1
|
An W, Huang Z, Jiang W, Du F, Xu C, Shen Q, Yang N, Zhou J, Li L, Yu C. A highly specific two-photon fluorescent probe for real-time monitoring of acetylcholinesterase in neurogenic disorders in vivo. Anal Chim Acta 2024; 1331:343309. [PMID: 39532407 DOI: 10.1016/j.aca.2024.343309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024]
Abstract
Acetylcholinesterase (AChE) hydrolyses choline into thiocholine, which is essential for cholinergic neurons to revert to their resting state following activation. Abnormal changes in AChE activity can directly affect nervous system function. Thus, the specific detection of AChE activity is urgently needed for elucidating the function of the nervous system and diagnosing AChE-related diseases. Current methods for detecting AChE activity have several limitations, including strong background interference and poor tissue penetration. Thus, we designed and synthesized a two-photon (TP) excited fluorescent probe, WZ-AChE, for the specific detection of AChE. Briefly, a carbamate bond was chosen to specifically recognize AChE, which can also be cleaved by AChE. The product, WZ, released strong deep red fluorescence signal under TP excitation at 800 nm. Our results showed that WZ-AChE can detect AChE activity in PC12 cells with both superior sensitivity and selectivity. In addition, we successfully applied WZ-AChE to a C. elegans Parkinson's disease (PD) model and a mouse model of depression. The findings revealed that AChE activity was greater in both disease models than in the control group. To summarize, a novel tool was created to investigate the mechanisms underlying PD and depression.
Collapse
Affiliation(s)
- Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China
| | - Wei Jiang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China
| | - Fangning Du
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China
| | - Chenfeng Xu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China.
| | - Jia Zhou
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China; The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Pu-zhu Road, Nanjing, 211816, China.
| |
Collapse
|
2
|
Guimarães ATB, Charlie-Silva I, Malafaia G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124833. [PMID: 33352420 DOI: 10.1016/j.jhazmat.2020.124833] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023]
Abstract
We aim at evaluating the toxicity of naturally-aged polystyrene microplastics (MPs) in Danio rerio at intermediate development stage. Animal models were stactically exposed to 4 × 104 and 4 × 106 microparticles/m3 for five days - this concentration is environmentally relevant. We evaluated MP's impact on animals' nutritional status and REDOX balance, as well as its potential neuro- and cytotoxic action on them. Initially, MPs did not induce any change in total carbohydrates, triglycerides and total cholesterol levels. MP accumulation was associated with oxidative stress induction, which was inferred by the nitrite and thiobarbituric acid reactive substances levels. Furthermore, we observed that such stress was not counterbalanced by increase in the assessed enzymatic (total glutathione, catalase and superoxide dismutase) and non-enzymatic (total thiols, reduced glutathione and DPPH radical scavenging activity) antioxidants. The association between high acetylcholinesterase activity and numerical changes in neuroblasts distributed on animals' body surface confirmed MP's neurotoxic potential. MP's ability to induce apoptosis and necrosis processes in animals' erythrocytes suggested its cytotoxic action; therefore, the present study is pioneer in providing insight on how MPs can affect young freshwater fish at environmental concentrations. It is essential knowing the magnitude of these pollutants' impact on the ichthyofauna.
Collapse
Affiliation(s)
- Abraão Tiago Batista Guimarães
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Goiás, Brazil
| | - Guilherme Malafaia
- Post-graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, Goiás, Brazil; Biological Research Laboratory, Post-graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute - Urata Campus, Goiás, Brazil.
| |
Collapse
|
3
|
Bai QK, Zhao ZG. Isolation and neuronal apoptosis inhibitory property of bacoside-A3 via downregulation of β-amyloid induced inflammatory response. Biotechnol Appl Biochem 2021; 69:726-734. [PMID: 33687113 DOI: 10.1002/bab.2147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease is one of the neurodegenerative disorders caused by neuronal degeneration and apoptosis in brain. Bacoside A and B isolated from the Bacopa monniera plant are responsible for cognitive effects. These compounds repair damaged neurons by promoting activity of kinases, synaptic activity restoration, and improvement of nerve transmission. The present study explored the effect of bacoside-A3 on β-amyloid-induced reduction of U87MG cell viability, generation of oxidative radicals, and activation of nuclear factor-κB. The U87MG cells were stimulated with β-amyloid (10 μM) after 24 h of bacoside-A3 pretreatment or without pretreatment to induce characteristics of Alzheimer disease in vitro. Sulforhodamine B (SRB) assay was used to count viable cells and ELISA kit for analysis of PGE2 secretion. The pretreatment with bacoside-A3 prevented β-amyloid-mediated suppression of U87MG cell proliferation. Pretreatment of U87MG cells with bacoside-A3 prior to β-amyloid stimulation suppressed generation of ROS in a concentration-based manner. The β-amyloid-mediated formation of iNOS in U87MG cells was suppressed by bacoside-A3 in a dose-based manner. The β-amyloid-mediated PGE2 secretion was suppressed by bacoside-A3 pretreatment in U87MG cells in the dose-based manner. The overexpression of COX-2 by β-amyloid stimulation was suppressed in bacoside-A pretreated cells in the dose-based manner. The bacoside-A3 pretreatment prevented nuclear translocation of NF-κB in U87MG cells in the dose-based manner. In summary, bacoside-A3 prevented β-amyloid-mediated suppression of U87MG cell viability, inhibited generation of oxidative radicals, PGE2, and synthesis of iNOS. Therefore, bacoside-A3 has therapeutic potential for Alzheimer disease and further in vivo studies need to be performed.
Collapse
Affiliation(s)
- Qing-Ke Bai
- Department of Neurology, Pudong People's Hospital, Shanghai, China
| | - Zhen-Guo Zhao
- Department of Radiology, Pudong People's Hospital, Shanghai, China
| |
Collapse
|
4
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
5
|
Al Dera H, Alassiri M, Eleawa SM, AlKhateeb MA, Hussein AM, Dallak M, Sakr HF, Alqahtani S, Khalil MA. Melatonin Improves Memory Deficits in Rats with Cerebral Hypoperfusion, Possibly, Through Decreasing the Expression of Small-Conductance Ca 2+-Activated K + Channels. Neurochem Res 2019; 44:1851-1868. [PMID: 31187398 DOI: 10.1007/s11064-019-02820-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/02/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
This study investigated the expression pattern, regulation of expression, and the role of hippocampal small-conductance Ca2+-activated K+ (SK) channels in memory deficits after cerebral hypoperfusion (CHP) with or without melatonin treatment, in rats. Adults male Wistar rats (n = 20/group) were divided into (1) a sham (2) a sham + melatonin (3) a two-vessel occlusion (2-VO) model, and (4) a 2-VO + melatonin. Melatonin was administered (i.p.) to all rats at a daily dose of 10 mg kg-1 for 7 days starting at the time of 2-VO-induction. In contrast to 2-VO rats, melatonin increased the latency of the passive avoidance learning test and decreased time to find the hidden platform in Water Morris Test in all tested rats. In addition, it concomitantly downregulated SK1, SK2, and SK3 channels, downregulated mRNA levels of TNFα and IL-1β, enhanced BDNF levels and activity of PKA levels, and restored the levels of cholinergic markers in the hippocampi of the treated-rats. Mechanistically, melatonin significantly prevented CHP-induced activation of ERK1/2, JNK, and P38 MAPK at least by inhibiting ROS generation and enhancing the total antioxidant potential. In cultured hypoxic hippocampal neurons, individual blockage of MAPK signaling by the MEK1/2 inhibitor (U0126), but not by the P38 inhibitor (SB203580) or JNK inhibitor (SP600125), completely prevented the upregulation of all three kinds of SK channels. These data clearly confirm that upregulation of SK channels plays a role in CHP-induced memory loss and indicate that melatonin reverses memory deficits after CHP in rats, at least by, downregulation of SK1, SK2, and SK3 channels in their hippocampi.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia. .,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia.
| | - Mohammed Alassiri
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, Dept., PAAET, Adailiyah, Kuwait
| | - Mahmoud A AlKhateeb
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad Dallak
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hussein F Sakr
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine At King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Kingdom of Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Mohammad A Khalil
- Department of Basic Medical Sciences, College of Medicine, King Fahid Medical City, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Hinojosa MG, Prieto AI, Gutiérrez-Praena D, Moreno FJ, Cameán AM, Jos A. Neurotoxic assessment of Microcystin-LR, cylindrospermopsin and their combination on the human neuroblastoma SH-SY5Y cell line. CHEMOSPHERE 2019; 224:751-764. [PMID: 30851527 DOI: 10.1016/j.chemosphere.2019.02.173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN) are produced by cyanobacteria. Although being considered as a hepatotoxin and a cytotoxin, respectively, different studies have revealed neurotoxic properties for both of them. The aim of the present work was to study their cytotoxic effects, alone and in combination, in the SH-SY5Y cell line. In addition, toxicity mechanisms such as oxidative stress and acetylcholinesterase (AChE) activity, and morphological studies were carried out. Results showed a cytotoxic response of the cells after their exposure to 0-100 μg/mL of MC-LR or 0-10 μg/mL CYN in both differentiated and undifferentiated cells. Thus, CYN resulted to be more toxic than MC-LR. Respect to their combination, a higher cytotoxic effect than the toxins alone in the case of undifferentiated cells, and almost a similar response to the presented by MC-LR in differentiated cells were observed. However, after analyzing this data with the isobolograms method, an antagonistic effect was mainly obtained. The oxidative stress study only showed an affectation of glutathione levels at the highest concentrations assayed of MC-LR and the combination in the undifferentiated cells. A significant increase in the AChE activity was observed after exposure to MC-LR in undifferentiated cells, and after exposure to the combination of both cyanotoxins on differentiated cells. However, CYN decreased the AChE activity only on differentiated cultures. Finally, the morphological study revealed different signs of cellular affectation, with apoptotic processes at all the concentrations assayed. Therefore, both cyanotoxins isolated and in combination, have demonstrated to cause neurotoxic effects in the SH-SY5Y cell line.
Collapse
Affiliation(s)
- M G Hinojosa
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - A I Prieto
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - D Gutiérrez-Praena
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain.
| | - F J Moreno
- Área de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - A M Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| | - A Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González 2, 41012, Sevilla, Spain
| |
Collapse
|
7
|
Chen BH, Park JH, Kim DW, Park J, Choi SY, Kim IH, Cho JH, Lee TK, Lee JC, Lee CH, Hwang IK, Kim YM, Yan BC, Kang IJ, Shin BN, Lee YL, Shin MC, Cho JH, Lee YJ, Jeon YH, Won MH, Ahn JH. Melatonin Improves Cognitive Deficits via Restoration of Cholinergic Dysfunction in a Mouse Model of Scopolamine-Induced Amnesia. ACS Chem Neurosci 2018; 9:2016-2024. [PMID: 28901737 DOI: 10.1021/acschemneuro.7b00278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Melatonin is known to improve cognitive deficits, and its functions have been studied in various disease models, including Alzheimer's disease. In this study, we investigated effects of melatonin on cognition and the cholinergic system of the septum and hippocampus in a mouse model of scopolamine-induced amnesia. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were administered intraperitoneally to mice for 2 and 4 weeks. The Morris water maze and passive avoidance tests revealed that both treatments of scopolamine significantly impaired spatial learning and memory; however, 2- and 4-week melatonin treatments significantly improved spatial learning and memory. In addition, scopolamine treatments significantly decreased protein levels and immunoreactivities of choline acetyltransferase (ChAT), high-affinity choline transporter (CHT), vesicular acetylcholine transporter (VAChT), and muscarinic acetylcholine receptor M1 (M1R) in the septum and hippocampus. However, the treatments with melatonin resulted in increased ChAT-, CHT-, VAChT-, and M1R-immunoreactivities and their protein levels in the septum and hippocampus. Our results demonstrate that melatonin treatment is effective in improving the cognitive deficits via restoration of the cholinergic system in the septum and hippocampus of a mouse model of scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory
of Integrated Traditional Chinese and Western Medicine for Prevention
and Treatment of Senile Diseases, Yangzhou 225001, People’s Republic of China
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 24252, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 24252, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 04401, South Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon 24289, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
8
|
Fragoso-Medina J, Rodriguez G, Zarain-Herzberg A. The CCAAT box in the proximal SERCA2 gene promoter regulates basal and stress-induced transcription in cardiomyocytes. Mol Cell Biochem 2017; 442:19-28. [DOI: 10.1007/s11010-017-3189-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
|
9
|
You H, Gobert GN, Du X, Pali G, Cai P, Jones MK, McManus DP. Functional characterisation of Schistosoma japonicum acetylcholinesterase. Parasit Vectors 2016; 9:328. [PMID: 27283196 PMCID: PMC4901427 DOI: 10.1186/s13071-016-1615-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetylcholinesterase (AChE) is an important metabolic enzyme of schistosomes present in the musculature and on the surface of the blood stage where it has been implicated in the modulation of glucose scavenging from mammalian host blood. As both a target for the antischistosomal drug metrifonate and as a potential vaccine candidate, AChE has been characterised in the schistosome species Schistosoma mansoni, S. haematobium and S. bovis, but not in S. japonicum. Recently, using a schistosome protein microarray, a predicted S. japonicum acetylcholinesterase precursor was significantly targeted by protective IgG1 immune responses in S. haematobium-exposed individuals that had acquired drug-induced resistance to schistosomiasis after praziquantel treatment. RESULTS We report the full-length cDNA sequence and describe phylogenetic and molecular structural analysis to facilitate understanding of the biological function of AChE (SjAChE) in S. japonicum. The protein has high sequence identity (88 %) with the AChEs in S. mansoni, S. haematobium and S. bovis and has 25 % sequence similarity with human AChE, suggestive of a highly specialised role for the enzyme in both parasite and host. We immunolocalized SjAChE and demonstrated its presence on the surface of adult worms and schistosomula, as well as its lower expression in parenchymal regions. The relatively abundance of AChE activity (90 %) present on the surface of adult S. japonicum when compared with that reported in other schistosomes suggests SjAChE may be a more effective drug or immunological target against this species. We also demonstrate that the classical inhibitor of AChE, BW285c51, inhibited AChE activity in tegumental extracts of paired worms, single males and single females by 59, 22 and 50 %, respectively, after 24 h incubation with 200 μM BW284c51. CONCLUSIONS These results build on previous studies in other schistosome species indicating major differences in the enzyme between parasite and mammalian host, and provide further support for the design of an anti-schistosome intervention targeting AChE.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Xiaofeng Du
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gabor Pali
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact 2016; 259:257-265. [PMID: 27083142 DOI: 10.1016/j.cbi.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
The cholinergic system, comprising acetylcholine, the proteins responsible for acetylcholine synthesis and release, acetylcholine receptors and cholinesterases, is expressed by most human cell types. Acetylcholine is a neurotransmitter, but also a local signalling molecule which regulates basic cell functions, and cholinergic responses are involved in cell proliferation and apoptosis. So, activation of nicotinic and muscarinic receptors has a proliferative and anti-apoptotic effect in many cells. The content of choline acetyltransferase, acetylcholine receptors and cholinesterases is altered in many tumours, and cholinesterase content correlates with patient survival in some cancers. During apoptosis, acetylcholinesterase is induced and appears in the nuclei. Acetylcholinesterase participates in the regulation of cell proliferation and apoptosis through hydrolysis of acetylcholine and by other catalytic and non catalytic mechanisms, in a variant-specific manner. This review gathers information on the role of cholinergic system and specially acetylcholinesterase in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F J Campoy
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain.
| | - C J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - E Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - M F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - J Cabezas-Herrera
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| | - S Nieto-Cerón
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| |
Collapse
|
11
|
Cui Z, Sheng Z, Yan X, Cao Z, Tang K. In Silico Insight into Potential Anti-Alzheimer's Disease Mechanisms of Icariin. Int J Mol Sci 2016; 17:ijms17010113. [PMID: 26784184 PMCID: PMC4730354 DOI: 10.3390/ijms17010113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
Herbal compounds that have notable therapeutic effect upon Alzheimer's disease (AD) have frequently been found, despite the recent failure of late-stage clinical drugs. Icariin, which is isolated from Epimedium brevicornum, is widely reported to exhibit significant anti-AD effects in in vitro and in vivo studies. However, the molecular mechanism remains thus far unclear. In this work, the anti-AD mechanisms of icariin were investigated at a target network level assisted by an in silico target identification program (INVDOCK). The results suggested that the anti-AD effects of icariin may be contributed by: attenuation of hyperphosphorylation of tau protein, anti-inflammation and regulation of Ca2+ homeostasis. Our results may provide assistance in understanding the molecular mechanism and further developing icariin into promising anti-AD agents.
Collapse
Affiliation(s)
- Zhijie Cui
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhen Sheng
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Xinmiao Yan
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiwei Cao
- School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Kailin Tang
- Advanced Institute of Translational Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
12
|
Yi YM, Cai L, Shao Y, Xu M, Yi JL. The protective role of tacrine and donepezil in the retina of acetylcholinesterase knockout mice. Int J Ophthalmol 2015; 8:884-90. [PMID: 26558196 DOI: 10.3980/j.issn.2222-3959.2015.05.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
AIM To determine the effect of different concentrations of the acetylcholinesterase (AChE) inhibitors tacrine and donepezil on retinal protection in AChE(+/-) mice (AChE knockout mice) of various ages. METHODS Cultured ARPE-19 cells were treated with hydrogen peroxide (H2O2) at concentrations of 0, 250, 500, 1000 and 2000 µmol/L and protein levels were measured using Western blot. Intraperitoneal injections of tacrine and donepezil (0.1 mg/mL, 0.2 mg/mL and 0.4 mg/mL) were respectively given to AChE(+/-) mice aged 2mo and 4mo and wild-type S129 mice for 7d; phosphate buffered saline (PBS) was administered to the control group. The mice were sacrificed after 30d by in vitro cardiac perfusion and retinal samples were taken. AChE-deficient mice were identified by polymerase chain reaction (PCR) analysis using specific genotyping protocols obtained from the Jackson Laboratory website. H&E staining, immunofluorescence and Western blot were performed to observe AChE protein expression changes in the retinal pigment epithelial (RPE) cell layer. RESULTS Different concentrations of H2O2 induced AChE expression during RPE cell apoptosis. AChE(+/-) mice retina were thinner than those in wild-type mice (P<0.05); the retinal structure was still intact at 2mo but became thinner with increasing age (P<0.05); furthermore, AChE(+/-) mice developed more slowly than wild-type mice (P<0.05). Increased concentrations of tacrine and donepezil did not significantly improve the protection of the retina function and morphology (P>0.05). CONCLUSION In vivo, tacrine and donepezil can inhibit the expression of AChE; the decrease of AChE expression in the retina is beneficial for the development of the retina.
Collapse
Affiliation(s)
- Yun-Min Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Li Cai
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Man Xu
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
13
|
Xi HJ, Wu RP, Liu JJ, Zhang LJ, Li ZS. Role of acetylcholinesterase in lung cancer. Thorac Cancer 2015; 6:390-8. [PMID: 26273392 PMCID: PMC4511315 DOI: 10.1111/1759-7714.12249] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/07/2015] [Indexed: 12/14/2022] Open
Abstract
Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy.
Collapse
Affiliation(s)
- Hui-Jun Xi
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Ren-Pei Wu
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Jing-Jing Liu
- School of Nursing, Second Military Medical University Shanghai, China
| | - Ling-Juan Zhang
- Department of Nursing, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Zhao-Shen Li
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China ; Department of Gastroenterology, Changhai Hospital, Second Military Medical University Shanghai, China
| |
Collapse
|
14
|
Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:985845. [PMID: 25815110 PMCID: PMC4357132 DOI: 10.1155/2015/985845] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
There are several oxidative stress-related pathways interconnecting Alzheimer's disease and type II diabetes, two public health problems worldwide. Coincidences are so compelling that it is attractive to speculate they are the same disorder. However, some pathological mechanisms as observed in diabetes are not necessarily the same mechanisms related to Alzheimer's or the only ones related to Alzheimer's pathology. Oxidative stress is inherent to Alzheimer's and feeds a vicious cycle with other key pathological features, such as inflammation and Ca2+ dysregulation. Alzheimer's pathology by itself may lead to insulin resistance in brain, insulin resistance being an intervening variable in the neurodegenerative disorder. Hyperglycemia and insulin resistance from diabetes, overlapping with the Alzheimer's pathology, aggravate the progression of the neurodegenerative processes, indeed. But the same pathophysiological background is behind the consequences, oxidative stress. We emphasize oxidative stress and its detrimental role in some key regulatory enzymes.
Collapse
|
15
|
Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice. Nitric Oxide 2014; 43:62-73. [DOI: 10.1016/j.niox.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022]
|
16
|
Cai L, Liao HF, Zhang XJ, Shao Y, Xu M, Yi JL. Acetylcholinesterase function in apoptotic retina pigment epithelial cells induced by H2O2. Int J Ophthalmol 2013; 6:772-7. [PMID: 24392323 DOI: 10.3980/j.issn.2222-3959.2013.06.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/05/2013] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the acetylcholinesterase (AChE) expression involved in retina pigment epithelial (RPE) apoptosis induced by higher concentrations H2O2. METHODS The human retinal pigment epithelium cell line ARPE-19 was from ATCC (Rockville, MD). Cultured ARPE-19 cells were treated with H2O2 at 0, 250, 500, 1 000, 2 000µmol/L and cell viability was measured with MTT assay. AChE expression and DNA fragments were analyzed by immunocytochemistry, TUNEL and PARP-1 Western blotting. RESULTS Immunofluorescence detected AChE exist in the normal human retinal tissue. When H2O2 >500µmol/L, AChE expression showed an increase after 2h, and this concentration was selected for the present study. RPE cell was induced with 1 000µmol/L H2O2 for 2h, compared to the control group, cell activity decline detected by MTT, AChE and PARP-1 protein expression was significantly increased detected by Western blotting. AChE immunofluorescence staining was positive in RPE cell after H2O2 incubate 2h. In addition, pretreatment with 100µmol/L epigallocatechin gallate (EGCG), cell viability increased from 31.20%±3.90% to 70.23%±12.96%. CONCLUSION AChE is weakly expressed in normal human RPE cells. Stimulation with H2O2 caused the stable increase of AChE expression in RPE cells, which may indicate that AChE may be an important role in AMD.
Collapse
Affiliation(s)
- Li Cai
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Hong-Fei Liao
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Xue-Jun Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200000, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Man Xu
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| | - Jing-Lin Yi
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
17
|
Lithium treatment induces proteasomal degradation of over-expressed acetylcholinesterase (AChE-S) and inhibit GSK3β. Chem Biol Interact 2012; 203:309-13. [PMID: 22944069 DOI: 10.1016/j.cbi.2012.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 11/22/2022]
Abstract
Lithium is one of the most widely used mood-stabilizing agents for the treatment of bipolar disorder. Lithium is also a potent inhibitor of glycogen synthase kinase-3β (GSK3β) activity, which is linked to Alzheimer's disease (AD). In experiments with cultured HEK293T cells, we show here that GSK3β stabilizes synaptic acetylcholinesterase (AChE-S), a critical component of AD development. Cells treated with lithium exhibited rapid proteasomal degradation of AChE-S. Furthermore treatment of the cells with MG132, an inhibitor of the 26S proteasome, prevented the destabilizing effect of lithium on AChE-S. Taken together, these findings suggest that regulation of AChE-S protein stability may be an important biological target of lithium therapy.
Collapse
|
18
|
Zhang XJ, Greenberg DS. Acetylcholinesterase involvement in apoptosis. Front Mol Neurosci 2012; 5:40. [PMID: 22514517 PMCID: PMC3322359 DOI: 10.3389/fnmol.2012.00040] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/18/2012] [Indexed: 01/22/2023] Open
Abstract
To date, more than 40 different types of cells from primary cultures or cell lines have shown AChE expression during apoptosis and after the induction apoptosis by different stimuli. It has been well-established that increased AChE expression or activity is detected in apoptotic cells after apoptotic stimuli in vitro and in vivo, and AChE could be therefore used as a marker of apoptosis. AChE is not an apoptosis initiator, but the cells in which AChE is overexpressed undergo apoptosis more easily than controls. Interestingly, cells with downregulated levels of AChE are not sensitive to apoptosis induction and AChE deficiency can protect against apoptosis. Some tumor cells do not express AChE, but when AChE is introduced into a tumor cell, the cells cease to proliferate and undergo apoptosis more readily. Therefore, AChE can be classified as a tumor suppressor gene. AChE plays a pivotal role in apoptosome formation, and silencing of the AChE gene prevents caspase-9 activation, with consequent decreased cell viability, nuclear condensation, and poly (adenosine diphosphate-ribose) polymerase cleavage. AChE is translocated into the nucleus, which may be an important event during apoptosis. Several questions still need to be addressed, and further studies that address the non-classical function of AChE in apoptosis are needed.
Collapse
Affiliation(s)
- Xue-Jun Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | | |
Collapse
|
19
|
Zhang B, Yang L, Yu L, Lin B, Hou Y, Wu J, Huang Q, Han Y, Guo L, Ouyang Q, Zhang B, Lu L, Zhang X. Acetylcholinesterase is associated with apoptosis in β cells and contributes to insulin-dependent diabetes mellitus pathogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:207-16. [PMID: 22236578 DOI: 10.1093/abbs/gmr121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acetylcholinesterase (AChE) expression is pivotal during apoptosis. Indeed, AChE inhibitors partially protect cells from apoptosis. Insulin-dependent diabetes mellitus (IDDM) is characterized in part by pancreatic β-cell apoptosis. Here, we investigated the role of AChE in the development of IDDM and analyzed protective effects of AChE inhibitors. Multiple low-dose streptozotocin (MLD-STZ) administration resulted in IDDM in a mouse model. Western blot analysis, cytochemical staining, and immunofluorescence staining were used to detect AChE expression in MIN6 cells, primary β cells, and apoptotic pancreatic β cells of MLD-STZ-treated mice. AChE inhibitors were administered intraperitoneally to the MLD-STZ mice for 30 days. Blood glucose, plasma insulin, and creatine levels were measured, and glucose tolerance tests were performed. The effects of AChE inhibitors on MIN6 cells were also evaluated. AChE expression was induced in the apoptotic MIN6 cells and primary β cells in vitro and pancreatic islets in vivo when treated with STZ. Induction and progressive accumulation of AChE in the pancreatic islets were associated with apoptotic β cells during IDDM development. The administration of AChE inhibitors effectively decreased hyperglycemia and incidence of diabetes, and restored plasma insulin levels and plasma creatine clearance in the MLD-STZ mice. AChE inhibitors partially protected MIN6 cells from the damage caused by STZ treatment. Induction and accumulation of AChE in pancreatic islets and the protective effects of AChE inhibitors on the onset and development of IDDM indicate a close relationship between AChE and IDDM.
Collapse
Affiliation(s)
- Bao Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate Student School of Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ. Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 2012; 52:167-202. [PMID: 22107053 DOI: 10.1111/j.1600-079x.2011.00937.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a highly complex neurodegenerative disorder of the aged that has multiple factors which contribute to its etiology in terms of initiation and progression. This review summarizes these diverse aspects of this form of dementia. Several hypotheses, often with overlapping features, have been formulated to explain this debilitating condition. Perhaps the best-known hypothesis to explain AD is that which involves the role of the accumulation of amyloid-β peptide in the brain. Other theories that have been invoked to explain AD and summarized in this review include the cholinergic hypothesis, the role of neuroinflammation, the calcium hypothesis, the insulin resistance hypothesis, and the association of AD with peroxidation of brain lipids. In addition to summarizing each of the theories that have been used to explain the structural neural changes and the pathophysiology of AD, the potential role of melatonin in influencing each of the theoretical processes involved is discussed. Melatonin is an endogenously produced and multifunctioning molecule that could theoretically intervene at any of a number of sites to abate the changes associated with the development of AD. Production of this indoleamine diminishes with increasing age, coincident with the onset of AD. In addition to its potent antioxidant and anti-inflammatory activities, melatonin has a multitude of other functions that could assist in explaining each of the hypotheses summarized above. The intent of this review is to stimulate interest in melatonin as a potentially useful agent in attenuating and/or delaying AD.
Collapse
Affiliation(s)
- Sergio A Rosales-Corral
- Centro de Investigación Biomédica de Occidente del Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dolfini D, Gatta R, Mantovani R. NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 2011; 47:29-49. [PMID: 22050321 DOI: 10.3109/10409238.2011.628970] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT box promoter element and NF-Y, the transcription factor (TF) that binds to it, were among the first cis-elements and trans-acting factors identified; their interplay is required for transcriptional activation of a sizeable number of eukaryotic genes. NF-Y consists of three evolutionarily conserved subunits: a dimer of NF-YB and NF-YC which closely resembles a histone, and the "innovative" NF-YA. In this review, we will provide an update on the functional and biological features that make NF-Y a fundamental link between chromatin and transcription. The last 25 years have witnessed a spectacular increase in our knowledge of how genes are regulated: from the identification of cis-acting sequences in promoters and enhancers, and the biochemical characterization of the corresponding TFs, to the merging of chromatin studies with the investigation of enzymatic machines that regulate epigenetic states. Originally identified and studied in yeast and mammals, NF-Y - also termed CBF and CP1 - is composed of three subunits, NF-YA, NF-YB and NF-YC. The complex recognizes the CCAAT pentanucleotide and specific flanking nucleotides with high specificity (Dorn et al., 1997; Hatamochi et al., 1988; Hooft van Huijsduijnen et al, 1987; Kim & Sheffery, 1990). A compelling set of bioinformatics studies clarified that the NF-Y preferred binding site is one of the most frequent promoter elements (Suzuki et al., 2001, 2004; Elkon et al., 2003; Mariño-Ramírez et al., 2004; FitzGerald et al., 2004; Linhart et al., 2005; Zhu et al., 2005; Lee et al., 2007; Abnizova et al., 2007; Grskovic et al., 2007; Halperin et al., 2009; Häkkinen et al., 2011). The same consensus, as determined by mutagenesis and SELEX studies (Bi et al., 1997), was also retrieved in ChIP-on-chip analysis (Testa et al., 2005; Ceribelli et al., 2006; Ceribelli et al., 2008; Reed et al., 2008). Additional structural features of the CCAAT box - position, orientation, presence of multiple Transcriptional Start Sites - were previously reviewed (Dolfini et al., 2009) and will not be considered in detail here.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
22
|
Che MM, Chanda S, Song J, Doctor BP, Rezk PE, Sabnekar P, Perkins MW, Sciuto AM, Nambiar MP. Aerosolized scopolamine protects against microinstillation inhalation toxicity to sarin in guinea pigs. Toxicol Mech Methods 2011; 21:463-72. [DOI: 10.3109/15376516.2011.562258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Solanki P, Prasad D, Muthuraju S, Sharma A, Singh S, Ilavzhagan G. Preventive effect of Piracetam and Vinpocetine on hypoxia-reoxygenation induced injury in primary hippocampal culture. Food Chem Toxicol 2011; 49:917-22. [PMID: 21193009 DOI: 10.1016/j.fct.2010.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/03/2010] [Accepted: 12/21/2010] [Indexed: 01/03/2023]
|
24
|
Xie J, Jiang H, Wan YH, Du AY, Guo KJ, Liu T, Ye WY, Niu X, Wu J, Dong XQ, Zhang XJ. Induction of a 55 kDa acetylcholinesterase protein during apoptosis and its negative regulation by the Akt pathway. J Mol Cell Biol 2011; 3:250-9. [PMID: 21377978 DOI: 10.1093/jmcb/mjq047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acetylcholinesterase (AChE) is emerging as an important contributor to apoptosis in various cell types. However, overexpression of AChE does not initiate apoptosis, and cells which express AChE at basal levels grow normally, suggesting that AChE may function differently between normal and apoptotic conditions. In this study, we determined that an AChE-derived protein (∼55 kDa) positively correlated with cellular apoptotic levels. The 55 kDa AChE protein was not a result of a novel splice variant of the AChE primary transcript. Instead, it was determined to be a cleaved fragment of the full-length 68 kDa AChE protein that could not be inhibited by cycloheximide (CHX) but could be suppressed by caspase inhibitors in apoptotic PC-12 cells. Furthermore, activation of the Akt cascade abolished the 55 kDa protein, and both AChE protein forms (68 and 55 kDa) accumulated in the nucleus during apoptosis. In a mouse model for ischemia/reperfusion (I/R)-induced acute renal failure, the 55 kDa AChE protein was detected in the impaired organs but not in the normal ones, and its levels correlated with the genotype of the mice. In summary, a 55 kDa AChE protein resulting from the cleavage of 68 kDa AChE is induced during apoptosis, and it is negatively regulated by the Akt pathway. This study suggests that an alternative form of AChE may play a role in apoptosis.
Collapse
Affiliation(s)
- Jing Xie
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053961 DOI: 10.3390/ph4020382] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Ye W, Gong X, Xie J, Wu J, Zhang X, Ouyang Q, Zhao X, Shi Y, Zhang X. AChE deficiency or inhibition decreases apoptosis and p53 expression and protects renal function after ischemia/reperfusion. Apoptosis 2010; 15:474-87. [PMID: 20054652 DOI: 10.1007/s10495-009-0438-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We recently reported that the expression of the synaptic form of acetylcholinesterase (AChE) is induced during apoptosis in various cell types in vitro. Here, we provide evidence to confirm that AChE is expressed during ischemia-reperfusion (I/R)-induced apoptosis in vivo. Renal I/R is a major cause of acute renal failure (ARF), resulting in injury and the eventual death of renal cells due to a combination of apoptosis and necrosis. Using AChE-deficient mice and AChE inhibitors, we investigated whether AChE deficiency or inhibition can protect against apoptosis caused by I/R in a murine kidney model. Unilateral clamping of renal pedicles for 90 min followed by reperfusion for 24 h caused significant renal dysfunction and injury. Both genetic AChE deficiency and chemical inhibition of AChE (provided by huperzine A, tacrine and donepezil) significantly reduced the biochemical and histological evidence of renal dysfunction following I/R. Activation of caspases-8, -9, -12, and -3 in vivo were prevented and associated with reduced levels of cell apoptosis and cell death. A further investigation also confirmed that AChE deficiency down-regulated p53 induction and phosphorylation at serine-15, and decreased the Bax/Bcl-2 ratio during I/R. In conclusion, our study demonstrates that AChE may be a pro-apoptotic factor and the inhibition of AChE reduces renal I/R injury. These findings suggest that AChE inhibitors may represent a therapeutic strategy for protection against ischemic acute renal failure.
Collapse
Affiliation(s)
- Weiyuan Ye
- Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wills AE, Choi VM, Bennett MJ, Khokha MK, Harland RM. BMP antagonists and FGF signaling contribute to different domains of the neural plate in Xenopus. Dev Biol 2009; 337:335-50. [PMID: 19913009 DOI: 10.1016/j.ydbio.2009.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 01/30/2023]
Abstract
In ectodermal explants from Xenopus embryos, inhibition of BMP signaling is sufficient for neural induction, leading to the idea that neural fate is the default state in the ectoderm. Many of these experiments assayed the action of BMP antagonists on animal caps, which are relatively naïve explants of prospective ectoderm, and different results have led to debate regarding both the mechanism of neural induction and the appropriateness of animal caps as an assay system. Here we address whether BMP antagonists are only able to induce neural fates in pre-patterned explants, and the extent to which neural induction requires FGF signaling. We suggest that some discrepancies in conclusion depend on the interpretations of sox gene expression, which we show not only marks definitive neural tissue, but also tissue that is not yet committed to neural fates. Part of the early sox2 domain requires FGF signaling, but in the absence of organizer signaling, this domain reverts to epidermal fates. We also reinforce the evidence that ectodermal explants are naïve, and that explants that lack any dorsal prepattern are readily neuralized by BMP antagonists, even when FGF signaling is inhibited.
Collapse
Affiliation(s)
- Andrea E Wills
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
28
|
Gao W, Zhu H, Zhang JY, Zhang XJ. Calcium signaling-induced Smad3 nuclear accumulation induces acetylcholinesterase transcription in apoptotic HeLa cells. Cell Mol Life Sci 2009; 66:2181-93. [PMID: 19468687 PMCID: PMC11115644 DOI: 10.1007/s00018-009-0037-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 10/20/2022]
Abstract
Recently, acetylcholinesterase (AChE) has been studied as an important apoptosis regulator. We previously showed that cellular calcium mobilization upregulated AChE expression by modulating promoter activity and mRNA stability. In this study, we have identified a potential Smad3/4 binding element, TGCCAGACA, located within the -601 to -571 bp fragment of the AChE promoter, as an important calcium response motif. Smad2/3 and Smad4 were shown to bind this element. Overexpression of human Smad3 increased AChE transcription activity in a dose-dependent manner in HeLa cells, whereas dominant-negative Smad3 blocked this activation. Upon A23187 and thapsigargin treatment, nuclear Smad3 accumulation was observed, an effect that was blocked by the intracellular Ca(2+) chelator BAPTA-AM. Calcium-induced AChE transcriptional activation was significantly blocked when the nuclear localization signal of Smad3 was destroyed. Taken together, our data suggest Smad3 can regulate AChE transcriptional activation following calcium-induced nuclear accumulation.
Collapse
Affiliation(s)
- Wei Gao
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Jing-Ya Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| | - Xue-Jun Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031 China
| |
Collapse
|
29
|
Pro-apoptotic protein-protein interactions of the extended N-AChE terminus. J Neural Transm (Vienna) 2009; 116:1435-42. [PMID: 19533292 PMCID: PMC2773036 DOI: 10.1007/s00702-009-0249-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/28/2009] [Indexed: 01/18/2023]
Abstract
The N-terminally extended “synaptic” acetylcholinesterase variant N-AChE-S operates to promote apoptosis; however, the protein partners involved in this function remain unknown. Here, we report that when microinjected to fertilized mouse oocytes, N-AChE-S caused embryonic death as early as the zygotic stage. To identify the putative protein partners involved, we first tried yeast two hybrid screening, but this approach failed, probably because of the N-AChE-S-induced lethality. In contrast, sequence analysis and a corresponding peptide array revealed possible partners, which were validated by co-immunoprecipitation. These include the kinases GSK3, Aurora and GAK, the membrane integrin receptors, and the death receptor FAS. Each of these could potentially modulate N-AChE-S-induced apoptosis with possible therapeutic value for the treatment of Alzheimer’s disease.
Collapse
|
30
|
Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H. N-acetylcholinesterase-induced apoptosis in Alzheimer's disease. PLoS One 2008; 3:e3108. [PMID: 18769671 PMCID: PMC2518620 DOI: 10.1371/journal.pone.0003108] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 08/08/2008] [Indexed: 12/17/2022] Open
Abstract
Background Alzheimer's disease (AD) involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended “synaptic” acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena. Methodology and Principal Findings In transfected primary brain cultures, N-AChE-S induced cell death, morphological impairments and caspase 3 activation. Rapid internalization of fluorescently labeled fasciculin-2 to N-AChE-S transfected cells indicated membranal localization. In cultured cell lines, N-AChE-S transfection activated the Tau kinase GSK3, induced Tau hyper-phosphorylation and caused apoptosis. N-AChE-S-induced cell death was suppressible by inhibiting GSK3 or caspases, by enforced overexpression of the anti-apoptotic Bcl2 proteins, or by AChE inhibition or silencing. Moreover, inherent N-AChE-S was upregulated by stressors inducing protein misfolding and calcium imbalances, both characteristic of AD; and in cortical tissues from AD patients, N-AChE-S overexpression coincides with Tau hyper-phosphorylation. Conclusions Together, these findings attribute an apoptogenic role to N-AChE-S and outline a potential value to AChE inhibitor therapeutics in early AD.
Collapse
Affiliation(s)
- Debra Toiber
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Berson
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Greenberg
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Melamed-Book
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sophia Diamant
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Interdisciplinary Center for Neuronal Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
31
|
Abstract
Acetylcholinesterase is indispensable for terminating acetylcholine-mediated neurotransmission at cholinergic synapses. In addition, there is evidence to suggest that acetylcholinesterase contributes to various physiological processes through its involvement in the regulation of cell proliferation, differentiation and survival. The effects of acetylcholinesterase depend on the cell type and cell-differentiation state, the modulation of expression levels, cellular distribution and binding with its protein partners. This minireview highlights recent progress that has advanced our understanding of the role of acetylcholinesterase in the process of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hua Jiang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, China
| | | |
Collapse
|
32
|
Involvement of Sp1/Sp3 in the activation of the GATA-1 erythroid promoter in K562 cells. Cell Res 2008; 18:302-10. [DOI: 10.1038/cr.2008.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
33
|
Jing P, Jin Q, Wu J, Zhang XJ. GSK3beta mediates the induced expression of synaptic acetylcholinesterase during apoptosis. J Neurochem 2007; 104:409-19. [PMID: 17949411 DOI: 10.1111/j.1471-4159.2007.04975.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Besides its role in terminating acetylcholine-mediated neurotransmission, acetylcholinesterase (AChE) is found to be expressed and participate in the process of apoptosis in various cell types. However, the mechanisms underlying AChE up-regulation in neuronal cells remain elusive. Herein we demonstrated that glycogen synthase kinase-3beta (GSK3beta) mediates induced AChE-S expression during apoptosis. In this study, A23187 and thapsigargin (TG) were employed to induce apoptosis in neuroendocrine PC12 cells. The results showed that exposure of PC12 cells to A23187 and TG up-regulated AChE activity significantly. The same treatment also led to activation of GSK3beta. Two different inhibitors of GSK3beta (lithium and GSK3beta-specific inhibitor VIII) could block A23187- or TG-induced up-regulation of AChE activity, AChE-S mRNA level and protein expression. However, lithium could not inhibit the induction of AChE-R mRNA and protein under similar conditions. Taken together, our results show that GSK3beta is specifically involved in the induction of AChE-S expression in PC12 cells during apoptosis.
Collapse
Affiliation(s)
- Peng Jing
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
34
|
Zhu H, Gao W, Jiang H, Wu J, Shi YF, Zhang XJ. Calcineurin mediates acetylcholinesterase expression during calcium ionophore A23187-induced HeLa cell apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:593-602. [PMID: 17320203 DOI: 10.1016/j.bbamcr.2007.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
We previously reported that acetylcholinesterase plays a critical role in apoptosis and its expression is regulated by Ca(2+) mobilization. In the present study, we show that activated calpain, a cytosolic calcium-activated cysteine protease, and calcineurin, a calcium-dependent protein phosphatase, regulate acetylcholinesterase expression during A23187-induced apoptosis. The calpain inhibitor, calpeptin, and the calcineurin inhibitors, FK506 and cyclosporine A, inhibited acetylcholinesterase expression at both mRNA and protein levels and suppressed the activity of the human acetylcholinesterase promoter. In contrast, overexpression of constitutively active calcineurin significantly activated the acetylcholinesterase promoter. Furthermore, we identify a role for the transcription factor NFAT (nuclear factor of activated T cells), a calcineurin target, in regulating the acetylcholinesterase promoter during ionophore-induced apoptosis. Overexpression of human NFATc3 and NFATc4 greatly increased the acetylcholinesterase promoter activity in HeLa cells treated with A23187. Overexpression of constitutive nuclear NFATc4 activated the acetylcholinesterase promoter independent of A23187, whereas overexpression of dominant-negative NFAT blocked A23187-induced acetylcholinesterase promoter activation. These results indicate that calcineurin mediates acetylcholinesterase expression during apoptosis.
Collapse
Affiliation(s)
- Hui Zhu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|