT, Erdmann D, Olbrich KC. Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells. ACTA ACUST UNITED AC 2007; 12:3525-33. [PMID: 17518688 DOI: 10.1089/ten.2006.12.3525] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of adipose-derived stem cells (ASCs) for tissue engineering involves exposing them to metabolically adverse conditions. This study examined the metabolism, proliferation, and viability of ASCs under various oxygen, glucose, and glutamine concentrations to determine how these cells respond to such environments. ASCs were cultured in each of 8 media preparations containing 4.8 or 21.5 mM glucose, and 0, 2, 4, or 6 mM glutamine. The ASCs were cultured under normoxic (20% O(2)) and hypoxic (0.1% O(2)) conditions. Conditioned media were collected and assayed for glucose, glutamine, lactate, pyruvate, and glutamate. Cell proliferation and cell death were measured after 5 days of culture. ASCs remained metabolically active under all culture conditions; however, their proliferation rate was significantly reduced in the absence of glutamine. Hypoxia resulted in increased cell death. ASCs are a viable source of stem cells for tissue engineering purposes, although substantial challenges remain. These cells are able to survive in environments with limited oxygen and glutamine and thus may be able to survive brief periods of limited nutrient transport after implantation.
Collapse
Affiliation(s)
- K E Follmar
- Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ning H, Lin G, Lue TF, Lin CS. Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation 2007; 74:510-8. [PMID: 17177848 DOI: 10.1111/j.1432-0436.2006.00081.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70.
Collapse
Affiliation(s)
- Hongxiu Ning
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA 94143-1695, USA
| | | | | | | |
Collapse
|
33
|
Sareila O, Korhonen R, Kärpänniemi O, Nieminen R, Kankaanranta H, Moilanen E. JAK inhibitors AG-490 and WHI-P154 decrease IFN-gamma-induced iNOS expression and NO production in macrophages. Mediators Inflamm 2007; 2006:16161. [PMID: 16883061 PMCID: PMC1592588 DOI: 10.1155/mi/2006/16161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In inflammation, inducible nitric oxide synthase (iNOS) produces
nitric oxide (NO), which modulates inflammatory processes.
We investigated the effects of Janus kinase (JAK) inhibitors,
AG-490 and WHI-P154, on iNOS expression and NO production in J774
murine macrophages stimulated with interferon-γ
(IFN-γ). JAK inhibitors AG-490 and WHI-P154 decreased
IFN-γ-induced nuclear levels of signal transducer and
activator of transcription 1α
(STAT1α). JAK
inhibitors AG-490 and WHI-P154 decreased also iNOS protein and
mRNA expression and NO production in a concentration-dependent
manner. Neither of the JAK inhibitors affected the decay of iNOS
mRNA when determined by actinomycin D assay. Our results suggest
that the inhibition of JAK-STAT1-pathway by AG-490 or WHI-P154
leads to the attenuation of iNOS expression and NO
production in IFN-γ-stimulated macrophages.
Collapse
Affiliation(s)
- Outi Sareila
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
- *Outi Sareila:
| | - Riku Korhonen
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Outi Kärpänniemi
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Hannu Kankaanranta
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Medical
School, University of Tampere and Research Unit, Tampere
University Hospital, 33014 Tampere, Finland
| |
Collapse
|
34
|
El Mabrouk M, Sylvester J, Zafarullah M. Signaling pathways implicated in oncostatin M-induced aggrecanase-1 and matrix metalloproteinase-13 expression in human articular chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:309-20. [PMID: 17208315 DOI: 10.1016/j.bbamcr.2006.11.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 11/04/2006] [Accepted: 11/27/2006] [Indexed: 11/26/2022]
Abstract
Molecular mechanisms of oncostatin M (OSM)-stimulated cartilage extracellular matrix catabolism and signaling pathways were investigated in human arthritic chondrocytes. OSM, alone or with Interleukin-1 (IL-1beta), increased glycosaminoglycan release and induced ADAMTS-4 and MMP-13 protein expression in human cartilage explants. OSM dose- and time-dependently increased ADAMTS-4 mRNA and MMP-13 protein expression in human femoral head chondrocytes. Extracellular signal-regulated kinases (ERK1/2)-MAPK pathway inhibitor, U0126, down-regulated ADAMTS-4 and MMP-13 induction by OSM. Janus kinase 2 (JAK2) inhibitor, AG490, suppressed OSM-induced ADAMTS-4 mRNA expression but did not affect MMP-13 levels while JAK3 pharmacological inhibitor and siRNA transfection suppressed both. Parthenolide, a signal transducer and activator of transcription (STAT1 and STAT3) phosphorylation inhibitor, reduced OSM-induced ADAMTS-4 and MMP-13 gene expression and prevented STAT1/3 DNA binding activity. Additionally, OSM-enhanced ADAMTS-4 mRNA and MMP-13 expression was down-regulated by phosphatidylinositol 3-kinase (PI3K) and Akt/PKB inhibitors, LY294002 and NL-71-101. Furthermore, JAK3 inhibition time-dependently down-regulated Akt but not ERK1/2 phosphorylation suggesting that Akt is a downstream target of JAK3. These results suggest that OSM-stimulated ADAMTS-4 and MMP-13 expression is mediated by ERK1/2, JAK3/STAT1/3 and PI3K/Akt and by cross talk between these pathways. The inhibitors of these cascades could block OSM-evoked degeneration of cartilage by ADAMTS-4 and MMP-13.
Collapse
Affiliation(s)
- Mohammed El Mabrouk
- Department of Medicine and Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), K-5255 Mailloux, Notre-Dame Hospital, 1560 Sherbrooke E. Montreal, Quebec, Canada H2L 4M1
| | | | | |
Collapse
|
35
|
Lee MJ, Song HY, Kim MR, Sung SM, Jung JS, Kim JH. Oncostatin M stimulates expression of stromal-derived factor-1 in human mesenchymal stem cells. Int J Biochem Cell Biol 2006; 39:650-9. [PMID: 17169599 DOI: 10.1016/j.biocel.2006.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/08/2006] [Accepted: 11/17/2006] [Indexed: 01/24/2023]
Abstract
Stromal-derived factor-1 (SDF-1) is a CXC chemokine that attracts leukocytes and endothelial progenitor cells. In the present study, we demonstrated that oncostatin M (OSM) stimulates expression and secretion of SDF-1 in both human adipose tissue-derived mesenchymal stem cells (hATSCs) and bone marrow-derived mesenchymal stem cells. The OSM-stimulated expression of SDF-1 in hATSCs was completely abrogated by pretreatment of the cells with U0126, an MEK-specific inhibitor, but not with AG490, a JAK2 inhibitor, or WHI-P131, a JAK3 inhibitor, suggesting that ERK, but not JAK2 and JAK3, is involved in the OSM-induced expression of SDF-1. Pretreatment of hATSCs with anti-VEGF neutralizing antibody or VEGF receptor inhibitors, SU5416 and KRN633, had no significant impact on the OSM induction of SDF-1. Furthermore, treatment of hATSCs with recombinant human VEGF165 or adenoviral overexpression of VEGF did not increase the expression of SDF-1. These results suggest that OSM induces secretion of SDF-1 through ERK-, but not VEGF-, dependent signaling pathways in mesenchymal stem cells.
Collapse
Affiliation(s)
- Mi Jeong Lee
- Medical Research Center for Ischemic Tissue Regeneration of Pusan National University & the Medical Research Institute, Busan 602-739, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Song HY, Kim MR, Lee MJ, Jeon ES, Bae YC, Jung JS, Kim JH. Oncostatin M decreases adiponectin expression and induces dedifferentiation of adipocytes by JAK3- and MEK-dependent pathways. Int J Biochem Cell Biol 2006; 39:439-49. [PMID: 17081797 DOI: 10.1016/j.biocel.2006.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 07/26/2006] [Accepted: 07/31/2006] [Indexed: 01/13/2023]
Abstract
Adiponectin, an adipokine secreted from adipocytes, plays a crucial role in the regulation of glucose and lipid metabolism. In the present study, we examine the role of the IL-6 family of cytokines in the expression of adiponectin in human adipocytes derived from human adipose tissue-derived stromal cells. Oncostatin M (OSM), but not IL-6, attenuated the expression level of adiponectin dose- and time-dependently, and the inhibitory effect of OSM on adiponectin expression was as potent as that of TNF-alpha. The OSM-induced down-regulation of adiponectin expression was correlated with the down-regulation of PPARgamma2 and lipoprotein lipase, markers for adipogenic differentiation, and depletion of intracellular lipid droplets, suggesting dedifferentiation of adipocytes in response to OSM. OSM induced phosphorylation of STAT1, and treatment of adipocytes with JAK3 inhibitor WHI-P131 or MEK inhibitor U0126, but not with JAK2 inhibitor AG490, prevented the activation of STAT1. Furthermore, the OSM-induced suppression of adiponectin expression and dedifferentiation of adipocytes were ameliorated by WHI-P131 or U0126, but not by AG490. These results suggest that OSM inhibits adiponectin expression by inducing dedifferentiation of adipocytes through signaling pathways involving JAK3 and MEK, but not JAK2.
Collapse
Affiliation(s)
- Hae Young Song
- Medical Research Center for Ischemic Tissue Regeneration & Medical Research Institute, Pusan National University, Busan 602-739, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|