1
|
Mukaddam K, Ruggiero S, Berger SM, Cholewa D, Dekany G, Bartenstein A, Milošević M, Kühl S, Bornstein MM, Alhawasli F, Fasler-Kan E. TNF-α Activates NF-κB Signalling Pathway in MG-63 Cells on Titanium and Zirconia Implant Surfaces. MATERIALS (BASEL, SWITZERLAND) 2025; 18:884. [PMID: 40004407 PMCID: PMC11857784 DOI: 10.3390/ma18040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Dental implant therapy is a widely used clinical procedure for restoring missing teeth in patients. Zirconia implants were introduced as an alternative to titanium implants due to their excellent biocompatibility and esthetic properties. The nuclear factor kappa B (NF-κB) signalling pathway is responsible for multiple aspects of innate and adaptive immune functions and serves as a significant and crucial mediator of inflammatory processes. The dysregulation of NF-κB activation induces pathological processes in multiple diseases. The purpose of this study was to investigate the activation of the NF-κB pathway upon stimulation with tumour necrosis factor (TNF)-α in osteoblast-like cells (MG-63) cultured on zirconia surfaces in comparison to titanium surfaces. Several methods such as immunoblot, immunofluorescence, MTT assay, and flow cytometry were used in this study. We observed that human recombinant TNF-α caused a strong activation of the NF-κB pathway on both zirconia and titanium discs and in wells without any discs. This activation was marked by the upregulation of MHC class I proteins in MG-63 cells grown on both titanium and zirconia discs; however, there was no effect on MHC class II protein expression. In summary, the present study has shown that TNF-α stimulation equally activates the NF-κB pathway in MG-63 cells cultured on both titanium and zirconia surfaces.
Collapse
Affiliation(s)
- Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland; (K.M.)
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Steffen M. Berger
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Gabriela Dekany
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Milan Milošević
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| | - Sebastian Kühl
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland; (K.M.)
| | - Michael M. Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel (UZB), University of Basel, Mattenstrasse 40, CH-4058 Basel, Switzerland
| | - Farah Alhawasli
- Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children’s Hospital, Inselspital Bern, University of Bern, Freiburgstrasse 15, CH-3010 Bern, Switzerland
| |
Collapse
|
2
|
Zhang Y, Zhan C, Mei L, Li X, Liu W, Sheng M, Wang Y, Zhao Q, Zhang L, Shao M, Shao W. Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination. Inflammation 2025:10.1007/s10753-025-02240-5. [PMID: 39825194 DOI: 10.1007/s10753-025-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model. We initially observed a significant upregulation of Gm26917 expression in both ALI conditions and in MH-S cells treated with LPS. Furthermore, the silencing of Gm26917 via lentivirus-mediated methods conferred protection against LPS-induced ALI. Additionally, siRNA-mediated knockdown of Gm26917 attenuated LPS-induced inflammatory responses and modulated the function of alveolar macrophages. Subsequent mechanistic studies revealed that Gm26917 interacts with NKRF, and its knockdown suppressed NKRF ubiquitination, thereby enhancing NKRF binding to p50 and subsequently inhibiting the NF-κB signaling pathway. In conclusion, our findings demonstrate that silencing Gm26917 can mitigate LPS-induced ALI by modulating the NF-κB signaling pathway in alveolar macrophages through interactions with NKRF.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chunai Zhan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Long Mei
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyu Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Weiyi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yaoyun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lizhi Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Tamura A, Kitayama K, Adachi M, Hashimoto K, Oguro A, Imaoka S. Prolyl hydroxylase domain enzymes (isoforms 1-3, PHD1-3), but not factor-inhibiting HIF-1 (FIH-1), interact with the IKK complex and attenuate LPS-activated NF-kappa-B. J Toxicol Sci 2025; 50:105-116. [PMID: 40024754 DOI: 10.2131/jts.50.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Hypoxia induces the expression of nuclear factor kappa B (NF-kappa-B). NF-kappa-B functions by forming dimers from five main subunits: p65 (RelA), RelB, p52, p50, and c-Rel. In the classical pathway, NF-kappa-B activity is regulated by the degradation-inducing factor I kappa B kinase (IKK). IKK is composed of an α/β isomer and essential modulator NEMO (γ) subunits in the classical pathway, which may be the major pathway for NF-kappa-B signaling. In the present study, we focused on factor-inhibiting HIF-1 (FIH-1) and Prolyl hydroxylase domain enzyme (PHD), which have been identified as oxygen concentration-dependent regulators of HIF-1α. PHD has three isoforms: PHD1, PHD2, and PHD3, which have different affinities towards HIF-1α. We examined the interactions between IKKα/β and PHD1-3 by immunoprecipitation. PHDs efficiently interacted with IKKα/β. Furthermore, the overexpression of PHDs decreased the mRNA level of IL-1β, a downstream factor of NF-kappa-B activated by LPS. The overexpression of PHD1 and PHD2 markedly reduced IKKα/β protein levels; however, the effects of PHD3 were weaker than those of PHD1 and PHD2. Mutants of the active sites of PHD1 and PHD2 did not decrease IKKα/β protein levels, and a mutation in the active site of PHD3 did not affect IKKα/β protein levels. We also attempted to investigate the interactions of FIH-1 with IKKα/β and IκBα by immunoprecipitation, but found none. Moreover, IKKα/β and p65 protein levels were not affected by the overexpression of FIH-1. Collectively, these results suggest that PHDs directly regulated IKK protein levels, while FIH-1 did not affect the NF-kappa-B classical pathway.
Collapse
Affiliation(s)
- Akiyoshi Tamura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| | - Koji Kitayama
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| | - Mutsumi Adachi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| | - Kentaro Hashimoto
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| | - Ami Oguro
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Susumu Imaoka
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University
| |
Collapse
|
4
|
Li S, An M, Zhao Y, Zhao W, Li P, Du B. Immunomodulatory peptides from sturgeon cartilage: Isolation, identification, molecular docking and effects on RAW264.7 cells. Food Chem X 2024; 24:101863. [PMID: 39431208 PMCID: PMC11488438 DOI: 10.1016/j.fochx.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Sturgeons (Acipenseridae), ancient fish known for their caviar, produce underutilized by-products like protein-rich cartilage, which is a source of high-quality bioactive peptides. This study investigates immunomodulatory peptides from sturgeon cartilage hydrolysates mechanisms. The study found that sturgeon cartilage hydrolysate F2-7 and its key peptides(DHVPLPLP and HVPLPLP)significantly promoted RAW267.4 cell proliferation, NO release, and phagocytosis (P < 0.001).Additionally, western blotting confirmed that F2-7 enhances immune response by increasing the expression of P-IKKα/β, IΚΚ, p65, and P-p65 proteins in the NF-κB signalling pathway (P < 0.01). Molecular docking further demonstrated that DHVPLPLP and HVPLPLP bind to NF-κB pathway proteins via hydrogen bonding, with low estimated binding energies (-2.75 and -1.64; -6.04 and -4.75 kcal/mol), thus establishing their role as key immune peptides in F2-7. Therefore, DHVPLPLP and HVPLPLP have the potential to be developed as dietary supplements for immune enhancement. Their ability to enhance immune function provides a theoretical basis for novel immune supplements.
Collapse
Affiliation(s)
- Shuchan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Miaoqing An
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxuan Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
6
|
Yu S, Xu C, Tang X, Wang L, Hu L, Li L, Zhou X, Li Q. Exendin-4 blockade of T1R2/T1R3 activation improves Pseudomonas aeruginosa-related pneumonia in an animal model of chemically induced diabetes. Inflamm Res 2024; 73:1185-1201. [PMID: 38748233 PMCID: PMC11214611 DOI: 10.1007/s00011-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1β and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1β and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.
Collapse
Affiliation(s)
- Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, 579199, China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| |
Collapse
|
7
|
Wang N, Li Z, Cao L, Cui Z. Trilobatin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via the NF-κB pathway and alterations in gut microbiota. PLoS One 2024; 19:e0305926. [PMID: 38913606 PMCID: PMC11195961 DOI: 10.1371/journal.pone.0305926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the effects of trilobatin (TLB) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and further explore the underlying mechanisms from the perspectives of signaling pathway and gut microbiota. METHODS A mouse model of UC was established using DSS. Trilobatin was administered via oral gavage. Disease severity was assessed based on body weight, disease activity index (DAI), colon length, histological detection, inflammation markers, and colonic mucosal barrier damage. Alternations in the NF-κB and PI3K/Akt pathways were detected by marker proteins. High-throughput 16S rRNA sequencing was performed to investigate the gut microbiota of mice. RESULTS In the DSS-induced UC mice, TLB (30 μg/g) treatment significantly increased the body weight, reduced the DAI score, alleviated colon length shortening, improved histopathological changes in colon tissue, inhibited the secretion and expression of inflammation factors (TNF-α, IL-1β, and IL-6), and increased the expression of tight-junction proteins (ZO-1 and occludin). Furthermore, TLB (30 μg/g) treatment significantly suppressed the activation of NF-κB pathway and altered the composition and diversity of the gut microbiota, as observed in the variations of the relative abundances of Proteobacteria, Actinobacteriota, and Bacteroidota, in UC mice. CONCLUSION TLB effectively alleviates DSS-induced UC in mice. Regulation of the NF-κB pathway and gut microbiota contributes to TLB-mediated therapeutic effects. Our study not only identified a novel drug candidate for the treatment of UC, but also enhanced our understanding of the biological functions of TLB.
Collapse
Affiliation(s)
- Nanbo Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaohui Li
- Changchun People’s Hospital of Jilin Province, Changchun, China
| | - Lingling Cao
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Zhihua Cui
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Singh NK, Singh A, Mayank. Nuclear Factor Kappa B: A Nobel Therapeutic Target of FlavonoidsAgainst Parkinson's Disease. Comb Chem High Throughput Screen 2024; 27:2062-2077. [PMID: 38243959 DOI: 10.2174/0113862073295568240105025006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Collapse
Affiliation(s)
- Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| | - Mayank
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura-281406, UP, India
| |
Collapse
|
9
|
Muhammad M, Hassan TM, Baba SS, Radda MI, Mutawakkil MM, Musa MA, AbuBakar S, Loong SK, Yusuf I. Exploring NF κB pathway as a potent strategy to mitigate COVID-19 severe morbidity and mortality. J Public Health Afr 2022; 13:1679. [PMID: 36313924 PMCID: PMC9614690 DOI: 10.4081/jphia.2022.1679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), for which there does not appear to be an approved cure, the primary treatment options consist of non-pharmacological preventive measures and supportive treatment that are aimed at halting the progression of the disease. Nuclear factor kappa B (NFkB) presents a promising therapeutic opportunity to mitigate COVID-19-induced cytokine storm and reduce the risk of severe morbidity and mortality resulting from the disease. However, the effective clinical application of NFkB modulators in COVID-19 is hampered by a number of factors that must be taken into consideration. This paper therefore explored the modulation of the NFB pathway as a potential strategy to mitigate the severe morbidity and mortality caused by COVID-19. The paper also discusses the factors that form the barrier, and it offers potential solutions to the various limitations that may impede the clinical use of NFkB modulators against COVID-19. This paper revealed and identified three key potential solutions for the future clinical use of NFkB modulators against COVID-19. These solutions are pulmonary tissue-specific NFkB blockade, agents that target common regulatory proteins of both canonical and non-canonical NFkB pathways, and monitoring clinical indicators of hyperinflammation and cytokine storm in COVID-19 prior to using NFkB modulators.
Collapse
Affiliation(s)
- Mubarak Muhammad
- Department of Physiology, College of Medicine, University of Ibadan, Nigeria,Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Tasneem M. Hassan
- Department of Physiotherapy, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Sani S. Baba
- Department of Human Physiology, College of Health Sciences, Bayero University Kano, Nigeria
| | - Mustapha I. Radda
- Department of Human Physiology, College of Health Sciences, Bayero University Kano, Nigeria
| | - Mubarak M. Mutawakkil
- Pharmacology and Therapeutics, College of Health Sciences, Bayero University Kano, Nigeria
| | - Majida A. Musa
- Pharmacology and Therapeutics, College of Health Sciences, Bayero University Kano, Nigeria
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre, Higher Institution Centre of Excellence, Universiti of Malaya, Kuala Lumpur, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research and Education Centre, Higher Institution Centre of Excellence, Universiti of Malaya, Kuala Lumpur, Malaysia
| | - Ibrahim Yusuf
- Department of Pathology, Aminu Kano Teaching Hospital, Kano, Nigeria
| |
Collapse
|
10
|
Kikuchi Y, Sugano E, Yuki S, Tabata K, Endo Y, Takita Y, Onoguchi R, Ozaki T, Fukuda T, Takai Y, Kurose T, Tanaka K, Honma Y, Perez E, Stock M, Fernández JR, Tamura M, Voronkov M, Stock JB, Tomita H. SIG-1451, a Novel, Non-Steroidal Anti-Inflammatory Compound, Attenuates Light-Induced Photoreceptor Degeneration by Affecting the Inflammatory Process. Int J Mol Sci 2022; 23:ijms23158802. [PMID: 35955937 PMCID: PMC9369167 DOI: 10.3390/ijms23158802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration is a progressive retinal disease that is associated with factors such as oxidative stress and inflammation. In this study, we evaluated the protective effects of SIG-1451, a non-steroidal anti-inflammatory compound developed for treating atopic dermatitis and known to inhibit Toll-like receptor 4, in light-induced photoreceptor degeneration. SIG-1451 was intraperitoneally injected into rats once per day before exposure to 1000 lx light for 24 h; one day later, optical coherence tomography showed a decrease in retinal thickness, and electroretinogram (ERG) amplitude was also found to have decreased 3 d after light exposure. Moreover, SIG-1451 partially protected against this decrease in retinal thickness and increase in ERG amplitude. One day after light exposure, upregulation of inflammatory response-related genes was observed, and SIG-1451 was found to inhibit this upregulation. Iba-1, a microglial marker, was suppressed in SIG-1451-injected rats. To investigate the molecular mechanism underlying these effects, we used lipopolysaccharide (LPS)-stimulated rat immortalised Müller cells. The upregulation of C-C motif chemokine 2 by LPS stimulation was significantly inhibited by SIG-1451 treatment, and Western blot analysis revealed a decrease in phosphorylated I-κB levels. These results indicate that SIG-1451 indirectly protects photoreceptor cells by attenuating light damage progression, by affecting the inflammatory responses.
Collapse
Affiliation(s)
- Yuki Kikuchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Eriko Sugano
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Shiori Yuki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Kitako Tabata
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yuka Endo
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yuya Takita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Reina Onoguchi
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Taku Ozaki
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Tomokazu Fukuda
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
| | - Yoshihiro Takai
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Takahiro Kurose
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Koichi Tanaka
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Yoichi Honma
- Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa 619-0216, Kyoto, Japan
| | - Eduardo Perez
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Maxwell Stock
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | | | - Masanori Tamura
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Michael Voronkov
- Signum Biosciences, 4999 Pearl East Circle, Boulder, CO 80301, USA
| | - Jeffry B. Stock
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Hiroshi Tomita
- Laboratory of Visual Neuroscience, Graduate Course in Biological Sciences, Iwate University Division of Science and Engineering, 4-3-5 Ueda, Morioka 020-8551, Iwate, Japan
- Correspondence: ; Tel.: +81-19-621-6427
| |
Collapse
|
11
|
Milanesi E, Dobre M, Cucos CA, Rojo AI, Jiménez-Villegas J, Capetillo-Zarate E, Matute C, Piñol-Ripoll G, Manda G, Cuadrado A. Whole Blood Expression Pattern of Inflammation and Redox Genes in Mild Alzheimer's Disease. J Inflamm Res 2021; 14:6085-6102. [PMID: 34848989 PMCID: PMC8612672 DOI: 10.2147/jir.s334337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background Although Alzheimer’s disease (AD) is associated with alterations of the central nervous system, this disease has an echo in blood that might represent a valuable source of biomarkers for improved diagnosis, prognosis and for monitoring drug response. Methods We performed a targeted transcriptomics study on 38 mild Alzheimer’s disease (AD) patients and 38 matched controls for evaluating the expression levels of 136 inflammation and 84 redox genes in whole blood. Patients were diagnosed as mild AD based on altered levels of total TAU, phospho-TAU and Abeta(1–42) in cerebrospinal fluid, and Abeta(1–40), Abeta(1–42) and total TAU levels in plasma. Whenever possible, blood and brain comparisons were made using public datasets. Results We found 48 inflammation and 34 redox genes differentially expressed in the blood of AD patients vs controls (FC >1.5, p < 0.01), out of which 22 pro-inflammatory and 12 redox genes exhibited FC >2 and p < 0.001. Receiver operating characteristic (ROC) analysis identified nine inflammation and seven redox genes that discriminated between AD patients and controls (area under the curve >0.9). Correlations of the dysregulated inflammation and redox transcripts indicated that RELA may regulate several redox genes including DUOX1 and GSR. Based on the gene expression profile, we have found that the master regulators of inflammation and redox homeostasis, NFκB and NRF2, were significantly disturbed in the blood of AD patients, as well as several zinc finger and helix-loop-helix transcription factors. Conclusion The selected inflammation and redox genes might be useful biomarkers for monitoring anti-inflammatory therapy in mild AD.
Collapse
Affiliation(s)
- Elena Milanesi
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Maria Dobre
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | | | - Ana I Rojo
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IDIPAZ), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| | - José Jiménez-Villegas
- Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain
| | - Estibaliz Capetillo-Zarate
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastons Cognitius, Hospital Universitari Santa Maria-IRB Leida, Lleida, 25198, Spain
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania
| | - Antonio Cuadrado
- "Victor Babes" National Institute of Pathology, Bucharest, 050096, Romania.,Department of Endocrine Physiology and Nervous System, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, 28029, Spain.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, 28049, Spain.,Neuroscience Section, Instituto de Investigación Sanitaria La Paz (IDIPAZ), Madrid, 28046, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, 28031, Spain
| |
Collapse
|
12
|
Quispe C, Cruz-Martins N, Manca ML, Manconi M, Sytar O, Hudz N, Shanaida M, Kumar M, Taheri Y, Martorell M, Sharifi-Rad J, Pintus G, Cho WC. Nano-Derived Therapeutic Formulations with Curcumin in Inflammation-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3149223. [PMID: 34584616 PMCID: PMC8470924 DOI: 10.1155/2021/3149223] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/29/2021] [Indexed: 12/20/2022]
Abstract
Due to its vast therapeutic potential, the plant-derived polyphenol curcumin is utilized in an ever-growing number of health-related applications. Here, we report the extraction methodologies, therapeutic properties, advantages and disadvantages linked to curcumin employment, and the new strategies addressed to improve its effectiveness by employing advanced nanocarriers. The emerging nanotechnology applications used to enhance CUR bioavailability and its targeted delivery in specific pathological conditions are collected and discussed. In particular, new aspects concerning the main strategic nanocarriers employed for treating inflammation and oxidative stress-related diseases are reported and discussed, with specific emphasis on those topically employed in conditions such as wounds, arthritis, or psoriasis and others used in pathologies such as bowel (colitis), neurodegenerative (Alzheimer's or dementia), cardiovascular (atherosclerosis), and lung (asthma and chronic obstructive pulmonary disease) diseases. A brief overview of the relevant clinical trials is also included. We believe the review can provide the readers with an overview of the nanostrategies currently employed to improve CUR therapeutic applications in the highlighted pathological conditions.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy
| | - Oksana Sytar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia
- Department of Plant Biology, Educational and Scientific Center “Institute of Biology and Medicine”, Kiev National University of Taras Shevchenko, Volodymyrska, 64, 01033 Kyiv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, Ukraine
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Voli 1, Ternopil, Ukraine
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, 22272 Sharjah, UAE
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
13
|
Bomba FDT, Nguelefack TB, Matharasala G, Mishra RK, Battu MB, Sriram D, Kamanyi A, Yogeeswari P. Antihypernociceptive effects of Petersianthus macrocarpus stem bark on neuropathic pain induced by chronic constriction injury in rats. Inflammopharmacology 2021; 29:1241-1253. [PMID: 34081248 DOI: 10.1007/s10787-021-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
Petersianthus macrocarpus (Lecythidaceae) stem bark is traditionally used in West and Central Africa for the treatment of boils and pain. The present study examined the chemical composition of the aqueous and methanolic stem bark extracts of P. macrocarpus by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) . Their antinociceptive effect was evaluated using chronic constriction injury (CCI)-induced neuropathic pain in a rat model. On the ninth day post-surgery, the pain perception (allodynia and hyperalgesia) of the animals was assessed after the administration of aqueous and methanolic extracts at the doses of 100 and 200 mg/kg. In addition, the effect of the extracts was evaluated on nitric oxide activity and on the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and NF-κB). The LC-ESI-MS analysis revealed the presence of ellagic acid as the major constituent in the methanol extract. Both extracts at the employed doses (100 and 200 mg/kg), significantly (p < 0.01 and p < 0.001) reduced the spontaneous pain, tactile and cold allodynia, and mechanical hyperalgesia. The methanolic extract used at the dose of 200 mg/kg significantly reduced the nitric oxide level (p < 0.001) and the gene expression levels of NF-κB (p < 0.05) and TNF-α (p < 0.01) in the brain. These data may indicate that stem bark extracts of P. macrocarpus possess a potent anti-hypernociceptive effect on CCI neuropathic pain. The inhibition of the nitric oxide pathway as well as the reduction in NF-κB and TNF-α gene expression in the brain may at least partially contribute to this effect. The results further support the use of this plant by traditional healers in pain conditions.
Collapse
Affiliation(s)
- Francis Desire Tatsinkou Bomba
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63, Buea, Cameroon.
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India.
| | - Telesphore Benoit Nguelefack
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Gangadhar Matharasala
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Ram Kumar Mishra
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Madhu Babu Battu
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India
| | - Albert Kamanyi
- Research Unit of Neuro-Inflammatory and Cardiovascular Pharmacology, Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Perumal Yogeeswari
- Neuropathic Pain Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Shameerpet Mandal R.R. District, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
14
|
Dolatshahi M, Ranjbar Hameghavandi MH, Sabahi M, Rostamkhani S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur J Neurosci 2021; 54:4101-4123. [PMID: 33884689 DOI: 10.1111/ejn.15242] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD), the most common movement disorder, comprises several pathophysiologic mechanisms including misfolded alpha-synuclein aggregation, inflammation, mitochondrial dysfunction, and synaptic loss. Nuclear Factor-Kappa B (NF-κB), as a key regulator of a myriad of cellular reactions, is shown to be involved in such mechanisms associated with PD, and the changes in NF-κB expression is implicated in PD. Alpha-synuclein accumulation, the characteristic feature of PD pathology, is known to trigger NF-κB activation in neurons, thereby propagating apoptosis through several mechanisms. Furthermore, misfolded alpha-synuclein released from degenerated neurons, activates several signaling pathways in glial cells which culminate in activation of NF-κB and production of pro-inflammatory cytokines, thereby aggravating neurodegenerative processes. On the other hand, NF-κB activation, acting as a double-edged sword, can be necessary for survival of neurons. For instance, NF-κB activation is necessary for competent mitochondrial function and deficiency in c-Rel, one of the NF-κB proteins, is known to propagate DA neuron loss via several mechanisms. Despite the dual role of NF-κB in PD, several agents by selectively modifying the mechanisms and pathways associated with NF-κB, can be effective in attenuating DA neuron loss and PD, as reviewed in this paper.
Collapse
Affiliation(s)
- Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mohammadmahdi Sabahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sabra Rostamkhani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Echinacea Purpurea Extract (cichoric Acid) Exerts an Anti-inflammatory Effect on Yak PBMCs and Regulates the TLR4 Signalling Pathway. J Vet Res 2021; 65:109-115. [PMID: 33817403 PMCID: PMC8009576 DOI: 10.2478/jvetres-2021-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Inflammation is one of the main causes of impaired health in livestock and some of its processes weaken animal productivity and impact human health. The present study was conducted to evaluate the effect of echinacea extract (cichoric acid – CA) on yak peripheral blood mononuclear cells (PBMCs), inflammatory-related factors, and the toll-like receptor (TLR)4 signalling pathway induced by lipopolysaccharide (LPS) in these PBMCs. Material and Methods Yak PBMCs were co-cultured with LPS and CA in vitro. The proliferative activity of cells was detected using the cell-counting kit-8 method, the optimal stimulation concentration of LPS was selected, the effect of CA on the content of inflammation-related factors was evaluated using an ELISA kit, and the mRNA expression of these factors was detected by RT-PCR. Results CA inhibited the inflammatory response of yak PBMCs induced by LPS. CA inhibited gene and protein expression of key nodes of the TLR4 signalling pathway in yak PBMCs. Conclusion It is suggested that CA has anti-inflammatory and immunomodulatory effects on yak PBMCs via the TLR4 pathway.
Collapse
|
16
|
Akter Z, Ahmed FR, Tania M, Khan MA. Targeting Inflammatory Mediators: An Anticancer Mechanism of Thymoquinone Action. Curr Med Chem 2021; 28:80-92. [PMID: 31604405 DOI: 10.2174/0929867326666191011143642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thymoquinone is a promising anticancer molecule, the chemopreventive role of which is well-known at least in vitro and in the animal model. In this review article, we focused on the anti-inflammatory activities of thymoquinone in cancer cells. METHOD Research data on inflammation, cancer and thymoquinone were acquired from PubMed, Scopus, Web of Science and Google Scholar. We reviewed papers published since the mid of the last century, and the most cited papers of the last ten years. RESULTS Studies indicate that thymoquinone possesses immunomodulatory activities, in addition to its chemopreventive role, as thymoquinone can target and modulate inflammatory molecules, like nuclear factor kappa B (NF-κβ), interleukins, tumor necrosis factor-α (TNF-α), and certain growth factors. As chronic inflammation plays an important role in cancer development, controlling inflammatory pathways is an important mechanism of an anticancer molecule, and modulation of inflammatory pathways might be one of the key mechanisms of thymoquinone's anticancer activities. CONCLUSION This article reviewed the role of inflammation on cancer development, and the action of thymoquinone on inflammatory molecules, which have been proved in vitro and in vivo. Much attention is required for studying the role of thymoquinone in immunotherapeutics and developing this molecule as a future anticancer drug.
Collapse
Affiliation(s)
- Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Dhaka, Bangladesh
| | - Faiza Rafa Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Protective Role of Somatostatin in Sepsis-Induced Intestinal Barrier Dysfunction through Inhibiting the Activation of NF- κB Pathway. Gastroenterol Res Pract 2020; 2020:2549486. [PMID: 33376482 PMCID: PMC7746440 DOI: 10.1155/2020/2549486] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Somatostatin (SST) has a protective role in intestinal injury, inflammatory response, and intestinal mucosal barrier in rats with acute pancreatitis. However, its function in sepsis-induced intestinal barrier dysfunction remains largely unknown. A mouse sepsis model was constructed, and SST was injected into the tail vein. Then, hematoxylin and eosin staining (HE) was used to detect the intestinal barrier dysfunction. Enzyme-linked immunosorbent assay was used to detect the level of tumor necrosis factor α- (TNF-) α, interleukin- (IL-) 6, and interleukin- (IL-) 10 in the ileum. Expressions of tight junction proteins, zonula occludens- (ZO-) 1 and Claudin-1, and NF-κB p65 in the ileum were detected using western blot and immunohistochemistry as needed. Furthermore, JSH-23 as an inhibitor of the NF-κB pathway was injected into sepsis mice with SST or not. Mice with sepsis showed an obvious intestinal barrier dysfunction with decreasing specific somatostatin receptor subtype (SSTRs), and increasing TNF-α, IL-6, and IL-10 in the ileum. SST could relieve the injury, the decrease of SSTRs, and the increase of TNF-α and IL-6 induced by sepsis and also further enhanced the expression of IL-10. Further analysis showed that ZO-1 and Claudin-1 were reduced in the ileum by sepsis but enhanced by SST. NF-κB p65 was promoted in the ileum by sepsis but inhibited by SST. Further experiments confirmed that NF-κB inhibitor JSH-23 could repair the intestinal barrier dysfunction and enhance the protective effect of SST on the intestinal barrier. SST, with a protective effect on intestinal barrier dysfunction through suppression of NF-κB, could be a potential therapeutic drug for sepsis-induced intestinal barrier dysfunction.
Collapse
|
18
|
Correction: Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2315-2317. [PMID: 32901820 PMCID: PMC7484393 DOI: 10.1042/cs-20200904_cor] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Noori MS, Courreges MC, Bergmeier SC, McCall KD, Goetz DJ. Modulation of LPS-induced inflammatory cytokine production by a novel glycogen synthase kinase-3 inhibitor. Eur J Pharmacol 2020; 883:173340. [PMID: 32634441 PMCID: PMC7334664 DOI: 10.1016/j.ejphar.2020.173340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Sepsis is a serious condition that can lead to long-term organ damage and death. At the molecular level, the hallmark of sepsis is the elevated expression of a multitude of potent cytokines, i.e. a cytokine storm. For sepsis involving gram-negative bacteria, macrophages recognize lipopolysaccharide (LPS) shed from the bacteria, activating Toll-like-receptor 4 (TLR4), and triggering a cytokine storm. Glycogen synthase kinase-3 (GSK-3) is a highly active kinase that has been implicated in LPS-induced cytokine production. Thus, compounds that inhibit GSK-3 could be potential therapeutics for sepsis. Our group has recently described a novel and highly selective inhibitor of GSK-3 termed COB-187. In the present study, using THP-1 macrophages, we evaluated the ability of COB-187 to attenuate LPS-induced cytokine production. We found that COB-187 significantly reduced, at the protein and mRNA levels, cytokines induced by LPS (e.g. IL-6, TNF-α, IL-1β, CXCL10, and IFN-β). Further, the data suggest that the inhibition could be due, at least in part, to COB-187 reducing NF-κB (p65/p50) DNA binding activity as well as reducing IRF-3 phosphorylation at Serine 396. Thus, COB-187 appears to be a potent inhibitor of the cytokine storm induced by LPS.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA.
| | - Maria C Courreges
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, USA
| | - Stephen C Bergmeier
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA; Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | - Kelly D McCall
- Department of Specialty Medicine, Ohio University, Athens, OH, 45701, USA; Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA; The Diabetes Institute, Ohio University, Athens, OH, 45701, USA; Molecular and Cellular Biology Program, Ohio University, Athens, OH, 45701, USA; Translational Biomedical Science Program, Ohio University, Athens, OH, 45701, USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA; Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
20
|
Miwa N, Nagano T, Jimbo N, Dokuni R, Kiriu T, Mimura C, Yasuda Y, Katsurada M, Yamamoto M, Tachihara M, Tanaka Y, Kobayashi K, Itoh T, Maniwa Y, Nishimura Y. Caspase Recruitment Domain-Containing Protein 9 Expression is a Novel Prognostic Factor for Lung Adenocarcinoma. Onco Targets Ther 2020; 13:9005-9013. [PMID: 32982291 PMCID: PMC7498929 DOI: 10.2147/ott.s265539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Purpose Caspase recruitment domain-containing protein 9 (CARD9) is expressed at high levels in bone marrow cells and has a crucial role in innate immunity. Current studies indicate that CARD9 also plays a key role in tumor progression, but there are few reports on the role of CARD9 in lung cancer. The aim of this study was to clarify the role of CARD9 in lung adenocarcinoma. Patients and Methods Lung adenocarcinoma tumor samples from 74 patients who underwent complete resection at Kobe University Hospital from January 2014 to December 2014 were analyzed by immunohistochemistry. The role of CARD9 in cancer cells was analyzed using lung cancer cell lines treated with CARD9 siRNA. Results High expression of CARD9 was observed in 32.4% of tumors, and compared to low expression of CARD9, high expression was associated with poorer overall survival (P = 0.0365). Univariate and multivariate analyses showed that high expression of CARD9 was an independent prognostic factor. Knockdown of CARD9 in lung adenocarcinoma cells inhibited proliferation but did not increase apoptosis. In addition, CARD9 activated the NF-κB pathway in a lung adenocarcinoma cell line. Conclusion CARD9 was shown to be an independent prognostic factor of poor outcome for lung cancer and may represent a molecular target for treatment.
Collapse
Affiliation(s)
- Nanako Miwa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoe Jimbo
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryota Dokuni
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Chihiro Mimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichiro Yasuda
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yugo Tanaka
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
21
|
Zhong B, Ma S, Wang DH. Knockout of TRPV1 Exacerbates Ischemia-reperfusion-induced Renal Inflammation and Injury in Obese Mice. In Vivo 2020; 34:2259-2268. [PMID: 32871748 DOI: 10.21873/invivo.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM Transient receptor potential vanilloid type 1 (TRPV1) has anti-inflammatory properties. The present study aimed to investigate the role of TRPV1 in renal inflammatory responses and tissue injury following renal ischemia-reperfusion (I/R) in diet-induced obese mice. MATERIALS AND METHODS TRPV1 knockout and wild type mice were fed a normal or western diet (WD) for 23 weeks and were then subjected to renal I/R injury. RESULTS TRPV1 knockout mice showed enhanced WD-induced renal macrophage infiltration and collagen deposition. Knocking out TRPV1 exacerbated renal I/R-induced increase of malondialdehyde, interleukin-6, monocyte chemoattractant protein-1, and NF-ĸB in obese mice. Similar results were observed in the expression of phosphorylated Smad1 and Smad2/3. Blockade of calcitonin gene-related peptide (CGRP) receptors with CGRP8-37 worsened the I/R-induced renal inflammation and injury. CONCLUSION Our data indicate that preserving TRPV1 expression and function may prevent renal I/R injury in obesity likely through alleviating inflammatory responses.
Collapse
Affiliation(s)
- Beihua Zhong
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A
| | - Donna H Wang
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, U.S.A. .,Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A.,Cell & Molecular Biology Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
22
|
Battagello D, Dragunas G, Klein M, Ayub AL, Velloso F, Correa R. Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 2020; 134:2137-2160. [PMID: 32820801 PMCID: PMC7443512 DOI: 10.1042/cs20200904] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The highly infective coronavirus disease 19 (COVID-19) is caused by a novel strain of coronaviruses - the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - discovered in December 2019 in the city of Wuhan (Hubei Province, China). Remarkably, COVID-19 has rapidly spread across all continents and turned into a public health emergency, which was ultimately declared as a pandemic by the World Health Organization (WHO) in early 2020. SARS-CoV-2 presents similar aspects to other members of the coronavirus family, mainly regarding its genome, protein structure and intracellular mechanisms, that may translate into mild (or even asymptomatic) to severe infectious conditions. Although the mechanistic features underlying the COVID-19 progression have not been fully clarified, current evidence have suggested that SARS-CoV-2 may primarily behave as other β-coronavirus members. To better understand the development and transmission of COVID-19, unveiling the signaling pathways that may be impacted by SARS-CoV-2 infection, at the molecular and cellular levels, is of crucial importance. In this review, we present the main aspects related to the origin, classification, etiology and clinical impact of SARS-CoV-2. Specifically, here we describe the potential mechanisms of cellular interaction and signaling pathways, elicited by functional receptors, in major targeted tissues/organs from the respiratory, gastrointestinal (GI), cardiovascular, renal, and nervous systems. Furthermore, the potential involvement of these signaling pathways in evoking the onset and progression of COVID-19 symptoms in these organ systems are presently discussed. A brief description of future perspectives related to potential COVID-19 treatments is also highlighted.
Collapse
Affiliation(s)
- Daniella S. Battagello
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Marianne O. Klein
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana L.P. Ayub
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Velloso
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-NJMS, Newark, NJ, U.S.A
| | - Ricardo G. Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys (SBP) Medical Discovery Institute, La Jolla, CA, U.S.A
| |
Collapse
|
23
|
Luetragoon T, Pankla Sranujit R, Noysang C, Thongsri Y, Potup P, Suphrom N, Nuengchamnong N, Usuwanthim K. Anti-Cancer Effect of 3-Hydroxy-β-Ionone Identified from Moringa oleifera Lam. Leaf on Human Squamous Cell Carcinoma 15 Cell Line. Molecules 2020; 25:molecules25163563. [PMID: 32764438 PMCID: PMC7464402 DOI: 10.3390/molecules25163563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma is the most common type of head and neck cancer worldwide. Radiation and chemotherapy are general treatments for patients; however, these remedies can have adverse side effects and tumours develop drug resistance. Effective treatments still require improvement for cancer patients. Here, we investigated the anti-cancer effect of Moringa oleifera (MO) Lam. leaf extracts and their fractions, 3-hydroxy-β-ionone on SCC15 cell line. SCC15 were treated with and without MO leaf extracts and their fractions. MTT assay was used to determine cell viability on SCC15. Cell cycle and apoptosis were evaluated by the Muse™ Cell Analyser. Colony formation and wound closure analysis of SCC15 were performed in 6-well plates. Apoptosis markers were evaluated by immunoblotting. We found that Moringa extracts and 3-HBI significantly inhibited proliferation of SCC15. Moreover, they induced apoptosis and cell cycle arrest at G2/M phase in SCC15 compared to the untreated control. MO extracts and 3-HBI also inhibited colony formation and cell migration of SCC15. Furthermore, we observed the upregulation of cleaved caspase-3 and Bax with downregulation of anti-apoptotic Bcl-2, indicating the induction of cancer cell apoptosis. Our results revealed that MO extracts and 3-HBI provided anti-cancer properties by inhibiting progression and inducing apoptosis of SCC15.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
24
|
Kutlu Z, Celik M, Bilen A, Halıcı Z, Yıldırım S, Karabulut S, Karakaya S, Bostanlık DF, Aydın P. Effects of umbelliferone isolated from the Ferulago pauciradiata Boiss. & Heldr. Plant on cecal ligation and puncture-induced sepsis model in rats. Biomed Pharmacother 2020; 127:110206. [PMID: 32407990 DOI: 10.1016/j.biopha.2020.110206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a pathophysiological event involving systemic inflammatory response syndrome, multiple organ failure syndromes, and tissue damage. Overproduction of free radicals as a result of tissue damage during sepsis contributes to cellular toxicity, organ failure, and even mortality. Antioxidants, which scavenge free radicals, play a protective role against various diseases. Previous studies have shown that umbelliferone (UF) has antioxidant and anti-inflammatory effects. Since oxidative stress is naturally associated with sepsis-induced organ dysfunction, the application of antioxidant compounds could potentially illuminate the pathophysiology of sepsis, which does not yet have an effective treatment. The sepsis model induced by cecal ligation and puncture (CLP) was applied to rats. Different doses of UF (10░mg/kg, 20░mg/kg, and 40░mg/kg) on oxidant-antioxidant in septic rats, mRNA of inflammatory mediators such as tumor necrosis factor- α (TNF-α) and interleukin (IL)-1 its effects on expression levels were evaluated in lung, kidney, and liver tissues. When the lung, kidney, and liver tissues of septic rats were compared with those of the control group, it was found that UF administration increased dose-dependent superoxide dismutase activity and glutathione levels and significantly decreased malondialdehyde levels. The effects of UF administration on oxidative parameters were dose-dependent. The 40░mg/kg UF dose showed greater anti-oxidative properties than the 20░mg/kg and 10░mg/kg doses for all the evaluated parameters. Further, the TNF- α mRNA expression of the CLP +40░mg/kg group was reduced to a level comparable to that of the control group. UF has been found to be an effective molecule in reducing oxidative stress by supporting endogenous antioxidants and enhancing the scavenging effects of free radicals. The potent antioxidant property of UF may also be related to the suppression of the cytokine cascade during sepsis. The results suggest that UF administration may represent a new treatment for the prevention of lung, kidney and liver damage caused by septic conditions.
Collapse
Affiliation(s)
- Z Kutlu
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, 25240, Turkey.
| | - M Celik
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey.
| | - A Bilen
- Department of Internal Medicine, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey.
| | - Z Halıcı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, 25240, Turkey; Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey.
| | - S Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, 25240, Turkey.
| | - S Karabulut
- Health Services Vocational School, Bayburt University, Bayburt, 69000, Turkey.
| | - S Karakaya
- Department of Pharmacognosy, Faculty of Pharmacy, Ataturk University, Erzurum, 25240, Turkey.
| | | | - P Aydın
- Department of Anesthesia, Regional Education and Research Hospital, Erzurum, 25240, Turkey.
| |
Collapse
|
25
|
Xi X, Yao Y, Liu N, Li P. MiR-297 alleviates LPS-induced A549 cell and mice lung injury via targeting cyclin dependent kinase 8. Int Immunopharmacol 2020; 80:106197. [PMID: 31945608 DOI: 10.1016/j.intimp.2020.106197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/02/2020] [Accepted: 01/05/2020] [Indexed: 01/11/2023]
|
26
|
Wu L, Fidan K, Um JY, Ahn KS. Telomerase: Key regulator of inflammation and cancer. Pharmacol Res 2020; 155:104726. [PMID: 32109579 DOI: 10.1016/j.phrs.2020.104726] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
The telomerase holoenzyme, which has a highly conserved role in maintaining telomere length, has long been regarded as a high-profile target in cancer therapy due to the high dependency of the majority of cancer cells on constitutive and elevated telomerase activity for sustained proliferation and immortality. In this review, we present the salient findings in the telomerase field with special focus on the association of telomerase with inflammation and cancer. The elucidation of extra-telomeric roles of telomerase in inflammation, reactive oxygen species (ROS) generation, and cancer development further complicated the design of anti-telomerase therapy. Of note, the discovery of the unique mechanism that underlies reactivation of the dormant telomerase reverse transcriptase TERT promoter in somatic cells not only enhanced our understanding of the critical role of TERT in carcinogenesis but also opens up new intervention ideas that enable the differential targeting of cancer cells only. Despite significant effort invested in developing telomerase-targeted therapeutics, devising efficacious cancer-specific telomerase/TERT inhibitors remains an uphill task. The latest discoveries of the telomere-independent functionalities of telomerase in inflammation and cancer can help illuminate the path of developing specific anti-telomerase/TERT therapeutics against cancer cells.
Collapse
Affiliation(s)
- Lele Wu
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Kerem Fidan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | - Jae-Young Um
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, #47, Kyungheedae-gil, Dongdaemoon-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
27
|
Kim CH, Lee SH, Kim EJ, Ahn JH, Choi EJ, Yoon JU, Choi IS. Effects of remifentanil preconditioning on factors related to uterine contraction in WISH cells. J Dent Anesth Pain Med 2020; 19:343-351. [PMID: 31942449 PMCID: PMC6946832 DOI: 10.17245/jdapm.2019.19.6.343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
Background Preterm labor and miscarriage may occur in stressful situations, such as a surgical operation or infection during pregnancy. Pharyngeal and buccal abscess and facial bone fractures are inevitable dental surgeries in pregnant patients. Remifentanil is an opioid analgesic that is commonly used for general anesthesia and sedation. Nonetheless, no study has investigated the effects of remifentanil on amniotic epithelial cells. This study evaluated the effects of remifentanil on the factors related to uterine contraction and its mechanism of action on amniotic epithelial cells. Methods Amniotic epithelial cells were preconditioned at various concentrations of remifentanil for 1 h, followed by 24-h lipopolysaccharide (LPS) exposure. MTT assays were performed to assess the cell viability in each group. The effects of remifentanil on factors related to uterine contractions in amniotic epithelial cells were assessed using a nitric oxide (NO) assay, western blot examinations of the expression of nuclear factor-kappa B (NF-κB), cyclooxygenase 2 (COX2), and prostaglandin E2 (PGE2), and RT-PCR examinations of the expression of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α). Results Remifentanil did not affect viability and nitric oxide production of amniotic epithelial cells. Western blot analysis revealed that remifentanil preconditioning resulted in decreased expressions of NF-κB and PGE2 in the cells in LPS-induced inflammation, and a tendency of decreased COX2 expression. The results were statistically significant only at high concentration. RT-PCR revealed reduced expressions of IL-1β and TNF-α. Conclusions Preconditioning with remifentanil does not affect the viability of amniotic epithelial cells but reduces the expression of factors related to uterine contractions in situations where cell inflammation is induced by LPS, which is an important inducer of preterm labor. These findings provide evidence that remifentanil may inhibit preterm labor in clinical settings.
Collapse
Affiliation(s)
- Cheul-Hong Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| | - Sang-Hoon Lee
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| | - Eun-Jung Kim
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| | - Ji-Hye Ahn
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| | - Eun-Ji Choi
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Ji-Uk Yoon
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - In-Seok Choi
- Department of Dental Anesthesia and Pain Medicine, School of Dentistry, Pusan National University, Dental Research Institute, Yangsan, Korea
| |
Collapse
|
28
|
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019; 11:E2273. [PMID: 31546724 PMCID: PMC6835436 DOI: 10.3390/nu11102273] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The human body cannot store zinc reserves, so a deficiency can arise relatively quickly, e.g., through an improper diet. Severe zinc deficiency is rare, but mild deficiencies are common around the world. Many epidemiological studies have shown a relationship between the zinc content in the diet and the risk of cancer. The anti-cancer effect of zinc is most often associated with its antioxidant properties. However, this is just one of many possibilities, including the influence of zinc on the immune system, transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabilization of the cell structure and membranes. This study presents selected issues regarding the current knowledge of anti-cancer mechanisms involving this element.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | |
Collapse
|
29
|
Generation of stable reporter breast and lung cancer cell lines for NF-κB activation studies. J Biotechnol 2019; 301:79-87. [DOI: 10.1016/j.jbiotec.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 01/09/2023]
|
30
|
Tsai CF, Wu JY, Hsu YW. Protective Effects of Rosmarinic Acid against Selenite-Induced Cataract and Oxidative Damage in Rats. Int J Med Sci 2019; 16:729-740. [PMID: 31217741 PMCID: PMC6566745 DOI: 10.7150/ijms.32222] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/29/2019] [Indexed: 11/23/2022] Open
Abstract
Cataracts are the major cause of blindness and are associated with oxidative damage of the lens. In the present study, the aim was to evaluate the protective effects of rosmarinic acid on selenite-induced cataractogenesis in Sprague-Dawley rat pups. The animals were randomly divided into five groups, each of which consisted of 10 rat pups. Group I served as normal control (vehicle administration). For testing cataract induction, animals of Groups II, III, IV, and V were administered a single subcutaneous injection of sodium selenite (2.46 mg/kg body weight) on postpartum day 12. After sodium selenite intoxication, Group II served as control selenite. From the 11th day through the 17th day, Groups III-V received rosmarinic acid intraperitoneally at doses of 5, 10, and 50 mg/kg, respectively. On postpartum day 24, the rat pups were examined for cataract formation, and the lenses were isolated for further analysis of proteins and oxidative damage indicators. Selenite caused significant (p < 0.05) cataract formation. Through the effects of selenite, the protein expressions of filensin and calpain 2 were reduced, and the calcium concentrations, the level of lipid peroxidation (TBARS), and inflammation indicators (iNOS, COX-2, and NFκB) were upregulated. Furthermore, the protein expression of the antioxidant status (Nrf2, SOD, HO-1, and NQO1), the antioxidant enzymes activities (GSH-Px, GSH-Rd, and catalase), and the GSH levels were downregulated. In contrast, treatment with rosmarinic acid could significantly (p < 0.05) ameliorate cataract formation and oxidative damage in the lens. Moreover, rosmarinic acid administration significantly increased the protein expressions of filensin, calpain 2, Nrf2, SOD, HO-1, and NQO1, the antioxidant enzymes activities, and the GSH level, in addition to reducing the calcium, lipid peroxidation, and inflammation indicators in the lens. Taken together, rosmarinic acid is a prospective anti-cataract agent that probably delays the onset and progression of cataracts induced by sodium selenite.
Collapse
Affiliation(s)
- Chia-Fang Tsai
- Department of Applied Cosmetology, National Tainan Junior College of Nursing, Tainan, Taiwan
- Department of Biotechnology, TransWorld University, Yunlin County, Taiwan
| | - Jia-Ying Wu
- Department of Biotechnology, TransWorld University, Yunlin County, Taiwan
| | - Yu-Wen Hsu
- Department of Optometry, Da-Yeh University, Changhua, Taiwan
| |
Collapse
|
31
|
Wang K, Fang S, Liu Q, Gao J, Wang X, Zhu H, Zhu Z, Ji F, Wu J, Ma Y, Hu L, Shen X, Gao D, Zhu J, Liu P, Zhou H. TGF-β1/p65/MAT2A pathway regulates liver fibrogenesis via intracellular SAM. EBioMedicine 2019; 42:458-469. [PMID: 30926424 PMCID: PMC6491716 DOI: 10.1016/j.ebiom.2019.03.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatic stellate cell (HSC) activation induced by transforming growth factor β1 (TGF-β1) plays a pivotal role in fibrogenesis, while the complex downstream mediators of TGF-β1 in such process are largely unknown. METHODS We performed pharmacoproteomic profiling of the mice liver tissues from control, carbon tetrachloride (CCl4)-induced fibrosis and NPLC0393 administrated groups. The target gene MAT2A was overexpressed or knocked down in vivo by tail vein injection of AAV vectors. We examined NF-κB transcriptional activity on MAT2A promoter via luciferase assay. Intracellular SAM contents were analyzed by LC-MS method. FINDINGS We found that methionine adenosyltransferase 2A (MAT2A) is significantly upregulated in the CCl4-induced fibrosis mice, and application of NPLC0393, a known small molecule inhibitor of TGF-β1 signaling pathway, inhibits the upregulation of MAT2A. Mechanistically, TGF-β1 induces phosphorylation of p65, i.e., activation of NF-κB, thereby promoting mRNA transcription and protein expression of MAT2A and reduces S-adenosylmethionine (SAM) concentration in HSCs. Consistently, in vivo and in vitro knockdown of MAT2A alleviates CCl4- and TGF-β1-induced HSC activation, whereas in vivo overexpression of MAT2A facilitates hepatic fibrosis and abolishes therapeutic effect of NPLC0393. INTERPRETATION This study identifies TGF-β1/p65/MAT2A pathway that is involved in the regulation of intracellular SAM concentration and liver fibrogenesis, suggesting that this pathway is a potential therapeutic target for hepatic fibrosis. FUND: This work was supported by National Natural Science Foundation of China (No. 81500469, 81573873, 81774196 and 31800693), Zhejiang Provincial Natural Science Foundation of China (No. Y15H030004), the National Key Research and Development Program from the Ministry of Science and Technology of China (No. 2017YFC1700200) and the Key Program of National Natural Science Foundation of China (No. 8153000502).
Collapse
Affiliation(s)
- Kuifeng Wang
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, 150 Ximen Road of Linhai City, Taizhou 317000, China; Suzhou GenHouse Pharmaceutical Co., Ltd., 388 Ruoshui Road, Suzhou, Jiangsu 215123, China
| | - Shanhua Fang
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Liu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jing Gao
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Xiaoning Wang
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhenyun Zhu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feihong Ji
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, 150 Ximen Road of Linhai City, Taizhou 317000, China; Suzhou GenHouse Pharmaceutical Co., Ltd., 388 Ruoshui Road, Suzhou, Jiangsu 215123, China
| | - Jiasheng Wu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Yueming Ma
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Lihong Hu
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Xu Shen
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Daming Gao
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiansheng Zhu
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, 150 Ximen Road of Linhai City, Taizhou 317000, China.
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China.
| | - Hu Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
32
|
Cinar I, Sirin B, Aydin P, Toktay E, Cadirci E, Halici I, Halici Z. Ameliorative effect of gossypin against acute lung injury in experimental sepsis model of rats. Life Sci 2019; 221:327-334. [DOI: 10.1016/j.lfs.2019.02.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/08/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
33
|
Maruyama H, Kawakami F, Lwin TT, Imai M, Shamsa F. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells. Biol Pharm Bull 2018; 41:806-810. [PMID: 29709918 DOI: 10.1248/bpb.b17-00892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the inhibitory effects of ferulic acid and caffeic acid on melanin production using a murine B16 melanoma cell line. The mechanisms by which the two acids inhibit melanin production were investigated by evaluating their effects on the activity of tyrosinase, which is involved is the first step of melanin biosynthesis. Ferulic acid showed no toxicity against the melanoma cells at any dose, whereas caffeic acid exerted cellular toxicity at concentrations higher than 0.35 mM. Both ferulic and caffeic acids effectively inhibited melanin production in the B16 melanoma cells. Ferulic acid reduced tyrosinase activity by directly binding to the enzyme, whereas no binding was observed between caffeic acid and tyrosinase. Both ferulic acid and caffeic acid inhibited casein kinase 2 (CK2)-induced phosphorylation of tyrosinase in a dose-dependent manner in vitro. Ferulic acid was found to be a more effective inhibitor of melanin production than caffeic acid; this difference in the inhibitory efficacy between the two substances could be attributable to the difference in their tyrosine-binding activity. Our analysis revealed that both substances also inhibited the CK2-mediated phosphorylation of tyrosinase.
Collapse
Affiliation(s)
- Hiroko Maruyama
- Cytopathology, Graduate School of Medical Sciences, Kitasato University
| | - Fumitaka Kawakami
- Molecular Signal Biology, Graduate School of Medical Sciences, Kitasato University
| | - Thet-Thet Lwin
- Molecular Imaging, Graduate School of Medical Sciences, Kitasato University
| | - Motoki Imai
- Cytopathology, Graduate School of Medical Sciences, Kitasato University
| | - Fazel Shamsa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Teheran University of Medical Sciences
| |
Collapse
|
34
|
Li F, Wang Y, Li Y, Yang H, Wang H. Quantitative Analysis of the Global Proteome in Peripheral Blood Mononuclear Cells from Patients with New-Onset Psoriasis. Proteomics 2018; 18:e1800003. [PMID: 30094923 DOI: 10.1002/pmic.201800003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/07/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Fengdi Li
- Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yacui Wang
- Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yu Li
- Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Hongpu Yang
- Department of Dermatology; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital; Tianjin P. R. China
| | - Hongmei Wang
- Department of Dermatology; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital; Tianjin P. R. China
| |
Collapse
|
35
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
36
|
Roles of NUCKS1 in Diseases: Susceptibility, Potential Biomarker, and Regulatory Mechanisms. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7969068. [PMID: 29619377 PMCID: PMC5830027 DOI: 10.1155/2018/7969068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
Abstract
Nuclear casein kinase and cyclin-dependent kinase substrate 1 (NUCKS1) is a 27 kD chromosomal, highly conserved, and vertebrate-specific protein. NUCKS1 gene encodes a nuclear protein and the conserved regions of NUCKS1 contain several consensus phosphorylation sites for casein kinase II (CK2) and cyclin-dependent kinases (Cdk) and a basic DNA-binding domain. NUCKS1 is similar to the high mobility group (HMG) family which dominates chromatin remodeling and regulates gene transcription. Meanwhile, NUCKS1 is a RAD51 associated protein 1 (RAD51AP1) paralog that is significant for homologous recombination (HR) and genome stability and also a transcriptional regulator of the insulin signaling components. NUCKS1 plays an important role in DNA damage response and metabolism, participates in inflammatory immune response, and correlates with microRNA. Although there is still not enough functional information on NUCKS1, evidences suggest that NUCKS1 can be used as the biomarker of several cancers. This review summarizes the latest research on NUCKS1 about its susceptibility in diseases, expression levels, and regulatory mechanisms as well as the possible functions in reference to diseases.
Collapse
|
37
|
Kovo M, Mevorach-Zussman N, Khatib N, Ginsberg Y, Divon M, Weiner Z, Bar J, Beloosesky R. The Effects of Magnesium Sulfate on the Inflammatory Response of Placentas Perfused With Lipopolysaccharide: Using the Ex Vivo Dual-Perfused Human Single-Cotyledon Model. Reprod Sci 2017; 25:1224-1230. [PMID: 29113582 DOI: 10.1177/1933719117737845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Multiple mechanisms have been proposed for the neuroprotective effects of magnesium sulfate (MgSO4). We aimed to examine the effects of lipopolysaccharide (LPS) and MgSO4 on the placental expression of nuclear factor κ light chain enhancer of activated B cells (NF-κB), interleukin (IL) 6, adrenocorticotropic hormone (ACTH), and nitric oxide synthase (NOS); all known to participate in the inflammatory cascade. METHODS Placentas were obtained and selected cotyledons cannulated and dually perfused ex vivo. Placentas were perfused with 4 perfusion protocols: culture medium (M-199; controls), LPS (1 μg/mL), MgSO4 (6 g/dL), and LPS + MgSO4. Each perfusion experiment continued for 3 hours. Sixteen perfusion experiments were analyzed, 4 separate placentas were studied for each protocol. The protein levels in the perfused cotyledons were studied by Western blot analysis and compared between the groups. Interleukin 6 levels were studied in the maternal and fetal perfusate. RESULTS The expression of NF-κB p65, IL-6, ACTH, and NOS proteins levels were significantly increased in placentas perfused with LPS as compared to placentas perfused with M-199, MgSO4 ( P < .01 for all). Placentas perfused with LPS+ MgSO4 had similar proteins levels as in the controls and MgSO4 groups. Lipopolysaccharide significantly increased IL-6 levels in maternal perfusate. CONCLUSIONS In the human placenta, MgSO4 blocks the increase in the proteins levels of NF-κB, IL-6, ACTH, and NOS in response to inflammatory stimuli. Magnesium sulfate attenuates excessive placental inflammatory response. The decrease in placental ACTH levels following perfusion with MgSO4 may point to an additional non-anti-inflammatory mechanism of MgSO4.
Collapse
Affiliation(s)
- Michal Kovo
- 1 Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noa Mevorach-Zussman
- 1 Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nizar Khatib
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Yuval Ginsberg
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Michael Divon
- 3 Department of Obstetrics and Gynecology, New York University School of Medicine, Lenox Hill Hospital, New York, NY, USA
| | - Zeev Weiner
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Jacob Bar
- 1 Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Beloosesky
- 2 Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
38
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
39
|
Shen H, Shin EM, Lee S, Mathavan S, Koh H, Osato M, Choi H, Tergaonkar V, Korzh V. Ikk2 regulates cytokinesis during vertebrate development. Sci Rep 2017; 7:8094. [PMID: 28808254 PMCID: PMC5556003 DOI: 10.1038/s41598-017-06904-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022] Open
Abstract
NFκB signaling has a pivotal role in regulation of development, innate immunity, and inflammation. Ikk2 is one of the two critical kinases that regulate the NFκB signaling pathway. While the role of Ikk2 in immunity, inflammation and oncogenesis has received attention, an understanding of the role of Ikk2 in vertebrate development has been compounded by the embryonic lethality seen in mice lacking Ikk2. We find that despite abnormal angiogenesis in IKK2 zygotic mutants of zebrafish, the maternal activity of Ikk2 supports embryogenesis and maturation of fertile animals and allows to study the role of IKK2 in development. Maternal-zygotic ikk2 mutants represent the first vertebrates globally devoid of maternal and zygotic Ikk2 activity. They are defective in cell proliferation as evidenced by abnormal cytokinesis, nuclear enlargement and syncytialisation of a significant portion of blastoderm. We further document that reduced phosphorylation of Aurora A by Ikk2 could underlie the basis of these defects in cell division.
Collapse
Affiliation(s)
- Hongyuan Shen
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Eun Myoung Shin
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Cancer Science Institute, NUS, Singapore, Singapore
| | - Serene Lee
- Genome Institute of Singapore, Singapore, Singapore
| | | | - Hiromi Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Motomi Osato
- Cancer Science Institute, NUS, Singapore, Singapore
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology, Singapore, Singapore. .,Department of Biochemistry, NUS, Singapore, Singapore. .,Center for Cancer Biology, Unisa, Adelaide, Australia.
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Singapore, Singapore. .,International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
40
|
Li S, Ning H, Ye Y, Wei W, Guo R, Song Q, Liu L, Liu Y, Na L, Niu Y, Chu X, Feng R, Moustaid-Moussa N, Li Y, Sun C. Increasing extracellular Ca 2+ sensitizes TNF-alpha-induced vascular cell adhesion molecule-1 (VCAM-1) via a TRPC1/ERK1/2/NFκB-dependent pathway in human vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1566-1577. [PMID: 28583863 DOI: 10.1016/j.bbamcr.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/16/2017] [Accepted: 06/01/2017] [Indexed: 12/29/2022]
Abstract
Increasing circulating Ca2+ levels within the normal range has been reported to positively correlate with the incidence of fatal cardiovascular diseases (CVDs). However, limited studies have been able to delineate the potential mechanism(s) linking circulating Ca2+ to CVD. In this study, we exposed primary human umbilical vein endothelial cells (HUVECs) and human umbilical vein cell line (EA.hy926) to different extracellular Ca2+ to mimic the physiological state. Our data revealed that increasing extracellular Ca2+ significantly enhanced susceptibility to tumor necrosis factor (TNF)-alpha-stimulated vascular cell adhesion molecule (VCAM)-1 expression and monocytes adhesion. Knocking-down VCAM-1 by siRNA abolished calcium-induced monocytes adhesion on HUVECs. Follow up mechanistic investigations identified that extracellular Ca2+-increased calcium influx contributed to the activation of VCAM-1. This was mediated via upregulation of transient receptor potential channel (TRPC)1 in a nuclear factor (NF)κB-dependent manner. Most importantly, we found that a novel TRPC1-regulated extracellular signal-regulated kinase 1/2 (ERK1/2) pathway exclusively contributed to calcium-induced NFκB activation. This study provided direct evidence that increasing extracellular Ca2+ enhanced TNF-alpha-induced VCAM-1 activation and monocytes adhesion. Moreover, we identified a novel TRPC1/ERK1/2/NFκB signaling pathway mediating VCAM-1 activation and monocyte adhesion in this pathological process. Our studies indicate that blood calcium levels should be strictly monitored to help prevent CVD, and that TRPC1 might act as a potential target for the treatment and prevention against increased circulating calcium-enhanced CVDs.
Collapse
Affiliation(s)
- Songtao Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China; Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, 150081, China
| | - Hua Ning
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Yaxin Ye
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Rui Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Qing Song
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lei Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Yunyun Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China
| | - Lixin Na
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Yuchun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences and Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China.
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150081, China; Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
41
|
Wang R, Zhang H, Wang Y, Song F, Yuan Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol 2017; 47:126-133. [PMID: 28391159 DOI: 10.1016/j.intimp.2017.03.029] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 01/17/2023]
Abstract
Quercetin, a natural flavonoid, has been used as a nutritional supplement for its anti-inflammatory and antioxidative properties. Quercetin was reported to exhibit a wide range of pharmacological properties, including its effect on anti-hepatic fibrosis. However, the anti-fibrotic mechanisms of quercetin have not been well-characterized to date. This study aimed to investigate the protective effects of quercetin on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and to clarify its anti-hepatofibrotic mechanisms. We demonstrated that quercetin exhibited in-vivo hepatoprotective and anti-fibrogenic effects against CCl4-induced liver injury by improving the pathological manifestations, thereby reducing the activities of serum total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and decreasing the serum levels of hyaluronic acid (HA), laminin (LN), type IV collagen (IV-C) and procollagen III peptide (PIIIP). Furthermore, treatment with quercetin 5-15mg/kg inhibited the activation of NF-κB in a dose-dependent manner via inhibition of IкBα degradation and decreased the expression of p38 MAPK by inhibiting its phosphorylation. Additionally, in a dose-dependent manner, quercetin down-regulated Bax, up-regulated Bcl-2, and subsequently inhibited caspase-3 activation. Moreover, quercetin regulated inflammation factors and hepatic stellate cells (HSCs)-activation markers, such as TNF-α, IL-6, IL-1β, Cox-2, TGF-β, α-SMA, Colla1, Colla2, TIMP-1, MMP-1, and desmin. Taken together, quercetin prevented the progression of liver fibrosis in SD rats. The anti-fibrotic mechanisms of quercetin might be associated with its ability to regulate NF-кB/IкBα, p38 MAPK anti-inflammation signaling pathways to inhibit inflammation, and regulate Bcl-2/Bax anti-apoptosis signaling pathway to prevent liver cell apoptosis.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, 536 Changle Road, Shanghai 200080, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
42
|
Meng Q, Cooney M, Yepuri N, Cooney RN. L-arginine attenuates Interleukin-1β (IL-1β) induced Nuclear Factor Kappa-Beta (NF-κB) activation in Caco-2 cells. PLoS One 2017; 12:e0174441. [PMID: 28334039 PMCID: PMC5363947 DOI: 10.1371/journal.pone.0174441] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
Background Specific nutrients like L-arginine (L-Arg) ameliorate intestinal inflammation, however the exact mechanisms of this effect are unclear. We hypothesized the anti-inflammatory effects of L-Arg require active transport and metabolism by inducible nitric oxide synthase (iNOS) to generate nitric oxide (NO). To test this hypothesis we examined the effects of L-Arg, L-Arg transport activity, NO production and iNOS inhibitor on IL-1β-mediated NF-κB-activation in Caco-2 cells. Methods Caco-2 cells were cultured, transfected with a NF-κB promoter luciferase vector, incubated ± L-Arg, ± IL-1β and luciferase activity was measured. Using siRNA we inhibited the L-Arg cationic amino acid transporter system y+ (CAT1) expression and examined its effects on L-Arg transport activity and IL-1β-mediated NF-κB-activation. Finally, the effects of sodium nitroprusside (SNP, a NO donor) and Nω-nitro-L-arginine (NNA, an iNOS inhibitor) on IL-1β-mediated NF-κB-activation were examined. Results IL-1β increased NF-κB luciferase activity (8-fold) and NF-κB expression (mRNA and protein), both of these were significantly decreased by L-Arg. System y+ CAT1 siRNA decreased CAT1 expression, L-Arg transport activity and attenuated the inhibitory effects of L-Arg on NF- κB activity. SNP attenuated the IL-1β-induced increase in NF-κB luciferase activity and expression, whereas NNA diminished the inhibitory effects of L-Arg on IL-1β-inducible NF- κB luciferase activity. Conclusion The inhibitory effects of L-Arg on IL-1β-mediated NF-κB-activation in Caco-2 cells involve L-Arg transport activity by CAT1, regulation of IL-1β-mediated increases in NF-κB expression, changes in iNOS expression and NO production. Our data suggest the inhibitory effects of L-Arg on NF-κB activation are mediated in part by iNOS since SNP preserves and NNA attenuates the effects of L-Arg on IL-1β-mediated NF-κB-activation and expression.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Mitchell Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Natesh Yepuri
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Robert N. Cooney
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Karamese M, Erol HS, Albayrak M, Findik Guvendi G, Aydin E, Aksak Karamese S. Anti-oxidant and anti-inflammatory effects of apigenin in a rat model of sepsis: an immunological, biochemical, and histopathological study. Immunopharmacol Immunotoxicol 2017; 38:228-37. [PMID: 27144896 DOI: 10.3109/08923973.2016.1173058] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We hypothesize that apigenin may inhibit some cellular process of sepsis-induced spleen injury and simultaneously improve inflammation and oxidative stress. Therefore, the aim of this study was to investigate the potential protective effects of apigenin in a polymicrobial sepsis rat model of by cecal ligation and puncture. MATERIALS AND METHODS 64 female Wistar albino rats were divided into 8 groups. The pro-inflammatory (tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta) and anti-inflammatory (tumor growth factor-beta and interleukin-10) cytokine levels were measured by enzyme-linked immunosorbent assay. CD3, CD68, and nuclear factor kappa B (NF-κB) positivity rates were detected by immunohistochemical methods. Oxidative stress parameters were measured by tissue biochemistry. RESULTS Sepsis caused a significant increase in TNF-alpha, IL-1-beta, IL-6, and TGF-beta levels whereas it reduced IL-10 level. Additionally, it led to an increase in CD3, CD68, and NF-κB positivity rates as well as oxidative stress parameters levels. However, apigenin inhibited the inflammation process, increased the IL-10 level and normalized the oxidative stress parameters. DISCUSSION AND CONCLUSION Pretreatment with apigenin results in a significant reduction in the amount of inflammatory cells. The beneficial effect of apigenin on spleen injury also involved inhibition of NF-κB pathway, suppression of proinflammatory cytokines, and induction of anti-inflammatory cytokine production. Additionally, it led to a decrease in oxidative stress in spleen tissue. Taking everything into account, apigenin may be an alternative therapeutic option for prevention of sepsis-induced organ.
Collapse
Affiliation(s)
- Murat Karamese
- a Department of Microbiology, Faculty of Medicine , Kafkas University , Kars , Turkey
| | - Huseyin Serkan Erol
- b Department of Biochemistry, Faculty of Veterinary Medicine , Ataturk University , Erzurum , Turkey
| | - Mevlut Albayrak
- c Department of Pathology, Faculty of Medicine , Ataturk University , Erzurum , Turkey
| | | | - Emsal Aydin
- e Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine , Kafkas University , Kars , Turkey
| | - Selina Aksak Karamese
- f Department of Histology and Embryology, Faculty of Medicine , Kafkas University , Kars , Turkey
| |
Collapse
|
44
|
Zhakeer Z, Hadeer M, Tuerxun Z, Tuerxun K. Bufalin Inhibits the Inflammatory Effects in Asthmatic Mice through the Suppression of Nuclear Factor-Kappa B Activity. Pharmacology 2017; 99:179-187. [PMID: 28049205 DOI: 10.1159/000450754] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023]
Abstract
Asthma is an inflammatory airway disease characterized by increased infiltration of inflammatory cells into the airways and poor respiratory function. Bufalin is one of the biological ingredients obtained from Chansu. Bufalin was found to possess various pharmacological properties including anti-inflammatory activities. However, the effect of bufalin treatment on asthma has not yet been reported. Therefore, this study aimed to investigate the inhibitory effect of bufalin on asthmatic response in a murine model. A mouse asthma model was developed by ovalbumin (OVA) sensitization and challenge in the BALB/c mice. OVA-specific serum IgE and the levels of interleukin (IL)-4, IL-5, and IL-13 in bronchoalveolar lavage fluid (BALF) were determined by an enzyme-linked immunosorbent assay. Recruitment of inflammatory cells into BALF or lung tissues, and goblet cell hyperplasia were evaluated by histological staining. The expression levels of inhibitory subunit of nuclear factor-kappa B (NF-κB) alpha (IκBα) and phosphorylated p65 protein were measured by Western blot analyses. The results demonstrated that bufalin (5 and 10 mg/kg) markedly attenuated hyperresponsiveness, and strongly suppressed the OVA-induced increases of total inflammatory cells including macrophages, eosinophils, lymphocytes, and neutrophils in BALF. The levels of IL-4, IL-5, and IL-13 in BALF and OVA-specific IgE in serum were significantly reduced by bufalin. Histological staining of lung tissues showed that bufalin reduced inflammatory cell infiltration and goblet cell hyperplasia. The results of Western blotting indicated that bufalin suppressed the IκBα degradation from NF-κB, and reduced the level of phosphorylated p65 protein in the lung tissues. These data suggest that bufalin can exert its anti-inflammatory effects possibly through the inhibition of the NF-κB activity.
Collapse
Affiliation(s)
- Zibierguli Zhakeer
- Respiratory Function Test Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | | | | |
Collapse
|
45
|
Ningegowda R, Shivananju NS, Rajendran P, Basappa, Rangappa KS, Chinnathambi A, Li F, Achar RR, Shanmugam MK, Bist P, Alharbi SA, Lim LHK, Sethi G, Priya BS. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade. Apoptosis 2016; 22:145-157. [DOI: 10.1007/s10495-016-1312-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Maternal magnesium sulfate fetal neuroprotective effects to the fetus: inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation in a rodent model. Am J Obstet Gynecol 2016; 215:382.e1-6. [PMID: 27018467 DOI: 10.1016/j.ajog.2016.03.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Maternal magnesium administration has been shown to protect the preterm fetus from white- and gray-matter injury, although the mechanism is unknown. OBJECTIVE The purpose of the study is to test the following hypotheses: (1) maternal infections/inflammation activate fetal neuronal N-methyl-D-aspartate receptors that up-regulate neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells pathways; and (2) maternal magnesium sulfate attenuates fetal brain neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation through N-methyl-D-aspartate receptors. STUDY DESIGN Pregnant rats at embryonic day 16 and embryonic day 18 (n = 6, 48 total) received injections of intraperitoneal lipopolysaccharide 500 μg/kg or saline at time 0. Dams were randomized for treatment with subcutaneous magnesium sulfate (270 mg/kg) or saline for 2 hours prior to and following lipopolysaccharide/saline injections. At 4 hours after lipopolysaccharide administration, fetal brains were collected from the 4 treatment groups (lipopolysaccharide/saline, lipopolysaccharide/magnesium sulfate, saline/magnesium sulfate, saline/saline), and phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and chemokine (C-C motif) ligand 2 protein levels were determined by Western blot. An additional group of pregnant rats (n = 5) received N-methyl-D-aspartate-receptor antagonist following the lipopolysaccharide injection to study magnesium sulfate protective mechanism. RESULTS Lipopolysaccharide (lipopolysaccharide/saline) significantly increased fetal brain phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells p65, and chemokine (C-C motif) ligand 2 protein levels compared to the saline/saline group at both embryonic day 16 (phosphoneuronal nitric oxide synthase 0.23 ± 0.01 vs 0.11 ± 0.01 U; nuclear factor kappa-light-chain-enhancer of activated B cells 0.24 ± 0.01 vs 0.14 ± 0.01 U; chemokine (C-C motif) ligand 2 0.28 ± 0.01 vs .01 ± 0.01 U) and embryonic day 18 (phosphoneuronal nitric oxide synthase 0.28 ± 0.01 vs 0.12 ± 0.01 U; nuclear factor kappa-light-chain-enhancer of activated B cells 0.12 ± 0.01 vs 0.1 ± 0.01 U; chemokine (C-C motif) ligand 2 0.27 ± 0.01 vs 0.11 ± 0.01 U). Magnesium sulfate treatment to lipopolysaccharide dams (lipopolysaccharide/magnesium sulfate) significantly decreased fetal brain phosphoneuronal nitric oxide synthase, nuclear factor kappa-light-chain-enhancer of activated B cells, and chemokine (C-C motif) ligand 2 protein levels compared to lipopolysaccharide/saline dams at both embryonic day 16 (neuronal nitric oxide synthase 0.17 ± 0.02 U; nuclear factor kappa-light-chain-enhancer of activated B cells 0.17 ± 0.03 U; chemokine (C-C motif) ligand 2 0.18 ± 0.01 U) and embryonic day 18 (phosphoneuronal nitric oxide synthase 0.1 ± 0.01 U; nuclear factor kappa-light-chain-enhancer of activated B cells 0.09 ± 0.01 U; chemokine (C-C motif) ligand 2 0.21 ± 0.01 U). Notably, maternal lipopolysaccharide at embryonic day 16 activated nuclear factor kappa-light-chain-enhancer of activated B cells twice as often compared to dams induced at embryonic day 18. N-methyl-D-aspartate-receptor antagonist decreased fetal brain phosphoneuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells levels comparable to magnesium sulfate. CONCLUSION Lipopolysaccharide-simulated inflammation during pregnancy may cause brain injury through activation of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells pathways and, potentially, production of excitotoxic nitric oxide and inflammatory mediators. The increased susceptibility to brain injury in preterm fetuses may be due to enhanced nuclear factor kappa-light-chain-enhancer of activated B cells activation. Magnesium sulfate protective effects may be secondary, in part, to inhibition of neuronal nitric oxide synthase and nuclear factor kappa-light-chain-enhancer of activated B cells activation and decrease proinflammatory cytokine production through blocking nuclear factor kappa-light-chain-enhancer of activated B cells receptors.
Collapse
|
47
|
Rolny IS, Tiscornia I, Racedo SM, Pérez PF, Bollati-Fogolín M. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus. Benef Microbes 2016; 7:749-760. [PMID: 27459335 DOI: 10.3920/bm2015.0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection.
Collapse
Affiliation(s)
- I S Rolny
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina
| | - I Tiscornia
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay.,3 Laboratorio de Biotecnología, Facultad de Ingeniería-Universidad ORT Uruguay, Cuareim 1451, 11100 Montevideo, Uruguay
| | - S M Racedo
- 4 Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria
| | - P F Pérez
- 1 Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900AJI La Plata, Argentina.,5 Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Calle 47 y 116, B1900AJI La Plata, Argentina
| | - M Bollati-Fogolín
- 2 Cell Biology Unit, Institut Pasteur de Montevideo, Calle Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
48
|
Ta MHT, Schwensen KG, Liuwantara D, Huso DL, Watnick T, Rangan GK. Constitutive renal Rel/nuclear factor-κB expression in Lewis polycystic kidney disease rats. World J Nephrol 2016; 5:339-357. [PMID: 27458563 PMCID: PMC4936341 DOI: 10.5527/wjn.v5.i4.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/31/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the temporal expression and pattern of Rel/nuclear factor (NF)-κB proteins in renal tissue in polycystic kidney disease (PKD).
METHODS: The renal expression of Rel/NF-κB proteins was determined by immunohistochemistry, immunofluorescence and immunoblot analysis in Lewis polycystic kidney rats (LPK, a genetic ortholog of human nephronopthsis-9) from postnatal weeks 3 to 20. At each timepoint, renal disease progression and the mRNA expression of NF-κB-dependent genes (TNFα and CCL2) were determined. NF-κB was also histologically assessed in human PKD tissue.
RESULTS: Progressive kidney enlargement in LPK rats was accompanied by increased renal cell proliferation and interstitial monocyte accumulation (peaking at weeks 3 and 10 respectively), and progressive interstitial fibrosis (with α smooth muscle actin and Sirius Red deposition significantly increased compared to Lewis kidneys from weeks 3 to 6 onwards). Rel/NF-κB proteins (phosphorylated-p105, p65, p50, c-Rel and RelB) were expressed in cystic epithelial cells (CECs) of LPK kidneys as early as postnatal week 3 and sustained until late-stage disease at week 20. From weeks 10 to 20, nuclear p65, p50, RelB and cytoplasmic IκBα protein levels, and TNFα and CCL2 expression, were upregulated in LPK compared to Lewis kidneys. NF-κB proteins were consistently expressed in CECs of human PKD. The DNA damage marker γ-H2AX was also identified in the CECs of LPK and human polycystic kidneys.
CONCLUSION: Several NF-κB proteins are consistently expressed in CECs in human and experimental PKD. These data suggest that the upregulation of both the canonical and non-canonical pathways of NF-κB signaling may be a constitutive and early pathological feature of cystic renal diseases.
Collapse
|
49
|
Treatment of adult and pediatric high-grade gliomas with Withaferin A: antitumor mechanisms and future perspectives. J Nat Med 2016; 71:16-26. [DOI: 10.1007/s11418-016-1020-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/11/2016] [Indexed: 12/18/2022]
|
50
|
Lu Z, Wu H, Lin X, Liu B, Lin C, Zheng L, Zhao J. Chondro-Protective and Antiarthritic Effects of Sulfonamido-Based Gallate-ZXHA-TC in Vitro and in Vivo. ACS Chem Biol 2016; 11:1613-23. [PMID: 27017891 DOI: 10.1021/acschembio.6b00051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of gallic acid (GA) on arthritis are limited by weak antioxidant effects and inferior biological properties of GA. We recently described a new series of synthesized GA derivatives by coupling with sulfonamides. Among these analogs, a novel compound synthesized from GA and sulfadimoxine (SDM) named ZXHA-TC exhibited the most robust anti-inflammatory potential. In this current study, the chondro-protective and antiarthritic effects of ZXHA-TC were investigated both in vitro and in vivo. In the in vitro study, ZXHA-TC exerted chondro-protective effects as evidenced by promoting cell proliferation and the maintaining of the phenotype of articular chondrocytes treated with interleukin-1-beta (IL-1β). The potential of ZXHA-TC to slow the progress of osteoarthritis (OA) was suggested by a reduction in matrix metalloproteinases (MMPs) and the up-regulation of the tissue inhibitor of metalloproteinase-1 (TIMP-1). In a rabbit anterior cruciate ligament transaction (ACLT) model of OA, ZXHA-TC exerted a protective effect on arthritis as assessed by macroscopic scores, histological, qRT-PCR, and immunohistochemical analyses. The effects of ZXHA-TC on inhibiting the production of inflammatory mediators in OA may be mediated partly by the suppression of the PI3K/AKT pathway or MAPK cascades, leading to NF-κB inactivation. Thus, this study indicates that ZXHA-TC may be developed as a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Zhenhui Lu
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Huayu Wu
- Department of Cell Biology & Genetics, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiao Lin
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
- School of
Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Buming Liu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, 530022, China
| | - Cuiwu Lin
- School of
Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Li Zheng
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
- The
Medical and Scientific Research Center, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi
Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|