1
|
Li J, Chen B, Fellows GF, Goodyer CG, Wang R. Activation of Pancreatic Stellate Cells Is Beneficial for Exocrine but Not Endocrine Cell Differentiation in the Developing Human Pancreas. Front Cell Dev Biol 2021; 9:694276. [PMID: 34490247 PMCID: PMC8418189 DOI: 10.3389/fcell.2021.694276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023] Open
Abstract
Pancreatic stellate cells (PaSCs) are non-endocrine, mesenchymal-like cells that reside within the peri-pancreatic tissue of the rodent and human pancreas. PaSCs regulate extracellular matrix (ECM) turnover in maintaining the integrity of pancreatic tissue architecture. Although there is evidence indicating that PaSCs are involved in islet cell survival and function, its role in islet cell differentiation during human pancreatic development remains unclear. The present study examines the expression pattern and functional role of PaSCs in islet cell differentiation of the developing human pancreas from late 1st to 2nd trimester of pregnancy. The presence of PaSCs in human pancreata (8–22 weeks of fetal age) was characterized by ultrastructural, immunohistological, quantitative RT-PCR and western blotting approaches. Using human fetal PaSCs derived from pancreata at 14–16 weeks, freshly isolated human fetal islet-epithelial cell clusters (hIECCs) were co-cultured with active or inactive PaSCs in vitro. Ultrastructural and immunofluorescence analysis demonstrated a population of PaSCs near ducts and newly formed islets that appeared to make complex cell-cell dendritic-like contacts. A small subset of PaSCs co-localized with pancreatic progenitor-associated transcription factors (PDX1, SOX9, and NKX6-1). PaSCs were highly proliferative, with significantly higher mRNA and protein levels of PaSC markers (desmin, αSMA) during the 1st trimester of pregnancy compared to the 2nd trimester. Isolated human fetal PaSCs were identified by expression of stellate cell markers and ECM. Suppression of PaSC activation, using all-trans retinoic acid (ATRA), resulted in reduced PaSC proliferation and ECM proteins. Co-culture of hIECCs, directly on PaSCs or indirectly using Millicell® Inserts or using PaSC-conditioned medium, resulted in a reduction the number of insulin+ cells but a significant increase in the number of amylase+ cells. Suppression of PaSC activation or Notch activity during the co-culture resulted in an increase in beta-cell differentiation. This study determined that PaSCs, abundant during the 1st trimester of pancreatic development but decreased in the 2nd trimester, are located near ductal and islet structures. Direct and indirect co-cultures of hIECCs with PaSCs suggest that activation of PaSCs has opposing effects on beta-cell and exocrine cell differentiation during human fetal pancreas development, and that these effects may be dependent on Notch signaling.
Collapse
Affiliation(s)
- Jinming Li
- Children's Health Research Institute, Western University, London, ON, Canada.,Departments of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Bijun Chen
- Children's Health Research Institute, Western University, London, ON, Canada
| | - George F Fellows
- Department of Obstetrics and Gynecology, Western University, London, ON, Canada
| | | | - Rennian Wang
- Children's Health Research Institute, Western University, London, ON, Canada.,Departments of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
2
|
Qiu L, Jia K, Huang L, Liao X, Guo X, Lu H. Hepatotoxicity of tricyclazole in zebrafish (Danio rerio). CHEMOSPHERE 2019; 232:171-179. [PMID: 31154177 DOI: 10.1016/j.chemosphere.2019.05.159] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Tricyclazole is widely used in agriculture as a pesticide, but its toxicity in vertebrates is currently poorly evaluated. In this study, we used zebrafish to assess the toxicity of tricyclazole. We found that tricyclazole induces liver damage, or hepatotoxicity, in zebrafish, during both development and adulthood. In embryos, we found that tricyclazole affected the liver development rather than other endodermal tissues such as gut and pancreas. In both embryos and adult zebrafish livers, tricyclazole disrupted the relationship between oxidant and antioxidant system and resulted in reactive oxygen species (ROS) overload. Meanwhile, it triggered hepatocyte apoptosis and disturbed carbohydrate/lipid metabolism and energy demand systems. These results suggested that tricyclazole could cause severe consequences for vertebrate hepatic development and function.
Collapse
Affiliation(s)
- Lingyu Qiu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Kun Jia
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Lirong Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China
| | - Xinchun Guo
- School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China.
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China; Center for Developmental Biology of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi, China.
| |
Collapse
|
3
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
4
|
Oakie A, Wang R. β-Cell Receptor Tyrosine Kinases in Controlling Insulin Secretion and Exocytotic Machinery: c-Kit and Insulin Receptor. Endocrinology 2018; 159:3813-3821. [PMID: 30239687 PMCID: PMC6202852 DOI: 10.1210/en.2018-00716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Insulin secretion from pancreatic β-cells is initiated through channel-mediated depolarization, cytoskeletal remodeling, and vesicle tethering at the cell membrane, all of which can be regulated through cell surface receptors. Receptor tyrosine kinases (RTKs) promote β-cell development and postnatal signaling to improve β-cell mass and function, yet their activation has also been shown to initiate exocytotic events in β-cells. This review examines the role of RTK signaling in insulin secretion, with a focus on RTKs c-Kit and insulin receptor (IR). Pathways that control insulin release and the potential interplay between c-Kit and IR signaling are discussed, along with clinical implications of RTK therapy on insulin secretion.
Collapse
Affiliation(s)
- Amanda Oakie
- Children’s Health Research Institute, Victoria Research Laboratories, London, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada
| | - Rennian Wang
- Children’s Health Research Institute, Victoria Research Laboratories, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
- Correspondence: Rennian Wang, MD, PhD, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, Ontario N6C 2V5, Canada. E-mail:
| |
Collapse
|
5
|
SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions. PLoS One 2017; 12:e0184154. [PMID: 28880927 PMCID: PMC5589172 DOI: 10.1371/journal.pone.0184154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/19/2017] [Indexed: 01/11/2023] Open
Abstract
We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.
Collapse
|
6
|
Target Cells for Stem Cell Factor in the Adult Islets of Langerhans, Simultaneously Synthesizing Glucagon and Insulin. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-017-0444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Population Dynamics of MafA-Positive Cells During Ontogeny of Human Pancreas. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Vazquez-Mellado MJ, Monjaras-Embriz V, Rocha-Zavaleta L. Erythropoietin, Stem Cell Factor, and Cancer Cell Migration. VITAMINS AND HORMONES 2017. [DOI: 10.1016/bs.vh.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Lee YM, Song DE, Kim TY, Sung TY, Yoon JH, Chung KW, Hong SJ. Risk Factors for Distant Metastasis in Patients with Minimally Invasive Follicular Thyroid Carcinoma. PLoS One 2016; 11:e0155489. [PMID: 27171147 PMCID: PMC4865049 DOI: 10.1371/journal.pone.0155489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 04/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background Although patients with minimally invasive follicular thyroid carcinoma (MIFTC) generally have an excellent prognosis, distant metastasis occurs in some patients. Risk factors for distant metastasis have been reported, none has been found to be conclusive. This study evaluated risk factors for distant metastasis, including protein markers, in patients with MIFTC. Methods A review of patient records identified 259 patients who underwent surgery at Asan Medical Center from 1996 to 2010 and were subsequently diagnosed with MIFTC. After review of pathological slides, 120 patients with paraffin blocks suited for tissue microarrays (TMA) were included in this study. Immunohistochemical stain of TMA slides was performed by protein markers; β-catenin, C-MET, CK19, estrogen receptor (ER) α, ER β, HBME-1, MMP2, PPAR γ and progesterone receptor. Results 120 patients included 28 males (23.3%) and 92 females (76.7%), of mean age 41.5±10.8 years (range, 13–74 years). Eight patients (6.7%) had distant metastases during follow-up. Univariate analysis showed that age (≥45 years), male sex, and extensive vascular invasion (≥4 foci) were associated with distant metastasis. Multivariate regression analysis showed that extensive vascular invasion was the only independent risk factor for distant metastasis (p = 0.012). Although no protein markers on TMA analysis were directly related to distant metastasis of MIFTC, CK19 expression was more frequent in patients with than without extensive vascular invasion (p = 0.036). Conclusion Extensive vascular invasion was the only independent risk factor for distant metastasis of MIFTC. No proteins markers were directly related to distant metastasis, but CK19 was associated with extensive vascular invasion.
Collapse
Affiliation(s)
- Yu-Mi Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Yon Sung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Ho Yoon
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Wook Chung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail:
| | - Suck Joon Hong
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Riopel M, Li J, Trinder M, Fellows GF, Wang R. Fibrin supports human fetal islet-epithelial cell differentiation via p70(s6k) and promotes vascular formation during transplantation. J Transl Med 2015; 95:925-36. [PMID: 26006020 DOI: 10.1038/labinvest.2015.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/11/2015] [Accepted: 04/06/2015] [Indexed: 12/23/2022] Open
Abstract
The human fetal pancreas expresses a variety of extracellular matrix (ECM) binding receptors known as integrins. A provisional ECM protein found in blood clots that can bind to integrin receptors and promote β cell function and survival is fibrin. However, its role in support of human fetal pancreatic cells is unknown. We investigated how fibrin promotes human fetal pancreatic cell differentiation in vitro and in vivo. Human fetal pancreata were collected from 15 to 21 weeks of gestation and collagenase digested. Cells were then plated on tissue-culture polystyrene, or with 2D or 3D fibrin gels up to 2 weeks, or subcutaneously transplanted in 3D fibrin gels. The human fetal pancreas contained rich ECM proteins and expressed integrin αVβ3. Fibrin-cultured human fetal pancreatic cells had significantly increased expression of PDX-1, glucagon, insulin, and VEGF-A, along with increased integrin αVβ3 and phosphorylated FAK and p70(s6k). Fibrin-cultured cells treated with rapamycin, the mTOR pathway inhibitor, had significantly decreased phospho-p70(s6k) and PDX-1 expression. Transplanting fibrin-mixed cells into nude mice improved vascularization compared with collagen controls. These results suggest that fibrin supports islet cell differentiation via p70(s6k) and promotes vascularization in human fetal islet-epithelial clusters in vivo.
Collapse
Affiliation(s)
- Matthew Riopel
- 1] Children's Health Research Institute, London, Ontario, Canada [2] Department of Pathology, Western University, London, Ontario, Canada
| | - Jinming Li
- 1] Children's Health Research Institute, London, Ontario, Canada [2] Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Mark Trinder
- 1] Children's Health Research Institute, London, Ontario, Canada [2] Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - George F Fellows
- Department of Obstetrics and Gynecology, Western University, London, Ontario, Canada
| | - Rennian Wang
- 1] Children's Health Research Institute, London, Ontario, Canada [2] Department of Physiology and Pharmacology, Western University, London, Ontario, Canada [3] Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
11
|
Feng ZC, Riopel M, Popell A, Wang R. A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia 2015; 58:654-65. [PMID: 25643653 DOI: 10.1007/s00125-015-3504-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
The interactions between c-Kit and its ligand, stem cell factor (SCF), play an important role in haematopoiesis, pigmentation and gametogenesis. c-Kit is also found in the pancreas, and recent studies have revealed that c-Kit marks a subpopulation of highly proliferative pancreatic endocrine cells that may harbour islet precursors. c-Kit governs and maintains pancreatic endocrine cell maturation and function via multiple signalling pathways. In this review we address the importance of c-Kit signalling within the pancreas, including its profound role in islet morphogenesis, islet vascularisation, and beta cell survival and function. We also discuss the impact of c-Kit signalling in pancreatic disease and the use of c-Kit as a potential target for the development of cell-based and novel drug therapies in the treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children's Health Research Institute, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | |
Collapse
|
12
|
Human fetal liver stromal cell co-culture enhances the differentiation of pancreatic progenitor cells into islet-like cell clusters. Stem Cell Rev Rep 2014; 10:280-94. [PMID: 24395006 DOI: 10.1007/s12015-013-9491-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent advance in directed differentiation of pancreatic stem cells offers potential to the development of replacement therapy for diabetic patients. However, the existing differentiation protocols are complex, time-consuming, and costly; thus there is a need for alternative protocols. Given the common developmental origins of liver and pancreas, we sought to develop a novel protocol, devoid of growth factors, by using liver stromal cells (LSCs) derived from human fetal liver. We examined the effects of the LSCs on the differentiation of pancreatic progenitor cells (PPCs) into islet-like cell clusters (ICCs). PPCs and LSCs isolated from 1st to 2nd trimester human fetal tissues underwent co-cultures; differentiation and functionality of ICCs were determined by examining expression of critical markers and secretion of insulin. Co-culture with 2nd but not 1st trimester LSCs enhanced ICC differentiation and functionality without the use of exogenous differentiation 'cocktails'. Differential expression profiles of growth factors from 1st versus 2nd trimester fetal liver were compared. Many morphogenic factors were expressed by LSCs, while insulin-like growth factor 1 (IGF1) was identified as one of the key molecules responsible for the ICC differentiation. This is the first report showing that an LSC-induced microenvironment can enhance ICC differentiation and functionality. Further modifications of the stroma microenvironment may offer an alternative, efficient and cost-effective approach to providing islets for transplantation.
Collapse
|
13
|
Amsterdam A, Shpigner L, Raanan C, Schreiber L, Melzer E, Seger R. Dynamic distribution of ERK, p38 and JNK during the development of pancreatic ductal adenocarcinoma. Acta Histochem 2014; 116:1434-42. [PMID: 25440531 DOI: 10.1016/j.acthis.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
We recently discovered that oncogenic c-kit is highly expressed concomitantly with the development of pancreatic ductal adenocarcinoma (PDAC). Since oncogenic c-kit may activate major pathways of protein tyrosine phosphorylation, we decided to investigate this issue in the major protein phosphorylation cascades. In normal pancreas labeling with antiphosphorylated ERK1/2 (pERK1/2) antibody was mainly confined to islets of Langerhans in close overlapping with insulin containing cells. Phosphorylated p38 (pp38) showed a similar pattern of distribution, while only weak labeling was evident for pJNK and no labeling of pMEK was observed. As expected, general ERK1/2 (gERK1/2), general p38 (gp38), general JNK (gJNK) as well as general MEK (gMEK) were all evident in islets of Langerhans and in the exocrine tissue. In early development of PDAC, pERK1/2 and pp38 retained their localization in islets of Langerhans. Intensive staining of pERK1/2 was also evident in the cancerous ducts, while the labeling with antibodies to pp38 was more moderate. While pJNK staining in islets of Langerhans was weak, with no labeling in the cancerous ducts, antibodies to gJNK revealed intensive staining suggesting the weak staining of pJNK is not due to the lack of the enzyme. In a more advanced stage of PDAC the carcinomas were clearly stained with pERK1/2 and pp38, while moderate staining with pJNK was also evident. In liver metastases, the cancer cells were heavily labeled with all three phospho-MAPKs. It should be noted that the localization of all three kinases was mainly in the cell nuclei. In the more advanced stage of PDAC, heavy labeling was evident using antibodies to gERK1/2, gp38, gJNK and gMEK. However, no labeling to pMEK was evident in parallel sections. Our data suggest that both in normal and cancerous pancreas, most of the MAPK activities are located in islets of Langerhans and cancerous ducts. It is suggested that using inhibitors to protein kinases may attenuate the progression of the disease.
Collapse
Affiliation(s)
- Abraham Amsterdam
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel.
| | - Lotem Shpigner
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | | | - Ehud Melzer
- Department of Gastroentrology, Kaplan Medical Center, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| |
Collapse
|
14
|
Franco-Murillo Y, Miranda-Rodríguez JA, Rendón-Huerta E, Montaño LF, Cornejo GV, Gómez LP, Valdez-Morales FJ, Gonzalez-Sanchez I, Cerbón M. Unremitting cell proliferation in the secretory phase of eutopic endometriosis: involvement of pAkt and pGSK3β. Reprod Sci 2014; 22:502-10. [PMID: 25194152 DOI: 10.1177/1933719114549843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Endometriosis is linked to altered cell proliferation and stem cell markers c-kit/stem cell factor (SCF) in ectopic endometrium. Our aim was to investigate whether c-kit/SCF also plays a role in eutopic endometrium. DESIGN Eutopic endometrium obtained from 35 women with endometriosis and 25 fertile eumenorrheic women was analyzed for in situ expression of SCF/c-kit, Ki67, RAC-alpha serine/threonine-protein kinase (Akt), phosphorylated RAC-alpha serine/threonin-protein kinase (pAkt), Glycogen synthase kinase 3 beta (GSK3β), and phosphorylated glycogen synthase kinase 3 beta (pGSK3β), throughout the menstrual cycle. RESULTS Expression of Ki67 and SCF was higher in endometriosis than in control tissue (P < .05) and greater in secretory rather than proliferative (P < .01) endometrium in endometriosis. Expression of c-kit was also higher in endometriosis although similar in both phases. Expression of Akt and GSK3β was identical in all samples and cycle phases, whereas pAkt and pGSK3β, opposed to control tissue, remained overexpressed in the secretory phase in endometriosis. CONCLUSION Unceasing cell proliferation in the secretory phase of eutopic endometriosis is linked to deregulation of c-kit/SCF-associated signaling pathways.
Collapse
Affiliation(s)
- Yanira Franco-Murillo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | | | - Erika Rendón-Huerta
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | - Luis F Montaño
- Departamento Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico, Federal District, Mexico
| | | | - Lucila Poblano Gómez
- Servicio de Ginecología y Obstetricia, Hospital Español, Mexico, Federal District, Mexico
| | | | - Ignacio Gonzalez-Sanchez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| | - Marco Cerbón
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico, Federal District, Mexico
| |
Collapse
|
15
|
Modulation of c-kit expression in pancreatic adenocarcinoma: a novel stem cell marker responsible for the progression of the disease. Acta Histochem 2014; 116:197-203. [PMID: 23978330 DOI: 10.1016/j.acthis.2013.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of late symptoms and resistance to chemotherapy and radiation therapy. We have investigated the appearance of c-kit, a stem cell marker, in both normal adult pancreatic tissue and in cancerous tissue. Apart from some very pale staining of islets of Langerhans, normal pancreas was devoid of staining with antibodies to c-kit. In contrast, in cancerous tissue that still preserves the overall integrity of the pancreatic tissue, there was a clear labeling in islets of Langerhans, which seemed to be co-localized with insulin containing β cells. In other cases, where the pancreatic tissue was completely deteriorated, intensive labeling was clearly evident in remnants of both the exocrine and the endocrine tissues. The duct cells of the adenocarcinoma were moderately but clearly labeled with antibodies to c-kit. In contrast, in metastasis of PDAC, very intensive labeling of c-kit was evident. The location of KRAS, which is strongly associated with PDAC, was also analyzed at the initial stages of the disease, when islets of Langerhans still preserve their integrity to a large extent. KRAS was found exclusively in islets of Langerhans and overlapped in its location with insulin and c-kit expressing cells. It is suggested that the modulation of the expression of c-kit, visualized by antibodies to the oncogene molecule, may play an important role in the formation and progression of PDAC. The absence of c-kit in normal pancreas and its appearance in PDAC is probably due to a mutational event, which probably allows conversion of the β cells into cancer stem cells (CSC). Co-expression of both c-kit and KRAS, typical markers for CSC with overlapping with insulin in islets of Langerhans, strongly support the notion that β-cells play a central role in the development of PDAC. The use of specific drugs that can attenuate the kinase activity of c-kit or target KRAS expressing cancer cells should be tested in order to attenuate the progression of this lethal disease.
Collapse
|
16
|
Akdemir S, Gurocak S, Konac E, Ure I, Onen HI, Gonul II, Sozen S, Menevse A. Different surgical techniques and L-carnitine supplementation in an experimental varicocele model. Andrologia 2013; 46:910-6. [DOI: 10.1111/and.12172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- S. Akdemir
- Faculty of Medicine; Department of Urology; Gazi University; Ankara Turkey
| | - S. Gurocak
- Faculty of Medicine; Department of Urology; Gazi University; Ankara Turkey
- Faculty of Medicine; Department of Medical Biology and Genetics; Gazi University; Ankara Turkey
| | - E. Konac
- Faculty of Medicine; Department of Medical Biology and Genetics; Gazi University; Ankara Turkey
| | - I. Ure
- Faculty of Medicine; Department of Urology; Gazi University; Ankara Turkey
| | - H. I. Onen
- Faculty of Medicine; Department of Medical Biology and Genetics; Gazi University; Ankara Turkey
| | - I. I. Gonul
- Faculty of Medicine; Department of Pathology; Gazi University; Ankara Turkey
| | - S. Sozen
- Faculty of Medicine; Department of Urology; Gazi University; Ankara Turkey
| | - A. Menevse
- Faculty of Medicine; Department of Medical Biology and Genetics; Gazi University; Ankara Turkey
| |
Collapse
|
17
|
Huo MD, Ding SQ, Ding YJ, Jiang B, Zhang B. Role of SCF/c-Kit signaling pathway in the pathogenesis of cathartic colon. Shijie Huaren Xiaohua Zazhi 2013; 21:809-813. [DOI: 10.11569/wcjd.v21.i9.809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of SCF/c-Kit signaling pathway in the pathogenesis of cathartic colon.
METHODS: Thirty-six healthy adult SD rats were randomly divided into three groups (12 rats per group): control group, model group, and recovery group. The control group was given normal saline by gavage, and the model group and recovery group were given rhein suspension by gavage to induce cathartic colon. Specimens were taken immediately after modeling in the model group and 30 days after modeling in the recovery group. The intestinal transit function was assessed in each rats of each group by detecting the first melena discharge time. RT-PCR and Western blot were used to detect SCF/c-Kit mRNA and protein expression levels in colon tissue.
RESULTS: Compared to the control group, the first melena discharge time was significantly prolonged in the model group (491.5 ± 40.2 vs 373.4 ± 46.5, P < 0.01); however, there was no significant difference in the first melena discharge time between the model group and recovery group (477.9 ± 39.6 vs 491.5 ± 40.2, P > 0.05). Compared to the control group, c-Kit and SCF mRNA and protein expression levels were significantly decreased in both the model group and recovery group (all P < 0.01); however, there were no significant differences in c-Kit and SCF mRNA and protein expression levels between the model group and recovery group (both P > 0.05).
CONCLUSION: Reduced colonic motility in rats with cathartic colon may be associated with down-regulation of SCF/c-Kit signaling in colon tissue.
Collapse
|
18
|
Hechtman JF, Franssen B, Labow DM, Gordon RE, DiMaio CJ, Wilck EJ, Carrasco-Avino G, Zhu H. Intraductal polypoid lipid-rich neuroendocrine tumor of the pancreas with entrapped ductules: case report and review of the literature. Endocr Pathol 2013; 24:30-5. [PMID: 23315081 DOI: 10.1007/s12022-012-9231-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine tumors of the main pancreatic duct are rare and usually small due to symptoms of pancreatic duct obstruction. We present a case of a large (3 cm), well-differentiated (G1) lipid-rich polypoid neuroendocrine tumor of the pancreas completely occluding the main pancreatic duct with non-neoplastic-entrapped ductules and CK19 positivity. Clinical, radiological, gross, microscopic, immunohistochemical, and ultrastructural findings are discussed. The literature pertaining to the unique features of this case is reviewed including clinical and pathologic pitfalls and the possible etiologic and prognostic significance of these findings.
Collapse
Affiliation(s)
- Jaclyn Frances Hechtman
- Department of Pathology, Mount Sinai School of Medicine, One Gustave L Levy Place, 1194, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Welsh M. The platelet-derived growth factor (PDGF) family of tyrosine kinase receptors: a Kit to fix the beta cell? Diabetologia 2012; 55:2092-5. [PMID: 22696036 DOI: 10.1007/s00125-012-2611-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
Abstract
Overexpression of c-Kit has recently been shown to ameliorate beta cell function by increasing the beta cell mass and insulin secretion, thus counteracting the deleterious effects of a high-fat diet on glucose homeostasis. The c-Kit-dependent effects are due to enhanced Akt activity that phosphorylates and inhibits glycogen synthase kinase 3β (GSK3β), thereby increasing the expression of numerous genes that promote insulin production and cell proliferation. Regulating the c-Kit/Akt/GSK3β pathway may provide novel means for improving beta cell function in type 2 diabetes.
Collapse
Affiliation(s)
- M Welsh
- Department of Medical Cell Biology, Uppsala University, Box 571, Husargatan 3, 75123, Uppsala, Sweden.
| |
Collapse
|
20
|
Feng ZC, Li J, Turco BA, Riopel M, Yee SP, Wang R. Critical role of c-Kit in beta cell function: increased insulin secretion and protection against diabetes in a mouse model. Diabetologia 2012; 55:2214-25. [PMID: 22581040 DOI: 10.1007/s00125-012-2566-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS The receptor tyrosine kinase, c-Kit, and its ligand, stem cell factor, control a variety of cellular processes, including pancreatic beta cell survival and differentiation as revealed in c-Kit ( Wv ) mice, which have a point mutation in the c-Kit allele leading to loss of kinase activity and develop diabetes. The present study further investigated the intrinsic role of c-Kit in beta cells, especially the underlying mechanisms that influence beta cell function. METHODS We generated a novel transgenic mouse model with c-KIT overexpression specifically in beta cells (c-KitβTg) to further examine the physiological and functional roles of c-Kit in beta cells. Isolated islets from these mice were used to investigate the underlying molecular pathway of c-Kit in beta cells. We also characterised the ability of c-Kit to protect animals from high-fat-diet-induced diabetes, as well as to rescue c-Kit ( Wv ) mice from early onset of diabetes. RESULTS c-KitβTg mice exhibited improved beta cell function, with significantly improved insulin secretion, and increased beta cell mass and proliferation in response to high-fat-diet-induced diabetes. c-KitβTg islets exhibited upregulation of: (1) insulin receptor and IRSs; (2) Akt and glycogen synthase kinase 3β phosphorylation; and (3) transcription factors important for islet function. c-KIT overexpression in beta cells also rescued diabetes observed in c-Kit ( Wv ) mice. CONCLUSIONS/INTERPRETATION These findings demonstrate that c-Kit plays a direct protective role in beta cells, by regulating glucose metabolism and beta cell function. c-Kit may therefore represent a novel target for treating diabetes.
Collapse
Affiliation(s)
- Z C Feng
- Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | | | | | |
Collapse
|
21
|
Feng ZC, Donnelly L, Li J, Krishnamurthy M, Riopel M, Wang R. Inhibition of Gsk3β activity improves β-cell function in c-KitWv/+ male mice. J Transl Med 2012; 92:543-55. [PMID: 22249311 PMCID: PMC3940483 DOI: 10.1038/labinvest.2011.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that the stem cell marker, c-Kit, is involved in glucose homeostasis. We recently reported that c-Kit(Wv/+) male mice displayed the onset of diabetes at 8 weeks of age; however, the mechanisms by which c-Kit regulates β-cell proliferation and function are unknown. The purpose of this study is to examine if c-Kit(Wv/+) mutation-induced β-cell dysfunction is associated with downregulation of the phospho-Akt/Gsk3β pathway in c-Kit(Wv/+) male mice. Histology and cell signaling were examined in C57BL/6J/Kit(Wv/+) (c-Kit(Wv/+)) and wild-type (c-Kit(+/+)) mice using immunofluorescence and western blotting approaches. The Gsk3β inhibitor, 1-azakenpaullone (1-AKP), was administered to c-Kit(Wv/+) and c-Kit(+/+) mice for 2 weeks, whereby alterations in glucose metabolism were examined and morphometric analyses were performed. A significant reduction in phosphorylated Akt was observed in the islets of c-Kit(Wv/+) mice (P<0.05) along with a decrease in phosphorylated Gsk3β (P<0.05), and cyclin D1 protein level (P<0.01) when compared with c-Kit(+/+) mice. However, c-Kit(Wv/+) mice that received 1-AKP treatment demonstrated normal fasting blood glucose with significantly improved glucose tolerance. 1-AKP-treated c-Kit(Wv/+) mice also showed increased β-catenin, cyclin D1 and Pdx-1 levels in islets, demonstrating that inhibition of Gsk3β activity led to increased β-cell proliferation and insulin secretion. These data suggest that c-Kit(Wv/+) male mice had alterations in the Akt/Gsk3β signaling pathway, which lead to β-cell dysfunction by decreasing Pdx-1 and cyclin D1 levels. Inhibition of Gsk3β could prevent the onset of diabetes by improving glucose tolerance and β-cell function.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children’s Health Research Institute, University of Western Ontario, London, ON, Canada,Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Lisa Donnelly
- Children’s Health Research Institute, University of Western Ontario, London, ON, Canada,Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jinming Li
- Children’s Health Research Institute, University of Western Ontario, London, ON, Canada,Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Mansa Krishnamurthy
- Children’s Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Matthew Riopel
- Children’s Health Research Institute, University of Western Ontario, London, ON, Canada,Department of Pathology, University of Western Ontario, London, ON, Canada
| | - Rennian Wang
- Children’s Health Research Institute, University of Western Ontario, London, ON, Canada,Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada,Department of Medicine, University of Western Ontario, London, ON, Canada,Corresponding author, proofs and reprint requests: Dr. Rennian Wang, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, Ontario, N6C 2V5, Canada. Tel.: +1 (519) 685-8500 ext. 55098, Fax: +1 (519) 685-8186,
| |
Collapse
|
22
|
SOX9 regulates endocrine cell differentiation during human fetal pancreas development. Int J Biochem Cell Biol 2011; 44:72-83. [PMID: 21983268 DOI: 10.1016/j.biocel.2011.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/07/2011] [Accepted: 09/22/2011] [Indexed: 02/06/2023]
Abstract
The transition of pancreatic progenitor cells to mature endocrine cells is regulated by the sequential activation and interaction of several transcription factors. In mice, the transcription factor Sox9 has been shown to support endocrine cell differentiation. However, the functional role of SOX9 during pancreas development in the human has yet to be determined. The present study was to characterize SOX9 expression during human fetal pancreas development and examine its functional role by transfection with SOX9 siRNA or SOX9 expression vectors. Here we report that SOX9 was most frequently expressed in PDX1(+) cells (60-83%) and least in mature endocrine cells (<1-14%). The proliferation of SOX9(+) cells was significantly higher at 8-10 weeks than at 14-21 weeks (p<0.05) or 20-21 weeks (p<0.01). SOX9 frequently co-localized with FOXA2, NGN3 and transcription factors linked to NGN3 (NKX2.2, NKX6.1, PAX6). siRNA knockdown of SOX9 significantly decreased islet-epithelial cell proliferation, NGN3, NKX6.1, PAX6 and INS mRNA levels and the number of NGN3(+) and insulin(+) cells (p<0.05) while increasing GCG mRNA and glucagon(+) cells (p<0.05). Examination of SOX9 associated signaling pathways revealed a decrease in phospho-Akt (p<0.01), phospho-GSK3β (p<0.01) and cyclin D1 (p<0.01) with a decrease in nuclear β-catenin(+) (p<0.05) cells following SOX9 siRNA knockdown. In contrast, over-expression of SOX9 significantly increased the number of islet cells proliferating, NGN3, NKX6.1, PAX6 and INS mRNA levels, the phospho-Akt/GSK3β cascade and the number of insulin(+) cells. Our results demonstrated that SOX9 is important for the expression of NGN3 and molecular markers of endocrine cell differentiation in the human fetal pancreas.
Collapse
|
23
|
c-Kit and stem cell factor regulate PANC-1 cell differentiation into insulin- and glucagon-producing cells. J Transl Med 2010; 90:1373-84. [PMID: 20531294 DOI: 10.1038/labinvest.2010.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent evidence has shown that stem cell factor (SCF) and its receptor, c-Kit, have an important role in pancreatic islet development by promoting islet cell differentiation and proliferation. In this study, we examined the role of c-Kit and SCF in the differentiation and proliferation of insulin- and glucagon-producing cells using a human pancreatic duct cell line (PANC-1). Our study showed that increased expression of endocrine cell markers (such as insulin and glucagon) and transcription factors (such as PDX-1 and PAX-6) coincided with a decrease in CK19(+) and c-Kit(+) cells (P<0.001) during PANC-1 cell differentiation, determined by immunofluorescence and qRT-PCR. Cells cultured with exogenous SCF showed an increase in insulin(+) (26%) and glucagon(+) (35%) cell differentiation (P<0.01), an increase in cell proliferation (P<0.05) and a decrease in cell apoptosis (P<0.01). siRNA knockdown of c-Kit resulted in a decrease in endocrine cell differentiation with a reduction in PDX-1 and insulin mRNA, as well as the number of cells immunostaining for PDX-1 and insulin. Taken together, these results show that c-Kit/SCF interactions are involved in mediating islet-like cluster formation and islet-like cell differentiation in a human pancreatic duct cell line.
Collapse
|
24
|
Yang Y, Yu Y, Gao XK, Chen J, Wang QM. Effects of stem cell factor on the slow waves in intestinal smooth muscle of diabetic mice. Shijie Huaren Xiaohua Zazhi 2010; 18:993-997. [DOI: 10.11569/wcjd.v18.i10.993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effects of stem cell factor (SCF) on the slow waves in duodenal smooth muscle of diabetic mice.
METHODS: Diabetes mellitus (DM) was induced in Balb/c male mice by intraperitoneal injection of streptozotocin (STZ, 150 mg/kg, ip). Mice were then divided into three groups (n = 6 per group): normal control group, DM model group and SCF treatment group. The SCF treatment group was given SCF 0.20 µg/(kg•d, ip), while the normal control group and DM model group were given equal volume of phosphate buffer solution (pH7.40). After six weeks of intervention, all the mice were given Indian ink for determination of the small intestinal transit rate. The changes in the slow waves in duodenal smooth muscle were recorded.
RESULTS: Small intestine transit rate was significantly reduced in the DM model group when compared with the normal control group (44.05% ± 5.48% vs 82.75% ± 6.56%, P < 0.01). Small intestine transit rate in the SCF treatment group was significantly higher than that in the DM model group (75.89% ± 3.61% vs 44.05% ± 5.48%, P < 0.01), but lower than that in the normal control group (75.89% ± 3.61% vs 82.75% ± 6.56%, P < 0.05). Compared with the normal control group, the frequency and amplitude of slow waves in duodenal smooth muscle were significantly reduced in the DM model group (13.33 ± 4.27 vs 30.67 ± 3.33 and 5.17 ± 3.71 vs 35.17 ± 3.71, respectively; both P < 0.01). The frequency and amplitude of slow waves in duodenal smooth muscle in the SCF treatment group were significantly higher than those in the DM model group (26.50 ± 1.87 vs 13.33 ± 4.27 and 27.50 ± 2.26 vs 15.17 ± 3.71, respectively; both P < 0.01), but lower than those in the normal control group (26.50 ± 1.87 vs 30.67 ± 3.33, P < 0.05; 27.50 ± 2.26 vs 35.17 ± 3.71, P < 0.01).
CONCLUSION: Exogenous SCF is able to improve duodenal motility in diabetic mice.
Collapse
|
25
|
Al-Masri M, Krishnamurthy M, Li J, Fellows GF, Dong HH, Goodyer CG, Wang R. Effect of forkhead box O1 (FOXO1) on beta cell development in the human fetal pancreas. Diabetologia 2010; 53:699-711. [PMID: 20033803 DOI: 10.1007/s00125-009-1632-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Recent studies have demonstrated that in adult murine beta cells the forkhead box O1 (FOXO1) transcription factor regulates proliferation and stress resistance. However, the role of FOXO1 during pancreatic development remains largely unknown. The present study aimed to characterise the expression of the FOXO1 transcription factor in the early to mid-gestation human fetal pancreas and to understand its role in islet cell development. METHODS Human (8-21 week fetal age) pancreases were examined using immunohistological, quantitative RT-PCR and western blotting. Isolated human (18-21 week) fetal islet epithelial cell clusters were treated with insulin or glucose, or transfected with FOXO1 small interfering RNA (siRNA). RESULTS Nuclear and cytoplasmic FOXO1 were widely produced during human fetal endocrine pancreatic development, co-localising in cells with the transcription factors pancreatic and duodenal homeobox 1 (PDX-1) and neurogenin 3 (NGN3) as well as cytokeratin 19 (CK19), insulin and glucagon. Treatment with exogenous insulin (50 nmol/l) induced the nuclear exclusion of FOXO1 in both cytokeratin 19 (CK19)(+) (p < 0.01) and insulin(+) cells (p < 0.05) in parallel with increased phospho-Akt (p < 0.05) production. siRNA knockdown of FOXO1 significantly increased the number of NGN3(+) (p < 0.01) and NK6 homeobox 1 (NKX6-1)(+) (p < 0.05) cells in parallel with increases in insulin gene expression (p < 0.03) and C-peptide(+) cells (p < 0.05) and reduced levels of hairy and enhancer of split 1 (HES1) (p < 0.01). CONCLUSIONS/INTERPRETATION Our results indicate that FOXO1 may negatively regulate beta cell differentiation in the human fetal pancreas by controlling critical transcription factors, including NGN3 and NKX6-1. These data suggest that the manipulation of FOXO1 levels may be a useful tool for improving cell-based strategies for the treatment of diabetes.
Collapse
Affiliation(s)
- M Al-Masri
- Children's Health Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
KIT is an independent prognostic marker for pancreatic endocrine tumors: a finding derived from analysis of islet cell differentiation markers. Am J Surg Pathol 2010; 33:1562-9. [PMID: 19574886 DOI: 10.1097/pas.0b013e3181ac675b] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prediction of the biologic behavior of pancreatic endocrine tumor (PET) without local invasion or metastasis is often difficult. The 2004 World Health Organization (WHO) classification uses size, angioinvasion, mitotic activity, and Ki-67 index as prognostic criteria. Recently, cytokeratin 19 (CK19) was shown to be another prognostic marker, but the mechanism by which CK19 predicts prognosis is unknown. As CK19 is the first cytokeratin expressed in all epithelial cells in fetal pancreas, we sought to test expression of other markers of islet cell differentiation including KIT, Pdx-1, Pax4, and Pax6 in PET and correlation of these markers with clinical behavior. Clinical information and histology was reviewed in 97 PETs. All tumors were classified according to WHO criteria and a tumor, node, and metastases stage system. Immunohistochemistry was performed using antibodies to Ki-67, KIT, CK19, Pdx-1, Pax4, and Pax6. Associations of clinicopathologic and immunohistochemical features with prognosis were evaluated using Cox proportional hazards regression models. WHO and tumor, node, and metastases classifications, mitotic counts and Ki-67 labeling, infiltrative border, necrosis, perineural invasion, extrapancreatic extension, tumor size, and positive CK19 and KIT expression were significantly associated with death from disease in a univariate setting. In multivariate analysis, only WHO criteria and KIT expression were shown to be independent. An immunohistochemical classification system was derived from a combination of KIT and CK19 expression: low risk (KIT-/CK19-), intermediate risk (KIT-/CK19+), and high risk (KIT+/CK19+). Survival, metastases, and recurrence of PET were significantly different among the 3 groups. These results indicate that KIT is a new and independent prognostic marker for PETs. The classification system derived from KIT and CK19 was able to predict clinical behavior of PET.
Collapse
|
27
|
Saleem S, Li J, Yee SP, Fellows GF, Goodyer CG, Wang R. beta1 integrin/FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. J Pathol 2009; 219:182-92. [PMID: 19544355 DOI: 10.1002/path.2577] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
beta1 integrin and collagen matrix interactions regulate the survival of cells by associating with focal adhesion kinase (FAK) and initiating MAPK/ERK signalling, but little is known about these signalling pathways during human fetal islet ontogeny. The purpose of this study was to investigate whether beta1 integrin/FAK activation of the MAPK/ERK pathway regulates human fetal islet cell expression of endocrine cell markers and survival. Isolated human (18-21 weeks fetal age) islet-epithelial cell clusters, cultured on collagen I, were examined using beta1 integrin blocking antibody, beta1 integrin siRNA and FAK expression vector. Perturbing beta1 integrin function in the human fetal islet-epithelial cell clusters resulted in a marked decrease in cell adhesion, in parallel with a reduction in the number of cells expressing PDX-1, insulin and glucagon (p < 0.05). beta1 integrin blockade disorganized focal adhesion contacts in the PDX-1(+) cells and decreased activation of FAK and ERK1/2 signalling in parallel with an increase in expression of cleaved caspases 9 and 3 (p < 0.01). Similar results were obtained following an siRNA knock-down of beta1 integrin expression. In contrast, over-expression of FAK not only increased phospho-ERK and the expression of PDX-1, insulin and glucagon (p < 0.05) but also abrogated the decreases in phospho-ERK and PDX-1 by beta1 integrin blockade. This study demonstrates that activation of the FAK/ERK signalling cascade by beta1 integrin is involved in the differentiation and survival of human fetal pancreatic islet cells.
Collapse
Affiliation(s)
- Saira Saleem
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Mancuso F, Calvitti M, Luca G, Nastruzzi C, Baroni T, Mazzitelli S, Becchetti E, Arato I, Boselli C, Ngo Nselel MD, Calafiore R. Acceleration of functional maturation and differentiation of neonatal porcine islet cell monolayers shortly in vitro cocultured with microencapsulated sertoli cells. Stem Cells Int 2009; 2010:587213. [PMID: 21048849 PMCID: PMC2956457 DOI: 10.4061/2010/587213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/20/2009] [Accepted: 08/27/2009] [Indexed: 12/29/2022] Open
Abstract
The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM). Starting from isolated neonatal porcine pancreatic islets (NPIs), we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs) for different time periods (7, 14, 21 days). To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM.
Collapse
Affiliation(s)
- Francesca Mancuso
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Internal Medicine, University of Perugia, 06126 Perugia, Italy
| | - Mario Calvitti
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Giovanni Luca
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Internal Medicine, University of Perugia, 06126 Perugia, Italy
| | - Claudio Nastruzzi
- Department of Chemistry and Technology of the Drug, School of Pharmacy, University of Perugia, 06126 Perugia, Italy
| | - Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Stefania Mazzitelli
- Department of Chemistry and Technology of the Drug, School of Pharmacy, University of Perugia, 06126 Perugia, Italy
| | - Ennio Becchetti
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Iva Arato
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Internal Medicine, University of Perugia, 06126 Perugia, Italy
| | - Carlo Boselli
- Department of Surgery, University of Perugia, 06126 Perugia, Italy
| | - Monique D. Ngo Nselel
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Internal Medicine, University of Perugia, 06126 Perugia, Italy
| | - Riccardo Calafiore
- Section of Internal Medicine and Endocrine and Metabolic Sciences, Department of Internal Medicine, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
29
|
Tesche LJ, Gerber DA. Tissue-derived stem and progenitor cells. Stem Cells Int 2009; 2010:824876. [PMID: 21048854 PMCID: PMC2963308 DOI: 10.4061/2010/824876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 07/06/2009] [Accepted: 08/31/2009] [Indexed: 12/23/2022] Open
Abstract
The characterization and isolation of various stem cell populations, from embryonic through tissue-derived stem cells, have led a rapid growth in the field of stem cell research. These research efforts have often been interrelated as to the markers that identify a select cell population are frequently analyzed to determine their expression in cells of distinct organs/tissues. In this review, we will expand the current state of research involving select tissue-derived stem cell populations including the liver, central nervous system, and cardiac tissues as examples of the success and challenges in this field of research. Lastly, the challenges of clinical therapies will be discussed as it applies to these unique
cell populations.
Collapse
Affiliation(s)
- Leora J Tesche
- Department of Surgery, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7211, USA
| | | |
Collapse
|
30
|
Expression and function of alphabeta1 integrins in pancretic beta (INS-1) cells. J Cell Commun Signal 2008; 2:67-79. [PMID: 19023675 PMCID: PMC2648043 DOI: 10.1007/s12079-008-0030-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/16/2008] [Indexed: 12/28/2022] Open
Abstract
Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.
Collapse
|
31
|
Xu LM, Lin L, Tang YR, Zhang HJ, Li XL. Effect of stem cell factor on colon interstitial cells of Cajal in murine with diabetes mellitus. Shijie Huaren Xiaohua Zazhi 2008; 16:1294-1298. [DOI: 10.11569/wcjd.v16.i12.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigated whether exogenous stem cell factor (SCF) can improve the diabetes-associated depletion of interstitial cells of Cajal (ICC) in mice with diabetes mellitus (DM).
METHODS: DM mice were intraperitoneally injected with streptozocin (STZ) to induce an experimental model. Male C57/BL6 mice were randomly divided into control group, DM group and DM + SCF group. The mice in DM + SCF group were given exogenous SCF (0.2 µg/kg per day, ip) for 6 wk, and the mice in control group and DM group were given the same amount of phosphate buffer (pH = 7.4). All the mice were sacrificed after 6 wk. ICC changes in the distal colon were assessed by immunohistochemistry, transmission electron microscopy and Western blot, and SCF expression in the distal colon was analyzed by Western blot.
RESULTS: The expression of SCF in the distal colon was significantly reduced in DM group as compared with that in the control group (178.97 ± 13.51 vs 200.25 ± 16.48, P < 0.05), accompanied with the depletion (72 ± 10 vs 102 ± 12, P < 0.05) and microscopic lesions of ICC in the distal colon. The expression of SCF in the distal colon was increased in DM + SCF group (210.14 ± 11.8, P < 0.05), along with the dramatic improvement of ICC quantity (87 ± 10, P < 0.05) and ultrastructure in the distal colon as compared with those in DM group.
CONCLUSION: Exogenous SCF may improve the DM-associated depletion of colon ICC.
Collapse
|
32
|
WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol 2007; 31:1677-82. [PMID: 18059224 DOI: 10.1097/pas.0b013e31805f675d] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND It is difficult to predict the biologic behavior of pancreatic endocrine tumors in absence of metastases or invasion into adjacent organs. The World Health Organization (WHO) has proposed in 2004 size, angioinvasion, mitotic activity, and MIB1 proliferation index as prognostic criteria. Our aim was to test retrospectively the predictive value of these 2004 WHO criteria and of CK19, CD99, COX2, and p27 immunohistochemistry in a large series of patients with long-term follow-up. DESIGN The histology of 216 pancreatic endocrine tumor specimens was reviewed and the tumors were reclassified according to the 2004 WHO classification. The prognostic value of the WHO classification and the histopathologic criteria necrosis and nodular fibrosis was tested in 113 patients. A tissue microarray was constructed for immunohistochemical staining. The staining results were scored quantitatively for MIB1 and semiquantitatively for CK19, COX2, p27, and CD99. The prognostic value of these markers was tested in 93 patients. RESULTS The stratification of the patients into 4 risk groups according to the 2004 WHO classification was reliable with regard to both time span to relapse and tumor-specific death. In a multivariate analysis, the CK19 status was shown to be independent of the WHO criteria. By contrast, the prognostic significance of COX2, p27, and CD99 could not be confirmed. CONCLUSIONS The 2004 WHO classification with 4 risk groups is very reliable for predicting both disease-free survival and the time span until tumor-specific death. CK19 staining is a potential additional prognostic marker independent from the WHO criteria for pancreatic endocrine tumors.
Collapse
|
33
|
Krishnamurthy M, Ayazi F, Li J, Lyttle AW, Woods M, Wu Y, Yee SP, Wang R. c-Kit in early onset of diabetes: a morphological and functional analysis of pancreatic beta-cells in c-KitW-v mutant mice. Endocrinology 2007; 148:5520-30. [PMID: 17673521 DOI: 10.1210/en.2007-0387] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
c-Kit tyrosine receptor kinase, a well-established stem cell marker, is expressed in a variety of tissues including the pancreas. The involvement of c-Kit in fetal rat and human endocrine pancreatic development, survival, and function has been well characterized but primarily using in vitro experimental approaches. Therefore, the aim of the current study was to examine whether deficiency of a functional c-Kit receptor would have physiological and functional implications in vivo. We characterized the c-Kit mutant mouse, c-Kit(W-v/+), to evaluate the in vivo role of c-Kit in beta-cell growth and function. Here we report that male c-Kit(W-v/+) mice, at 8 wk of age, showed high fasting blood glucose levels and impaired glucose tolerance, which was associated with low levels of insulin secretion after glucose stimulation in vivo and in isolated islets. Morphometric analysis revealed that beta-cell mass was significantly reduced (50%) in male c-Kit(W-v/+) mice when compared with controls (c-Kit(+/+)) (P < 0.05). In parallel, a reduction in pancreatic duodenal homeobox-1 and insulin gene expression in whole pancreas as well as isolated islets of c-Kit(W-v/+) male mice was noted along with a decrease in pancreatic insulin content. Furthermore, the reduction in beta-cell mass in male c-Kit(W-v/+) mice was associated with a decrease in beta-cell proliferation. Interestingly, these changes were not observed in female c-Kit(W-v/+) mice until 40 wk of age. Our results clearly demonstrate that the c-Kit receptor is involved in the regulation of glucose metabolism, likely through an important role in beta-cell development and function.
Collapse
Affiliation(s)
- Mansa Krishnamurthy
- Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li J, Quirt J, Do HQ, Lyte K, Fellows F, Goodyer CG, Wang R. Expression of c-Kit receptor tyrosine kinase and effect on beta-cell development in the human fetal pancreas. Am J Physiol Endocrinol Metab 2007; 293:E475-83. [PMID: 17519280 DOI: 10.1152/ajpendo.00172.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The receptor, c-Kit, and its ligand, stem cell factor (SCF), are critical for hematopoietic stem cell differentiation and have been implicated in the development, function, and survival of rodent islets. Previously, we reported that exogenous SCF treatments of cultured human fetal (14-16 wk fetal age) islet-epithelial clusters enhanced islet cell differentiation and proliferation (Li J, Goodyer CG, Fellows F, Wang R. Int J Biochem Cell Biol 38: 961-972, 2006). In the present study, we examined the expression pattern of c-Kit in early to midgestation human fetal pancreata and the relevance of c-Kit receptor tyrosine kinase for insulin gene expression and beta-cell survival. c-Kit is expressed in the intact pancreas in a cell-specific manner, with a significant decrease in immunoreactivity in the duct regions from 8 to 21 wk fetal age, paralleled by a significant increase in expression within endocrine regions. These c-Kit-positive cells are highly proliferative and show frequent coexpression with insulin and glucagon. Treatment of islet-epithelial clusters with anti-ACK45 antibody stimulates c-Kit phosphorylation paralleled by a significant increase in PDX-1 and insulin expression, increased cell proliferation, and reduced beta-cell death. In contrast, transient transfection with c-Kit siRNA results in a three- to fourfold decrease in c-Kit, PDX-1, and insulin expression and decreased cell proliferation. This study describes important changes in the distribution and dynamics of c-Kit-expressing cells during human fetal pancreatic neogenesis, suggesting that c-Kit may be a marker for human pancreatic islet progenitor cells. Functional analysis of the c-Kit receptor tyrosine kinase provides evidence that phosphorylation of c-Kit receptor may be involved in mediating early beta-cell differentiation and survival.
Collapse
Affiliation(s)
- Jinming Li
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Arnaud-Dabernat S, Sarvetnick N. Tyrosine kinase receptors are crucial for normal β-cell development and function. Expert Rev Endocrinol Metab 2007; 2:175-183. [PMID: 30754179 DOI: 10.1586/17446651.2.2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signaling pathways play critical roles in most physiological and pathological processes and convert an extracellular stimulus into a change of function in the recipient cell. Intracellular messages originate from the activation of membrane receptors by a variety of ligands, such as hormones, nutrients or growth factors. The receptors subsequently interact with specific intracellular cascades, triggering the phosphorylation of cell effectors. In the pancreas, these processes control the organogenesis, maintenance and function of endocrine cells within the islets. Growth factors acting through tyrosine kinase receptors play a prominent role among the multitude of signaling pathways active in pancreatic β cells. Deregulation of these processes leads to the development of disorders such as hypoglycemia or diabetes. This review will describe recent advances made on the understanding of the roles of major tyrosine kinase receptors in pancreatic β-cell physiology.
Collapse
Affiliation(s)
- Sandrine Arnaud-Dabernat
- a Université Victor Segalen Bordeaux, INSERM U876, 146 rue Léo saignat, 33076 Bordeaux Cedex, France.
| | - Nora Sarvetnick
- b The Scripps Research Institute, Department of Immunology, IMM23, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|