1
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
3
|
Mahmoudi A, Butler AE, Jamialahmadi T, Sahebkar A. Target Deconvolution of Fenofibrate in Nonalcoholic Fatty Liver Disease Using Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3654660. [PMID: 34988225 PMCID: PMC8720586 DOI: 10.1155/2021/3654660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of liver damage, affecting ~25% of the global population. NAFLD comprises a spectrum of liver pathologies, from hepatic steatosis to nonalcoholic steatohepatitis (NASH), and may progress to liver fibrosis and cirrhosis. The presence of NAFLD correlates with metabolic disorders such as hyperlipidemia, obesity, blood hypertension, cardiovascular, and insulin resistance. Fenofibrate is an agonist drug for peroxisome proliferator-activated receptor alpha (PPARα), used principally for treatment of hyperlipidemia. However, fenofibrate has recently been investigated in clinical trials for treatment of other metabolic disorders such as diabetes, cardiovascular disease, and NAFLD. The evidence to date indicates that fenofibrate could improve NAFLD. While PPARα is considered to be the main target of fenofibrate, fenofibrate may exert its effect through impact on other genes and pathways thereby alleviating, and possibly reversing, NAFLD. In this study, using bioinformatics tools and gene-drug, gene-diseases databases, we sought to explore possible targets, interactions, and pathways involved in fenofibrate and NAFLD. METHODS We first determined significant protein interactions with fenofibrate in the STITCH database with high confidence (0.7). Next, we investigated the identified proteins on curated targets in two databases, including the DisGeNET and DISEASES databases, to determine their association with NAFLD. We finally constructed a Venn diagram for these two collections (curated genes-NAFLD and fenofibrate-STITCH) to uncover possible primary targets of fenofibrate. Then, Gene Ontology (GO) and KEGG were analyzed to detect the significantly involved targets in molecular function, biological process, cellular component, and biological pathways. A P value < 0.01 was considered the cut-off criterion. We also estimated the specificity of targets with NAFLD by investigating them in disease-gene associations (STRING) and EnrichR (DisGeNET). Finally, we verified our findings in the scientific literature. RESULTS We constructed two collections, one with 80 protein-drug interactions and the other with 95 genes associated with NAFLD. Using the Venn diagram, we identified 11 significant targets including LEP, SIRT1, ADIPOQ, PPARA, SREBF1, LDLR, GSTP1, VLDLR, SCARB1, MMP1, and APOC3 and then evaluated their biological pathways. Based on Gene Ontology, most of the targets are involved in lipid metabolism, and KEGG enrichment pathways showed the PPAR signaling pathway, AMPK signaling pathway, and NAFLD as the most significant pathways. The interrogation of those targets on authentic disease databases showed they were more specific to both steatosis and steatohepatitis liver injury than to any other diseases in these databases. Finally, we identified three significant genes, APOC3, PPARA, and SREBF1, that showed robust drug interaction with fenofibrate. CONCLUSION Fenofibrate may exert its effect directly or indirectly, via modulation of several key targets and pathways, in the treatment of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | | | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
5
|
Gamba P, Giannelli S, Staurenghi E, Testa G, Sottero B, Biasi F, Poli G, Leonarduzzi G. The Controversial Role of 24-S-Hydroxycholesterol in Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050740. [PMID: 34067119 PMCID: PMC8151638 DOI: 10.3390/antiox10050740] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
The development of Alzheimer’s disease (AD) is influenced by several events, among which the dysregulation of cholesterol metabolism in the brain plays a major role. Maintenance of brain cholesterol homeostasis is essential for neuronal functioning and brain development. To maintain the steady-state level, excess brain cholesterol is converted into the more hydrophilic metabolite 24-S-hydroxycholesterol (24-OHC), also called cerebrosterol, by the neuron-specific enzyme CYP46A1. A growing bulk of evidence suggests that cholesterol oxidation products, named oxysterols, are the link connecting altered cholesterol metabolism to AD. It has been shown that the levels of some oxysterols, including 27-hydroxycholesterol, 7β-hydroxycholesterol and 7-ketocholesterol, significantly increase in AD brains contributing to disease progression. In contrast, 24-OHC levels decrease, likely due to neuronal loss. Among the different brain oxysterols, 24-OHC is certainly the one whose role is most controversial. It is the dominant oxysterol in the brain and evidence shows that it represents a signaling molecule of great importance for brain function. However, numerous studies highlighted the potential role of 24-OHC in favoring AD development, since it promotes neuroinflammation, amyloid β (Aβ) peptide production, oxidative stress and cell death. In parallel, 24-OHC has been shown to exert several beneficial effects against AD progression, such as preventing tau hyperphosphorylation and Aβ production. In this review we focus on the current knowledge of the controversial role of 24-OHC in AD pathogenesis, reporting a detailed overview of the findings about its levels in different AD biological samples and its noxious or neuroprotective effects in the brain. Given the relevant role of 24-OHC in AD pathophysiology, its targeting could be useful for disease prevention or slowing down its progression.
Collapse
|
6
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
7
|
Li L, Li R, Zacharek A, Wang F, Landschoot-Ward J, Chopp M, Chen J, Cui X. ABCA1/ApoE/HDL Signaling Pathway Facilitates Myelination and Oligodendrogenesis after Stroke. Int J Mol Sci 2020; 21:ijms21124369. [PMID: 32575457 PMCID: PMC7352241 DOI: 10.3390/ijms21124369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) plays an important role in the regulation of apolipoprotein E (ApoE) and the biogenesis of high-density lipoprotein (HDL) cholesterol in the mammalian brain. Cholesterol is a major source for myelination. Here, we investigate whether ABCA1/ApoE/HDL contribute to myelin repair and oligodendrogenesis in the ischemic brain after stroke. Specific brain ABCA1-deficient (ABCA1-B/-B) and ABCA1-floxed (ABCA1fl/fl) control mice were subjected to permanent distal middle-cerebral-artery occlusion (dMCAo) and were intracerebrally administered (1) artificial mouse cerebrospinal fluid (CSF) as vehicle control, (2) human plasma HDL3, and (3) recombined human ApoE2 starting 24 h after dMCAo for 14 days. All stroke mice were sacrificed 21 days after dMCAo. The ABCA1-B/-B–dMCAo mice exhibit significantly reduced myelination and oligodendrogenesis in the ischemic brain as well as decreased functional outcome 21 days after stroke compared with ABCA1fl/fl mice; administration of human ApoE2 or HDL3 in the ischemic brain significantly attenuates the deficits in myelination and oligodendrogenesis in ABCA1-B/-B–dMCAo mice ( p < 0.05, n = 9/group). In vitro, ABCA1-B/-B reduces ApoE expression and decreases primary oligodendrocyte progenitor cell (OPC) migration and oligodendrocyte maturation; HDL3 and ApoE2 treatment significantly reverses ABCA1-B/-B-induced reduction in OPC migration and oligodendrocyte maturation. Our data indicate that the ABCA1/ApoE/HDL signaling pathway contributes to myelination and oligodendrogenesis in the ischemic brain after stroke.
Collapse
Affiliation(s)
- Li Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
| | - Rongwen Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
| | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
| | - Fengjie Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
| | - Julie Landschoot-Ward
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
| | - Xu Cui
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA; (L.L.); (R.L.); (A.Z.); (F.W.); (J.L.-W.); (M.C.); (J.C.)
- Correspondence: ; Tel.: 01-313-916-2864
| |
Collapse
|
8
|
Abrahamson EE, Ikonomovic MD. Brain injury-induced dysfunction of the blood brain barrier as a risk for dementia. Exp Neurol 2020; 328:113257. [PMID: 32092298 DOI: 10.1016/j.expneurol.2020.113257] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors. BBB permeability changes after TBI result in leakage of serum proteins, influx of immune cells, perivascular inflammation, as well as impairment of efflux transporter systems and accumulation of aggregation-prone molecules involved in hallmark pathologies of neurodegenerative diseases with dementia. In addition, cerebral vascular dysfunction with persistent alterations in cerebral blood flow and neurovascular coupling contribute to brain ischemia, neuronal degeneration, and synaptic dysfunction. While the idea of TBI as a risk factor for dementia is supported by many shared pathological features, it remains a hypothesis that needs further testing in experimental models and in human studies. The current review focusses on pathological mechanisms shared between TBI and neurodegenerative disorders characterized by accumulation of pathological protein aggregates, such as Alzheimer's disease and chronic traumatic encephalopathy. We discuss critical knowledge gaps in the field that need to be explored to clarify the relationship between TBI and risk for dementia and emphasize the need for longitudinal in vivo studies using imaging and biomarkers of BBB dysfunction in people with single or multiple TBI.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
9
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Fanaee-Danesh E, Gali CC, Tadic J, Zandl-Lang M, Carmen Kober A, Agujetas VR, de Dios C, Tam-Amersdorfer C, Stracke A, Albrecher NM, Manavalan APC, Reiter M, Sun Y, Colell A, Madeo F, Malle E, Panzenboeck U. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer's disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2224-2245. [PMID: 31055081 DOI: 10.1016/j.bbadis.2019.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is characterized by overproduction, impaired clearance, and deposition of amyloid-β peptides (Aβ) and connected to cholesterol homeostasis. Since the blood-brain barrier (BBB) is involved in these processes, we investigated effects of the retinoid X receptor agonist, bexarotene (Bex), and the peroxisome proliferator-activated receptor α agonist and antioxidant, astaxanthin (Asx), on pathways of cellular cholesterol metabolism, amyloid precursor protein processing/Aβ production and transfer at the BBB in vitro using primary porcine brain capillary endothelial cells (pBCEC), and in 3xTg AD mice. Asx/Bex downregulated transcription/activity of amyloidogenic BACE1 and reduced Aβ oligomers and ~80 kDa intracellular 6E10-reactive APP/Aβ species, while upregulating non-amyloidogenic ADAM10 and soluble (s)APPα production in pBCEC. Asx/Bex enhanced Aβ clearance to the apical/plasma compartment of the in vitro BBB model. Asx/Bex increased expression levels of ABCA1, LRP1, and/or APOA-I. Asx/Bex promoted cholesterol efflux, partly via PPARα/RXR activation, while cholesterol biosynthesis/esterification was suppressed. Silencing of LRP-1 or inhibition of ABCA1 by probucol reversed Asx/Bex-mediated effects on levels of APP/Aβ species in pBCEC. Murine (m)BCEC isolated from 3xTg AD mice treated with Bex revealed elevated expression of APOE and ABCA1. Asx/Bex reduced BACE1 and increased LRP-1 expression in mBCEC from 3xTg AD mice when compared to vehicle-treated or non-Tg treated mice. In parallel, Asx/Bex reduced levels of Aβ oligomers in mBCEC and Aβ species in brain soluble and insoluble fractions of 3xTg AD mice. Our results suggest that both agonists exert beneficial effects at the BBB by balancing cholesterol homeostasis and enhancing clearance of Aβ from cerebrovascular endothelial cells.
Collapse
Affiliation(s)
- Elham Fanaee-Danesh
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Chaitanya Chakravarthi Gali
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Zandl-Lang
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Alexandra Carmen Kober
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Vicente Roca Agujetas
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Cristina de Dios
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Department of Biomedicine, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Nicole Maria Albrecher
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | | | - Marielies Reiter
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Yidan Sun
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ute Panzenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
11
|
Wouters E, de Wit NM, Vanmol J, van der Pol SMA, van het Hof B, Sommer D, Loix M, Geerts D, Gustafsson JA, Steffensen KR, Vanmierlo T, Bogie JFJ, Hendriks JJA, de Vries HE. Liver X Receptor Alpha Is Important in Maintaining Blood-Brain Barrier Function. Front Immunol 2019; 10:1811. [PMID: 31417573 PMCID: PMC6685401 DOI: 10.3389/fimmu.2019.01811] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRβ. However, the role of LXRα and LXRβ in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRβ, is essential to maintain barrier integrity in vitro. Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo, we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.
Collapse
Affiliation(s)
- Elien Wouters
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jasmine Vanmol
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Susanne M. A. van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bert van het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Daniela Sommer
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Melanie Loix
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jan Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, United States
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Knut R. Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Tim Vanmierlo
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- Division Translational Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Jeroen F. J. Bogie
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jerome J. A. Hendriks
- School of Life Sciences, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Saint-Pol J, Gosselet F. Oxysterols and the NeuroVascular Unit (NVU): A far true love with bright and dark sides. J Steroid Biochem Mol Biol 2019; 191:105368. [PMID: 31026511 DOI: 10.1016/j.jsbmb.2019.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
The brain is isolated from the whole body by the blood-brain barrier (BBB) which is located in brain microvessel endothelial cells (ECs). Through physical and metabolic properties induced by brain pericytes, astrocytes and neurons (these cells and the ECs referred to as the neurovascular unit (NVU)), the BBB hardly restricts exchanges of molecules between the brain and the bloodstream. Among them, cholesterol exchanges between these two compartments are very limited and occur through the transport of LDLs across the BBB. Oxysterols (mainly 24S and 27-hydroxycholesterol) daily cross the BBB and regulate molecule/cholesterol exchanges via Liver X nuclear Receptors (LXRs). In addition, these oxysterols have been linked to pathological processes in neurodegenerative diseases such as Alzheimer's disease. Here we propose an overview of the actual knowledge concerning oxysterols and the NVU cells in physiological and in Alzheimer's disease.
Collapse
Affiliation(s)
- Julien Saint-Pol
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, France.
| | - Fabien Gosselet
- University of Artois, Blood-Brain Barrier Laboratory (BBB Lab), EA2465, F-62300 Lens, France
| |
Collapse
|
13
|
Abstract
Vascular complications contribute significantly to morbidity and mortality of diabetes mellitus. The primary cause of vascular complications in diabetes mellitus is hyperglycaemia, associated with endothelial dysfunction and impaired neovascularization. Circulating endothelial progenitor cells was shown to play important roles in vascular repair and promoting neovascularization. In this review, we will demonstrate the individual effect of high glucose on endothelial progenitor cells. Endothelial progenitor cells isolated from healthy subjects exposed to high glucose conditions or endothelial progenitor cells isolated from diabetic patients exhibit reduced number of endothelial cell colony forming units, impaired abilities of differentiation, proliferation, adhesion and migration, tubulization, secretion, mobilization and homing, whereas enhanced senescence. Increased production of reactive oxygen species by the mitochondria seems to play a crucial role in high glucose-induced endothelial progenitor cells deficit. Later, we will review the agents that might be used to alleviate dysfunction of endothelial progenitor cells induced by high glucose. The conclusions are that the relationship between hyperglycaemia and endothelial progenitor cells dysfunction is only beginning to be recognized, and future studies should pay more attention to the haemodynamic environment of endothelial progenitor cells and ageing factors to discover novel treatment agents.
Collapse
Affiliation(s)
- Hongyan Kang
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiajia Liu
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- 2 National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Xiaoyan Deng
- 1 Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
14
|
Kober AC, Manavalan APC, Tam-Amersdorfer C, Holmér A, Saeed A, Fanaee-Danesh E, Zandl M, Albrecher NM, Björkhem I, Kostner GM, Dahlbäck B, Panzenboeck U. Implications of cerebrovascular ATP-binding cassette transporter G1 (ABCG1) and apolipoprotein M in cholesterol transport at the blood-brain barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:573-588. [PMID: 28315462 DOI: 10.1016/j.bbalip.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/07/2017] [Accepted: 03/12/2017] [Indexed: 02/03/2023]
Abstract
Impaired cholesterol/lipoprotein metabolism is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Cerebral cholesterol homeostasis is maintained by the highly efficient blood-brain barrier (BBB) and flux of the oxysterols 24(S)-hydroxycholesterol and 27-hydroxycholesterol, potent liver-X-receptor (LXR) activators. HDL and their apolipoproteins are crucial for cerebral lipid transfer, and loss of ATP binding cassette transporters (ABC)G1 and G4 results in toxic accumulation of oxysterols in the brain. The HDL-associated apolipoprotein (apo)M is positively correlated with pre-β HDL formation in plasma; its presence and function in the brain was thus far unknown. Using an in vitro model of the BBB, we examined expression, regulation, and functions of ABCG1, ABCG4, and apoM in primary porcine brain capillary endothelial cells (pBCEC). RT Q-PCR analyses and immunoblotting revealed that in addition to ABCA1 and scavenger receptor, class B, type I (SR-BI), pBCEC express high levels of ABCG1, which was up-regulated by LXR activation. Immunofluorescent staining, site-specific biotinylation and immunoprecipitation revealed that ABCG1 is localized both to early and late endosomes and on apical and basolateral plasma membranes. Using siRNA interference to silence ABCG1 (by 50%) reduced HDL-mediated [3H]-cholesterol efflux (by 50%) but did not reduce [3H]-24(S)-hydroxycholesterol efflux. In addition to apoA-I, pBCEC express and secrete apoM mainly to the basolateral (brain) compartment. HDL enhanced expression and secretion of apoM by pBCEC, apoM-enriched HDL promoted cellular cholesterol efflux more efficiently than apoM-free HDL, while apoM-silencing diminished cellular cholesterol release. We suggest that ABCG1 and apoM are centrally involved in regulation of cholesterol metabolism/turnover at the BBB.
Collapse
Affiliation(s)
| | | | | | - Andreas Holmér
- Department of Translational Medicine, University Hospital SUS, Malmö, Lund University, Sweden
| | - Ahmed Saeed
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute Huddinge, Huddinge, Sweden
| | - Elham Fanaee-Danesh
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Martina Zandl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | | | - Ingemar Björkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institute Huddinge, Huddinge, Sweden
| | - Gerhard M Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Björn Dahlbäck
- Department of Translational Medicine, University Hospital SUS, Malmö, Lund University, Sweden
| | - Ute Panzenboeck
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
15
|
de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Front Immunol 2016; 7:275. [PMID: 27486460 PMCID: PMC4949256 DOI: 10.3389/fimmu.2016.00275] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/01/2016] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis is an inflammatory disease caused by endothelial injury, lipid deposition, and oxidative stress. This progressive disease can be converted into an acute clinical event by plaque rupture and thrombosis. In the context of atherosclerosis, the underlying cause of myocardial infarction and stroke, macrophages uniquely possess a dual functionality, regulating lipid accumulation and metabolism and sustaining the chronic inflammatory response, two of the most well-documented pathways associated with the pathogenesis of the disease. Macrophages are heterogeneous cell populations and it is hypothesized that, during the pathogenesis of atherosclerosis, macrophages in the developing plaque can switch from a pro-inflammatory (MΦ1) to an anti-inflammatory (MΦ2) phenotype and vice versa, depending on the microenvironment. The aim of this study was to identify changes in macrophage subpopulations in the progression of human atherosclerotic disease. Established atherosclerotic plaques from symptomatic and asymptomatic patients with existing coronary artery disease undergoing carotid endarterectomy were recruited to the study. Comprehensive histological and immunohistochemical analyses were performed to quantify the cellular content and macrophage subsets of atherosclerotic lesion. In parallel, expression of MΦ1 and MΦ2 macrophage markers were analyzed by real-time PCR and Western blot analysis. Gross analysis and histological staining demonstrated that symptomatic plaques presented greater hemorrhagic activity and the internal carotid was the most diseased segment, based on the predominant prevalence of fibrotic and necrotic tissue, calcifications, and hemorrhagic events. Immunohistochemical analysis showed that both MΦ1 and MΦ2 macrophages are present in human plaques. However, MΦ2 macrophages are localized to more stable locations within the lesion. Importantly, gene and protein expression analysis of MΦ1/MΦ2 markers evidenced that MΦ1 markers and Th1-associated cytokines are highly expressed in symptomatic plaques, whereas expression of the MΦ2 markers, mannose receptor (MR), and CD163 and Th2 cytokines are inversely related with disease progression. These data increase the understanding of atherosclerosis development, identifying the cellular content of lesions during disease progression, and characterizing macrophage subpopulation within human atherosclerotic plaques.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin , Dublin , Ireland
| | - Daniel Crean
- School of Veterinary Medicine, UCD Conway Institute, University College Dublin , Dublin , Ireland
| | - Mary Barry
- St. Vincent's University Hospital , Dublin , Ireland
| | - Orina Belton
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin , Dublin , Ireland
| |
Collapse
|
16
|
Kuntz M, Candela P, Saint-Pol J, Lamartinière Y, Boucau MC, Sevin E, Fenart L, Gosselet F. Bexarotene Promotes Cholesterol Efflux and Restricts Apical-to-Basolateral Transport of Amyloid-β Peptides in an In Vitro Model of the Human Blood-Brain Barrier. J Alzheimers Dis 2016; 48:849-62. [PMID: 26402114 DOI: 10.3233/jad-150469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the prime features of Alzheimer's disease (AD) is the excessive accumulation of amyloid-β (Aβ) peptides in the brain. Several recent studies suggest that this phenomenon results from the dysregulation of cholesterol homeostasis in the brain and impaired bidirectional Aβ exchange between blood and brain. These mechanisms appear to be closely related and are controlled by the blood-brain barrier (BBB) at the brain microvessel level. In animal models of AD, the anticancer drug bexarotene (a retinoid X receptor agonist) has been found to restore cognitive functions and decrease the brain amyloid burden by regulating cholesterol homeostasis. However, the drug's therapeutic effect is subject to debate and the exact mechanism of action has not been characterized. Therefore, the objective of this present study was to determine bexarotene's effects on the BBB. Using an in vitro model of the human BBB, we investigated the drug's effects on cholesterol exchange between abluminal and luminal compartments and the apical-to-basolateral transport of Aβ peptides across the BBB. Our results demonstrated that bexarotene induces the expression of ABCA1 but not ApoE. This upregulation correlates with an increase in ApoE2-, ApoE4-, ApoA-I-, and HDL-mediated cholesterol efflux. Regarding the transport of Aβ peptides, bexarotene increases the expression of ABCB1, which in turn decreases Aβ apical-to-basolateral transport. Our results showed that bexarotene not only promotes the cholesterol exchange between the brain and the blood but also decreases the influx of Aβ peptides across BBB, suggesting that bexarotene is a promising drug candidate for the treatment of AD.
Collapse
|
17
|
Molecular characterization and developmental expression patterns of apolipoprotein A-I in Senegalese sole (Solea senegalensis Kaup). Gene Expr Patterns 2016; 21:7-18. [PMID: 27261260 DOI: 10.1016/j.gep.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
Abstract
The apolipoprotein A-I (ApoA-I) is an essential component of the high density lipoproteins (HDL). In this study, the cDNA and genomic sequences of this apolipoprotein were characterized for first time in Solea senegalensis. The predicted polypeptide revealed conserved structural features including ten repeats in the lipid-binding domain and some residues involved in cholesterol interaction and binding. The gene structure analysis identified four exons and three introns. Moreover, the synteny analysis revealed that apoA-I did not localize with other apolipoproteins indicating a divergent evolution with respect to the apoA-IV and apoE cluster. The phylogenetic analyses identified two distinct apoA-I paralogs in Ostariophysi (referred to as Ia and Ib) and only one (Ib) in Acanthopterygii. Whole-mount in situ hybridization located the apoA-I signal mainly in the yolk syncytial layer in lecitotrophic larval stages. Later at mouth opening, the mRNA signals were detected mainly in liver and intestine compatible with its role in the HDL formation. Moreover, a clear signal was detected in some regions of the brain, retina and neural cord suggesting a role in local regulation of cholesterol homeostasis. After metamorphosis, apoA-I was also detected in other tissues such as gills, head kidney and spleen suggesting a putative role in immunity. Expression analyses in larvae fed two diets with different triacylglycerol levels indicated that apoA-I mRNA levels were more associated to larval size and development than dietary lipid levels. Finally, qPCR analyses of immature and mature transcripts revealed distinct expression profiles suggesting a posttranscriptional regulatory mechanism.
Collapse
|
18
|
Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense. TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
de Gaetano M, Alghamdi K, Marcone S, Belton O. Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation. JOURNAL OF INFLAMMATION-LONDON 2015; 12:15. [PMID: 25722654 PMCID: PMC4340802 DOI: 10.1186/s12950-015-0060-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/03/2015] [Indexed: 01/01/2023]
Abstract
Background Atherosclerosis, the underlying cause of heart attack and strokes, is a progresive dyslipidemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a group of isomers of linoleic acid that differ in the position and/or geometry of their double bonds. We have previously shown that a specific CLA blend (80:20 cis-9,trans-11:trans-10,cis-12-CLA) induces regression of pre-established atherosclerosis in vivo, via modulation of monocyte/macrophage function. However, the exact mechanisms through which CLA mediates this effect remain to be elucidated. Methods Here, we address if CLA primes monocytes towards an anti-inflammatory MΦ2 macrophage and examine the effect of individual CLA isomers and the atheroprotective blend on monocyte-macrophage differentiation, cytokine generation, foam cell formation and cholesterol metabolism in human peripheral blood monocyte (HPBMC)-derived macrophages. Results cis-9,trans-11-CLA and the atheroprotective 80:20 CLA blend regulates expression of pro-inflammatory mediators and modulates the inflammatory cytokine profile of macrophages and foam cells. In addition, cis-9,trans-11-CLA and CLA blend primes HPBMCs towards an anti-inflammatory MΦ2 phenotype, characterised by increased scavenger receptor (CD36) and efflux protein (ABCA-1) expression. Furthermore, this altered macrophage phenotype impacts on foam cell formation, inhibiting ox-LDL accumulation and promoting cholesterol efflux via both PPARγ and LXRα dependent pathways. Conclusion The data increases the understanding of the pathways regulated by CLA in atheroprotection, namely, inhibiting the progressive acquisition of a pro-inflammatory macrophage phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0060-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica de Gaetano
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kawthar Alghamdi
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Simone Marcone
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Orina Belton
- School of Biomedical and Biomolecular Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Testa G, Gamba P, Badilli U, Gargiulo S, Maina M, Guina T, Calfapietra S, Biasi F, Cavalli R, Poli G, Leonarduzzi G. Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS One 2014; 9:e96795. [PMID: 24802026 PMCID: PMC4011877 DOI: 10.1371/journal.pone.0096795] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7β-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into β-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Ulya Badilli
- Department of Pharmaceutical Technology, University of Ankara, Ankara, Turkey
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Marco Maina
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Tina Guina
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Simone Calfapietra
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Torino, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy
- * E-mail:
| |
Collapse
|
21
|
Gosselet F, Saint-Pol J, Fenart L. Effects of oxysterols on the blood–brain barrier: Implications for Alzheimer’s disease. Biochem Biophys Res Commun 2014; 446:687-91. [DOI: 10.1016/j.bbrc.2013.11.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022]
|
22
|
Chirackal Manavalan AP, Kober A, Metso J, Lang I, Becker T, Hasslitzer K, Zandl M, Fanaee-Danesh E, Pippal JB, Sachdev V, Kratky D, Stefulj J, Jauhiainen M, Panzenboeck U. Phospholipid transfer protein is expressed in cerebrovascular endothelial cells and involved in high density lipoprotein biogenesis and remodeling at the blood-brain barrier. J Biol Chem 2014; 289:4683-98. [PMID: 24369175 PMCID: PMC3931031 DOI: 10.1074/jbc.m113.499129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is a key protein involved in biogenesis and remodeling of plasma HDL. Several neuroprotective properties have been ascribed to HDL. We reported earlier that liver X receptor (LXR) activation promotes cellular cholesterol efflux and formation of HDL-like particles in an established in vitro model of the blood-brain barrier (BBB) consisting of primary porcine brain capillary endothelial cells (pBCEC). Here, we report PLTP synthesis, regulation, and its key role in HDL metabolism at the BBB. We demonstrate that PLTP is highly expressed and secreted by pBCEC. In a polarized in vitro model mimicking the BBB, pBCEC secreted phospholipid-transfer active PLTP preferentially to the basolateral ("brain parenchymal") compartment. PLTP expression levels and phospholipid transfer activity were enhanced (up to 2.5-fold) by LXR activation using 24(S)-hydroxycholesterol (a cerebral cholesterol metabolite) or TO901317 (a synthetic LXR agonist). TO901317 administration elevated PLTP activity in BCEC from C57/BL6 mice. Preincubation of HDL3 with human plasma-derived active PLTP resulted in the formation of smaller and larger HDL particles and enhanced the capacity of the generated HDL particles to remove cholesterol from pBCEC by up to 3-fold. Pre-β-HDL, detected by two-dimensional crossed immunoelectrophoresis, was generated from HDL3 in pBCEC-derived supernatants, and their generation was markedly enhanced (1.9-fold) upon LXR activation. Furthermore, RNA interference-mediated PLTP silencing (up to 75%) reduced both apoA-I-dependent (67%) and HDL3-dependent (30%) cholesterol efflux from pBCEC. Based on these findings, we propose that PLTP is actively involved in lipid transfer, cholesterol efflux, HDL genesis, and remodeling at the BBB.
Collapse
Affiliation(s)
| | | | - Jari Metso
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ingrid Lang
- Institute of Cell Biology, Histology, and Embryology, and
| | | | | | - Martina Zandl
- From the Institute of Pathophysiology and Immunology
| | | | | | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Jasminka Stefulj
- the Department of Molecular Biology, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Matti Jauhiainen
- the National Institute for Health and Welfare, Biomedicum, FI-00290 Helsinki, Finland, and
| | - Ute Panzenboeck
- From the Institute of Pathophysiology and Immunology, , To whom correspondence should be addressed: Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31a, 8010 Graz, Austria. Tel.: 43-316-3801955; Fax: 43-316-3809640; E-mail:
| |
Collapse
|
23
|
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2013; 2:492-516. [PMID: 22299022 DOI: 10.1007/s12975-011-0125-x] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is formed by tightly connected cerebrovascular endothelial cells, but its normal function also depends on paracrine interactions between the brain endothelium and closely located glia. There is a growing consensus that brain injury, whether it is ischemic, hemorrhagic, or traumatic, leads to dysfunction of the BBB. Changes in BBB function observed after injury are thought to contribute to the loss of neural tissue and to affect the response to neuroprotective drugs. New discoveries suggest that considering the entire gliovascular unit, rather than the BBB alone, will expand our understanding of the cellular and molecular responses to traumatic brain injury (TBI). This review will address the BBB breakdown in TBI, the role of blood-borne factors in affecting the function of the gliovascular unit, changes in BBB permeability and post-traumatic edema formation, and the major pathophysiological factors associated with TBI that may contribute to post-traumatic dysfunction of the BBB. The key role of neuroinflammation and the possible effect of injury on transport mechanisms at the BBB will also be described. Finally, the potential role of the BBB as a target for therapeutic intervention through restoration of normal BBB function after injury and/or by harnessing the cerebrovascular endothelium to produce neurotrophic growth factors will be discussed.
Collapse
Affiliation(s)
- Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
24
|
Chew GS, Myers S, Shu-Chien AC, Muhammad TST. Interleukin-6 inhibition of peroxisome proliferator-activated receptor alpha expression is mediated by JAK2- and PI3K-induced STAT1/3 in HepG2 hepatocyte cells. Mol Cell Biochem 2013; 388:25-37. [PMID: 24242046 DOI: 10.1007/s11010-013-1896-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 01/22/2023]
Abstract
Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited. We previously revealed that IL-6 inhibits PPARα gene expression through CAAT/enhancer-binding protein transcription factors in hepatocytes. In this study, we determined that STAT1/3 was the direct downstream molecules that mediated the Janus kinase 2 (JAK2) and phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in IL-6-induced repression of PPARα. Treatment of cells with pharmacological inhibitors of JAK2, PI3K, AKT, and mTOR attenuated the inhibitory effect of IL-6 on PPARα protein in a dose-dependent manner. These inhibitors also decreased the IL-6-induced repression of PPARα mRNA expression and promoter activity. Overexpression of STAT1 and STAT3 in HepG2 cells cotransfected with a reporter vector containing this PPARα promoter region revealed that both the expression plasmids inhibited the IL-6-induced repression of PPARα promoter activity. In the presence of inhibitors of JAK2 and mTOR (AG490 and rapamycin, respectively), IL-6-regulated protein expression and DNA binding of STAT1 and STAT3 were either completely or partially inhibited simultaneously, and the IL-6-induced repression of PPARα protein and mRNA was also inhibited. This study has unraveled novel pathways by which IL-6 inhibits PPARα gene transcription, involving the modulation of JAK2/STAT1-3 and PI3K/AKT/mTOR by inducing the binding of STAT1 and STAT3 to STAT-binding sites on the PPARα promoter. Together, these findings represent a new model of IL-6-induced suppression of PPARα expression by inducing STAT1 and STAT3 phosphorylation and subsequent down-regulation of PPARα mRNA expression.
Collapse
Affiliation(s)
- Guat-Siew Chew
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia,
| | | | | | | |
Collapse
|
25
|
Saint-Pol J, Candela P, Boucau MC, Fenart L, Gosselet F. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Res 2013; 1517:1-15. [PMID: 23603412 DOI: 10.1016/j.brainres.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/03/2023]
Abstract
It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry.
Collapse
|
26
|
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2013; 17:3729-40. [PMID: 21834767 DOI: 10.2174/138161211798220918] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023]
Abstract
The blood-brain barrier (BBB) provides a vast interface for cytokines to affect CNS function. The BBB is a target for therapeutic intervention. It is essential, therefore, to understand how cytokines interact with each other at the level of the BBB and how secondary signals modulate CNS functions beyond the BBB. The interactions between cytokines and lipids, however, have not been fully addressed at the level of the BBB. Here, we summarize current understanding of the localization of cytokine receptors and transporters in specific membrane microdomains, particularly lipid rafts, on the luminal (apical) surface of the microvascular endothelial cells composing the BBB. We then illustrate the clinical context of cytokine effects on the BBB by neuroendocrine regulation and amplification of inflammatory signals. Two unusual aspects discussed are signaling crosstalk by different classes of cytokines and genetic regulation of drug efflux transporters. We also introduce a novel area of focus on how cytokines may act through nuclear hormone receptors to modulate efflux transporters and other targets. A specific example discussed is the ATP-binding cassette transporter-1 (ABCA-1) that regulates lipid metabolism. Overall, cytokine signaling at the level of the BBB is a crucial feature of the dynamic regulation that can rapidly change BBB function and affect brain health and disease.
Collapse
Affiliation(s)
- Weihong Pan
- Blood-Brain Barrier Group, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | |
Collapse
|
27
|
Pathogenesis, modulation, and therapy of Alzheimer’s disease: A perspective on roles of liver-X receptors. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0136-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AbstractThe pathogenesis of Alzheimer’s disease (AD) has been mostly linked to aberrant amyloid beta (Aβ) and tau proteins metabolism, disturbed lipid/cholesterol homeostasis, and progressive neuroinflammation. Liver X receptors (LXR) are ligand-activated transcription factors, best known as the key regulators of cholesterol metabolism and transport. In addition, LXR signaling has been shown to have significant anti-inflammatory properties. In this brief review, we focus on the outcome of studies implicating LXR in the pathogenesis, modulation, and therapy of AD.
Collapse
|
28
|
Li X, Song Y, Han Y, Wang D, Zhu Y. Liver X receptor agonist alleviated high glucose-induced endothelial progenitor cell dysfunction via inhibition of reactive oxygen species and activation of AMP-activated protein kinase. Microcirculation 2012; 19:547-53. [PMID: 22507035 DOI: 10.1111/j.1549-8719.2012.00186.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Liver X receptors (LXRs) are key regulators of cholesterol homeostasis. Synthetic LXR agonists are anti-atherogenic and anti-inflammatory. However, the effect of LXR agonists on endothelial progenitor cell (EPC) function is largely unknown. Here, we explored the effect of the LXR agonist TO901317 (TO) on EPC biology and the underlying mechanisms. METHODS Endothelial progenitor cells were cultured in mannitol or 30 mm glucose (high glucose) for 24 hours. For TO treatments, cells were pretreated with TO (10 μm) for 12 hours, then mannitol or high glucose was added for an additional 24 hours. EPCs function, reactive oxygen species (ROS) release, and phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) were analyzed. RESULTS TO could restore the high glucose-impaired adhesion and migration capacity of EPCs. High glucose impaired EPC-mediated angiogenesis, and TO reversed the impairment. TO also alleviated ROS release induced by high glucose. Western blot analysis revealed that high glucose downregulated the phosphorylation of AMPK and endothelial nitric oxide synthase, which could be reversed with TO treatment. Furthermore, inhibiting AMPK activation by compound C could abolish the protective effects of TO on EPCs. CONCLUSIONS TO had a protective effect on EPCs under high glucose by inhibiting ROS release and activating AMPK.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
| | | | | | | | | |
Collapse
|
29
|
Cui X, Chopp M, Zacharek A, Cui Y, Roberts C, Chen J. The neurorestorative benefit of GW3965 treatment of stroke in mice. Stroke 2012. [PMID: 23204055 DOI: 10.1161/strokeaha.112.677682] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE GW3965, a synthetic liver X receptor agonist, elevates high-density lipoprotein cholesterol and has antiatherosclerosis and anti-inflammation properties. We tested the hypothesis that GW3965 treatment of stroke increases vascular remodeling, promotes synaptic protein expression and axonal growth in the ischemic brain, and improves functional outcome in mice. METHODS Mice were subjected to transient middle cerebral artery occlusion and treated without or with different doses of GW3965 (5, 10, or 20 mg/kg) starting 24 hours after middle cerebral artery occlusion daily for 14 days. Neurological functional tests, blood high-density lipoprotein cholesterol measurement, and immunostaining were performed. Mouse brain endothelial cells, primary cultured artery explants, and primary cortical neurons cultures were also used in vitro. RESULTS GW3965 treatment of stroke significantly increased blood high-density lipoprotein cholesterol level, synaptic protein expression, axonal density, angiogenesis and arteriogenesis, and Angiopoietin1, Tie2, and occludin expression in the ischemic brain and improved functional outcome compared with middle cerebral artery occlusion control animals (n=10; P<0.05). In vitro, GW3965 and high-density lipoprotein cholesterol also significantly increased capillary-like tube formation and artery explant cell migration as well as neurite outgrowth. Inhibition of Angiopoietin-1 attenuated GW3965-induced tube-formation, artery cell migration, and neurite outgrowth (n=6 per group; P<0.05). CONCLUSIONS These data indicate, for the first time, that GW3965 promotes synaptic protein expression and axonal growth and increases vascular remodeling, which may contribute to improvement of functional outcome after stroke. Increasing Angiopoietin-1/Tie2 signaling activity may play an important role in GW3965-induced brain plasticity and neurological recovery from stroke.
Collapse
Affiliation(s)
- Xu Cui
- Neurology Research, E&R Bldg., Room #3091, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
30
|
The detection of autoantibodies to ATP-binding cassette transporter A1 and its role in the pathogenesis of atherosclerosis in patients with systemic lupus erythematosus. Clin Biochem 2012; 45:1342-6. [DOI: 10.1016/j.clinbiochem.2012.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/21/2012] [Accepted: 06/08/2012] [Indexed: 11/22/2022]
|
31
|
Abstract
The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.
Collapse
|
32
|
Stukas S, May S, Wilkinson A, Chan J, Donkin J, Wellington CL. The LXR agonist GW3965 increases apoA-I protein levels in the central nervous system independent of ABCA1. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:536-46. [PMID: 21889608 DOI: 10.1016/j.bbalip.2011.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023]
Abstract
Lipoprotein metabolism in the central nervous system (CNS) is based on high-density lipoprotein-like particles that use apoE as their predominant apolipoprotein rather than apoA-I. Although apoA-I is not expressed in astrocytes and microglia, which produce CNS apoE, apoA-I is reported to be expressed in porcine brain capillary endothelial cells and also crosses the blood-brain barrier (BBB). These mechanisms allow apoA-I to reach concentrations in cerebrospinal fluid (CSF) that are approximately 0.5% of its plasma levels. Recently, apoA-I has been shown to enhance cognitive function and reduce cerebrovascular amyloid deposition in Alzheimer's Disease (AD) mice, raising questions about the regulation and function of apoA-I in the CNS. Peripheral apoA-I metabolism is highly influenced by ABCA1, but less is known about how ABCA1 regulates CNS apoA-I. We report that ABCA1 deficiency leads to greater retention of apoA-I in the CNS than in the periphery. Additionally, treatment of symptomatic AD mice with GW3965, an LXR agonist that stimulates ABCA1 expression, increases apoA-I more dramatically in the CNS compared to the periphery. Furthermore, GW3965-mediated up-regulation of CNS apoA-I is independent of ABCA1. Our results suggest that apoA-I may be regulated by distinct mechanisms on either side of the BBB and that apoA-I may serve to integrate peripheral and CNS lipid metabolism. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | |
Collapse
|
33
|
Cerda Á, Genvigir FDV, Rodrigues AC, Willrich MAV, Dorea EL, Bernik MMS, Arazi SS, Oliveira RD, Hirata MH, Hirata RDC. Influence of polymorphisms and cholesterol-lowering treatment on SCARB1 mRNA expression. J Atheroscler Thromb 2011; 18:640-51. [PMID: 21512283 DOI: 10.5551/jat.6544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study evaluated the influence of polymorphisms and cholesterol-lowering treatments on SCARB1 mRNA expression in peripheral blood mononuclear cells and in HepG2 and Caco-2 cells. METHODS Blood samples were drawn from normolipidemic (NL, n = 166) and hypercholesterolemic (HC, n = 123) individuals to extract DNA and total RNA and to analyze the lipid profile. After a 4-week washout period, 98 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) whereas 25 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg each/day/4 weeks). HepG2 and Caco-2 cells were treated with atorvastatin, simvastatin and ezetimibe at various concentrations for 12 and 24 h and collected for RNA extraction. SCARB1 mRNA expression was measured by TaqMan® assay and SCARB1 c.4G> A, c.726 + 54C> T and c.1080C> T polymorphisms were detected by PCR-RFLP. RESULTS High LDL cholesterol (> 160 mg/dL) values were associated with low baseline SCARB1 mRNA expression in PBMC. Allele T carriers for SCARB1 c.726+54C> T had lower basal SCARB1 transcription in PBMC (p < 0.05). Simvastatin, atorvastatin and ezetimibe treatments did not modify the SCARB1 mRNA level in PBMC from HC patients. Similarly, these cholesterol-lowering drugs did not modulate the SCARB1 expression in HepG2 and Caco-2 cells in spite of the concentration and time of exposure (p > 0.05). CONCLUSION LDL cholesterol levels and SCARB1 c.726 + 54C> T are associated with low mRNA expression in mononuclear cells. Cholesterol-lowering drugs do not modulate SCARB1 expression in PBMC from HC subjects or in HepG2 and Caco-2 cells.
Collapse
Affiliation(s)
- Álvaro Cerda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
BACKGROUND AND AIM Pioglitazone has diverse multiple effects on metabolic and inflammatory processes that have the potential to influence cardiovascular disease pathophysiology at various points in the disease process, including atherogenesis, plaque inflammation, plaque rupture, haemostatic disturbances and microangiopathy. RESULTS Linking the many direct and indirect effects on the vasculature to the reduction in key macrovascular outcomes reported with pioglitazone in patients with type 2 diabetes presents a considerable challenge. However, recent large-scale clinical cardiovascular imaging studies are beginning to provide some mechanistic insights, including a potentially important role for improvements in high-density lipoprotein cholesterol with pioglitazone. In addition to a role in prevention, animal studies also suggest that pioglitazone may minimize damage and improve recovery during and after ischaemic cardio- and cerebrovascular events. DESIGN AND METHODS In this review, we consider potential cardiovascular protective mechanisms of pioglitazone by linking preclinical data and clinical cardiovascular outcomes guided by insights from recent imaging studies. CONCLUSION Pioglitazone may influence CVD pathophysiology at multiple points in the disease process, including atherogenesis, plaque inflammation, plaque rupture and haemostatic disturbances (i.e. thrombus/embolism formation), as well as microangiopathy.
Collapse
Affiliation(s)
- E Erdmann
- Department of Medicine, Heart Center, University of Cologne, Cologne, Germany.
| | | |
Collapse
|
35
|
Koldamova R, Fitz NF, Lefterov I. The role of ATP-binding cassette transporter A1 in Alzheimer's disease and neurodegeneration. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:824-30. [PMID: 20188211 DOI: 10.1016/j.bbalip.2010.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 01/03/2023]
Abstract
ATP-binding cassette transporter A1 - ABCA1, is the most extensively studied transporter in human pathology. ABCA1 became a primary subject of research in many academic and pharmaceutical laboratories immediately after the discovery that mutations at the gene locus cause severe familial High Density Lipoprotein (HDL) deficiency and, in the homozygous form - Tangier disease. The protein is the major regulator of intracellular cholesterol efflux which is the initial and essential step in the biogenesis and formation of nascent HDL particles. The transcriptional regulation of ABCA1 by nuclear Liver X Receptors (LXR) provided a starting point for drug discovery and development of synthetic LXR ligands/ABCA1 activators for treatment of arteriosclerosis. A series of reports that revealed the role of ABCA1 in Abeta deposition and clearance, as well as the possibility for association of some ABCA1 genetic variants with risk for Alzheimer's disease (AD) brought a new dimension to ABCA1 research. The LXR-ABCA1-APOE regulatory axis is now considered a promising therapeutic target in AD, which includes the only proven risk factor for AD - APOE, at two distinct levels - transcriptional regulation by LXR, and ABCA1 controlled lipidation which can influence Abeta aggregation and amyloid clearance. This review will summarize the results of research on ABCA1, particularly related to AD and neurodegeneration.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
36
|
Specific loss of brain ABCA1 increases brain cholesterol uptake and influences neuronal structure and function. J Neurosci 2009; 29:3579-89. [PMID: 19295162 DOI: 10.1523/jneurosci.4741-08.2009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expression of the cholesterol transporter ATP-binding cassette transporter A1 (ABCA1) in the brain and its role in the lipidation of apolipoproteins indicate that ABCA1 may play a critical role in brain cholesterol metabolism. To investigate the role of ABCA1 in brain cholesterol homeostasis and trafficking, we characterized mice that specifically lacked ABCA1 in the CNS, generated using the Cre/loxP recombination system. These mice showed reduced plasma high-density lipoprotein (HDL) cholesterol levels associated with decreased brain cholesterol content and enhanced brain uptake of esterified cholesterol from plasma HDL. Increased levels of HDL receptor SR-BI in brain capillaries and apolipoprotein A-I in brain and CSF of mutant mice were evident. Cholesterol homeostasis changes were mirrored by disturbances in motor activity and sensorimotor function. Changes in synaptic ultrastructure including reduced synapse and synaptic vesicle numbers were observed. These data show that ABCA1 is a key regulator of brain cholesterol metabolism and that disturbances in cholesterol transport in the CNS are associated with structural and functional deficits in neurons. Moreover, our findings also demonstrate that specific changes in brain cholesterol metabolism can lead to alterations in cholesterol uptake from plasma to brain.
Collapse
|
37
|
Stefulj J, Panzenboeck U, Becker T, Hirschmugl B, Schweinzer C, Lang I, Marsche G, Sadjak A, Lang U, Desoye G, Wadsack C. Human Endothelial Cells of the Placental Barrier Efficiently Deliver Cholesterol to the Fetal Circulation via ABCA1 and ABCG1. Circ Res 2009; 104:600-8. [DOI: 10.1161/circresaha.108.185066] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although maternal–fetal cholesterol transfer may serve to compensate for insufficient fetal cholesterol biosynthesis under pathological conditions, it may have detrimental consequences under conditions of maternal hypercholesterolemia leading to preatherosclerotic lesion development in fetal aortas. Maternal cholesterol may enter fetal circulation by traversing syncytiotrophoblast and endothelial layers of the placenta. We hypothesized that endothelial cells (ECs) of the fetoplacental vasculature display a high and tightly regulated capacity for cholesterol release. Using ECs isolated from human term placenta (HPECs), we investigated cholesterol release capacity and examined transporters involved in cholesterol efflux pathways controlled by liver-X-receptors (LXRs). HPECs demonstrated 2.5-fold higher cholesterol release to lipid-free apolipoprotein (apo)A-I than human umbilical vein ECs (HUVECs), whereas both cell types showed similar cholesterol efflux to high-density lipoproteins (HDLs). Interestingly, treatment of HPECs with LXR activators increased cholesterol efflux to both types of acceptors, whereas no such response could be observed for HUVECs. In line with enhanced cholesterol efflux, LXR activation in HPECs increased expression of ATP-binding cassette transporters ABCA1 and ABCG1, while not altering expression of ABCG4 and scavenger receptor class B type I (SR-BI). Inhibition of ABCA1 or silencing of ABCG1 decreased cholesterol efflux to apoA-I (−70%) and HDL
3
(−57%), respectively. Immunohistochemistry localized both transporters predominantly to the apical membranes of placental ECs in situ. Thus, ECs of human term placenta exhibit unique, efficient and LXR-regulated cholesterol efflux mechanisms. We propose a sequential pathway mediated by ABCA1 and ABCG1, respectively, by which HPECs participate in forming mature HDL in the fetal blood.
Collapse
Affiliation(s)
- Jasminka Stefulj
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ute Panzenboeck
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Tatjana Becker
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Birgit Hirschmugl
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Cornelia Schweinzer
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Ingrid Lang
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gunther Marsche
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Anton Sadjak
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Uwe Lang
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Gernot Desoye
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| | - Christian Wadsack
- From the Institute of Pathophysiology and Immunology (J.S., U.P., T.B., C.S., A.S.); Clinic of Obstetrics and Gynecology (B.H., U.L., G.D., C.W.); Institute of Cell Biology, Histology and Embryology (I.L.); and Institute of Experimental and Clinical Pharmacology (G.M.), Medical University Graz, Austria; and Department of Molecular Biology (J.S.), Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
38
|
Kratzer I, Bernhart E, Wintersperger A, Hammer A, Waltl S, Malle E, Sperk G, Wietzorrek G, Dieplinger H, Sattler W. Afamin is synthesized by cerebrovascular endothelial cells and mediates alpha-tocopherol transport across an in vitro model of the blood-brain barrier. J Neurochem 2008; 108:707-18. [PMID: 19046407 DOI: 10.1111/j.1471-4159.2008.05796.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alpha-tocopherol (alphaTocH), a member of the vitamin E family, is essential for normal neurological function. Despite the importance of alphaTocH transport into the CNS, transfer mechanisms across the blood-brain barrier (BBB) are not entirely clear. We here investigate whether afamin, a known alphaTocH-binding protein, contributes to alphaTocH transport across an in vitro model of the BBB consisting of primary porcine brain capillary endothelial cells (BCEC) and basolaterally cultured astrocytoma cells. Exogenously added afamin had no adverse effects on BCEC viability or barrier function and was transported across BCEC Transwell cultures. Furthermore, alphaTocH transport across polarized BCEC cultures to astrocytoma cells is facilitated by afamin, though to a lesser extent than by high-density lipoprotein-mediated transport, an essential and in vivo operating alphaTocH import pathway at the cerebrovasculature. We also demonstrate that porcine BCEC endogenously synthesize afamin. In line with these in vitro findings, afamin was detected by immunohistochemistry in porcine, human postmortem, and mouse brain, where prominent staining was observed almost exclusively in the cerebrovasculature. The demonstration of afamin mRNA expression in isolated brain capillaries suggests that afamin might be a new family member of binding/transport proteins contributing to alphaTocH homeostasis at the BBB in vivo.
Collapse
Affiliation(s)
- Ingrid Kratzer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood-brain barrier: use of an in vitro model. Brain Res 2008; 1249:34-42. [PMID: 18996096 DOI: 10.1016/j.brainres.2008.10.036] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/04/2008] [Accepted: 10/11/2008] [Indexed: 01/03/2023]
Abstract
Brain is the most cholesterol rich organ of the whole body and recent studies suggest a role for the blood-brain barrier (BBB) in cerebral cholesterol homeostasis. Low density lipoprotein receptor (LDLR)-related receptors and ATP-binding Cassette (ABC) transporters play an important role in peripheral sterol homeostasis. The purpose of this study was to determine the mRNA expression profiles of ABC transporters (ABCA1, 2, 3, 7 and ABCG1) and low density lipoprotein receptor (LDLR)-related receptors (LDLR, vLDLR, LRP1, LRP2 and LRP8) in BBB endothelium using an in vitro co-culture model of bovine brain capillary endothelial cells (BCECs) and rat glial cells. All transcripts tested are expressed by BCECs and in capillary extract, except vLDLR. Glial cells influence ABCG1, A1, 2, 7 and LRP1 transcription, suggesting a role in cerebral lipid supply/elimination through the modulation of the expression of these transporters and receptors by these cells. Altogether, these results highlight the importance of glial input in the BBB transport phenotype for sterol homeostasis in the central nervous system, and confirm the importance of the BBB in this process.
Collapse
|
40
|
Lindegaard ML, Wassif CA, Vaisman B, Amar M, Wasmuth EV, Shamburek R, Nielsen LB, Remaley AT, Porter FD. Characterization of placental cholesterol transport: ABCA1 is a potential target for in utero therapy of Smith-Lemli-Opitz syndrome. Hum Mol Genet 2008; 17:3806-13. [PMID: 18775956 DOI: 10.1093/hmg/ddn278] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Patients with Smith-Lemli-Opitz syndrome (SLOS) are born with multiple congenital abnormalities. Postnatal cholesterol supplementation is provided; however, it cannot correct developmental malformations due to in utero cholesterol deficit. Increased transport of cholesterol from maternal to fetal circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer by approximately 30%. In contrast, disruption of the Abcg1 had no effect. Treatment of pregnant C57Bl/6 female mice with TO901317, an LXR-agonist, increased both Abca1 expression and maternal-fetal cholesterol transfer to the fetus. In an SLOS mouse model (Dhcr7(-/-)), which is incapable of de novo synthesis of cholesterol, in utero treatment with TO901317 resulted in increased cholesterol content in Dhcr7(-/-) embryos. Our data support the hypothesis that Abca1, and possibly Sr-b1, contributes to transport maternal cholesterol to the developing fetus. Furthermore, we show, as a proof of principle, that modulating maternal-fetal cholesterol transport has potential for in utero therapy of SLOS.
Collapse
Affiliation(s)
- Marie L Lindegaard
- Section on Molecular Dysmorphology, Eunice Kennedy Schriver National Institute of Child Health and Human Development, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Akanuma SI, Hori S, Ohtsuki S, Fujiyoshi M, Terasaki T. Expression of nuclear receptor mRNA and liver X receptor-mediated regulation of ABC transporter A1 at rat blood-brain barrier. Neurochem Int 2007; 52:669-74. [PMID: 17919779 DOI: 10.1016/j.neuint.2007.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/03/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the expression of nuclear receptor mRNA and regulation of the expression of ATP-binding cassette (ABC) transporters by nuclear receptor agonists in rat brain capillary endothelial cells, which form the blood-brain barrier, by using rat brain capillary fraction from 8-week-old rats and a conditionally immortalized brain capillary endothelial cell line (TR-BBB13). RT-PCR analysis revealed that liver X receptor alpha and beta, retinoid X receptor alpha and beta and peroxisome proliferator-activating receptor alpha and beta mRNAs were expressed in the rat brain capillary endothelial cells and TR-BBB cells. In contrast, pregnane X receptor, farnesoid X receptor and constitutive androstane receptor were not detected. Furthermore, treatment with a liver X receptor agonist increased the ABCA1 mRNA level in TR-BBB13 cells, while ABCG2 mRNA expression was not affected. Treatment with a rat pregnane X receptor agonist did not affect the ABCB1 mRNA level in TR-BBB13 cells. These results demonstrate that the rat blood-brain barrier has an expressional regulation mechanism via sterol-related nuclear receptor, and indicate that the blood-brain barrier in 8-week-old rats lacks ABCB1 regulation via pregnane X receptor.
Collapse
Affiliation(s)
- Shin-ichi Akanuma
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
42
|
Kratzer I, Wernig K, Panzenboeck U, Bernhart E, Reicher H, Wronski R, Windisch M, Hammer A, Malle E, Zimmer A, Sattler W. Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood-brain barrier. J Control Release 2006; 117:301-11. [PMID: 17239472 PMCID: PMC4861216 DOI: 10.1016/j.jconrel.2006.11.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/20/2006] [Indexed: 11/29/2022]
Abstract
Drug delivery to the brain is severely restricted by formation of tight junctions between adjacent brain capillary endothelial cells (BCEC). In the present study we have evaluated the effects of protamine-oligonucleotide nanoparticles (proticles) on the functional properties of primary porcine BCEC and characterized uptake and transcytosis of proticles by these cells. Proticles had no adverse effects on BCEC properties relevant to blood-brain barrier (BBB) function. Transcytosis of (125)I-labeled proticles across polarized BCEC cultures occurred in a time- and concentration-dependent manner. As apolipoproteins were suggested to enhance cellular proticle uptake, proticle coating was performed with apoA-I, the major apolipoprotein component of high density lipoproteins. Adsorption of apoA-I on the surface of proticles resulted in significantly improved uptake and transcytosis properties as compared to uncoated proticles. ApoA-I coating enhanced proticle delivery to astrocytes in an in vitro model of the BBB almost twofold. Blocking of scavenger receptor class B, type I (the prime receptor for high density lipoprotein/apoA-I that is expressed on BCEC) reduced transcytosis of apoA-I-coated proticles to levels observed for uncoated proticles. Our data indicate that apoA-I-coating of proticles could be a feasible targeting technology to improve delivery across the BBB.
Collapse
Affiliation(s)
- Ingrid Kratzer
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Karin Wernig
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
| | - Ute Panzenboeck
- Institute of Pathophysiology, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | | | | | - Astrid Hammer
- Institute of Histology and Embryology, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens University, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
- Corresponding author. Tel.: +43 316 380 4188; fax: +43 316 380 9615. (W. Sattler)
| |
Collapse
|