1
|
Alhamaky SM, Khalil NA, Bass AKA, Osama N, Hassan MSA. Design, Synthesis, Docking Studies, and Investigation of Dual EGFR/VEGFR-2 Inhibitory Potentials of New Pyrazole and Pyrazolopyridine Derivatives. Drug Dev Res 2025; 86:e70056. [PMID: 39907164 DOI: 10.1002/ddr.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
The anticancer potential of certain newly synthesized pyrazole and pyrazolopyridine derivatives has been estimated. NCI 60 cancer cells cytotoxic screening pointed out compounds 3e and 3f as the highest cytotoxic agents with % mean growth inhibition of 67.69% and 87.34%, respectively. The five dose outcomes outlined 3f as the most potent cytotoxic agent with promising MG-MID GI50 = 3.3 µM when compared to erlotinib (MG-MID GI50 = 7.68 µM). In the in vitro assays, compounds 3d, 3e, 3f, and 4a demonstrated dual inhibitory potential on EGFRWT and VEGFR-2 with IC50 range of 0.066-0.184 µM and 0.102-0.418 µM, respectively. The best dual EGFR/VEGRF-2 inhibitory effect was shown by the compound 3f. Moreover, the latter compound stopped the cell cycle at the G1/S phase. Also, it greatly boosted total apoptosis, including early and late apoptosis, by 54.5- and 84.7-fold, respectively, which supposes HCT-116 cell death via inducing apoptosis. This was confirmed by the elevation of the BAX and caspase-3 levels, and the decreased BCL-2 level. Moreover, the safety of the most active compound 3f was assessed and the results showed promising selectivity of compound 3f toward HCT-116 over FHC (selectivity index [SI]: 20.84) when compared to erlotinib (SI: 3.42). Finally, compound 3f demonstrated efficient binding to both EGFR and VEGFR-2 enzymes, which could explain the sufficient inhibition level of each enzyme.
Collapse
Affiliation(s)
- Shimaa M Alhamaky
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia National University, Menoufia, Egypt
| | - Nadia A Khalil
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amr K A Bass
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia National University, Menoufia, Egypt
| | - Nada Osama
- Biochemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Mghwary AES, Hassan RA, Halim PA, Abdelhameid MK. Advances in structural identification of some thieno[2,3-d]pyrimidine scaffolds as antitumor molecules: Synthetic approaches and control programmed cancer cell death potential. Bioorg Chem 2025; 154:107985. [PMID: 39637483 DOI: 10.1016/j.bioorg.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Thieno[2,3-d]pyrimidine fragment is not only bioistostere to quinazoline ring but also to purines which exist in nucleic acids responsible for several key biological processes of the living cells, thus it is of a great interest for many researchers. Thieno[2,3-d]pyrimidine ring has become an important scaffold for different compounds with versatile pharmacological activities including anticancer. These compounds exert their anticancer activity through variant mechanisms of action; one of these is the induction of different programmed cell death types as apoptosis and necroptosis which is an effective approach for cancer treatment. This review highlights the different synthetic approaches of recent thieno[2,3-d]pyrimidine analogs along with their anticancer significance through induction of apoptotic or necroptotic cell death with illustration of the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Aml E-S Mghwary
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
3
|
Lei H, Wu Y, Ma W, Yao J, Zhang P, Tian Y, Jiang Y, Xie Z, Zhu L, Tang W. Network Toxicology and Molecular Docking Analysis of Tetracycline-Induced Acute Pancreatitis: Unveiling Core Mechanisms and Targets. TOXICS 2024; 12:929. [PMID: 39771144 PMCID: PMC11679059 DOI: 10.3390/toxics12120929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Acute pancreatitis (AP), induced by tetracycline, a widely used antibiotic, poses significant clinical and toxicological challenges, yet its molecular mechanisms remain unclear. This study aims to promote drug toxicology strategies for the effective investigation of the putative toxicity and potential molecular mechanisms of antibiotic drugs through the study of tetracycline in AP. Using the SwissTargetPrediction, SEA Search, Super-PRED, GeneCards, Drugbank, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD), we identified 259 potential targets associated with tetracycline exposure and AP. Further refinement via the STRING database and Cytoscape (version 3.10.1) software highlighted 22 core targets, including TP53, TNF, and AKT1. Functional enrichment via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) identified pathways through Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, highlighting PI3K-Akt, MAPK, HIF-1, and AGE-RAGE as critical mediators in tetracycline-induced AP. Molecular docking confirmed the strong binding between tetracycline and the core targets. Overall, these findings suggest that tetracycline may affect the occurrence and progression of pancreas-related inflammation by regulating pancreatic cell apoptosis and proliferation, activating inflammatory signaling pathways, and regulating lipid metabolic pathways. This study provides a theoretical basis for understanding the molecular mechanism of tetracycline-induced AP and lays the foundation for the prevention and treatment of digestive system diseases associated with excessive exposure to tetracycline antibiotics and certain tetracyclines. In addition, our network toxicology approach has accelerated the elucidation of toxic pathways in antibiotic drugs that lack specific characteristics.
Collapse
Affiliation(s)
- Hang Lei
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Yimao Wu
- Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China;
| | - Wenjun Ma
- Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 401147, China;
| | - Jiaqi Yao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Pengcheng Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Yong Tian
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Yuhong Jiang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Zhijun Xie
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Lv Zhu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; (H.L.); (J.Y.); (P.Z.); (Y.T.); (Y.J.)
| |
Collapse
|
4
|
Hamdi A, Tawfik SS, Ali AR, Ewes WA, Haikal A, El-Azab AS, Bakheit AH, Hefnawy MM, Ghabbour HA, Abdel-Aziz AAM. Harnessing potential COX-2 engagement for boosting anticancer activity of substituted 2-mercapto-4(3H)-quinazolinones with promising EGFR/VEGFR-2 inhibitory activities. Bioorg Chem 2024; 153:107951. [PMID: 39541892 DOI: 10.1016/j.bioorg.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
We designed and synthesized new quinazolinone-tethered phenyl thiourea/thiadiazole derivatives 4-26. Based on their structural characteristics, these compounds were proposed to have a multi-target mode of action for their anticancer activities. Using the MTT assay method, antiproliferative effects were assessed against three human cancer cell lines (HEPG-2, MCF-7, and HCT-116). In vitro assessment for enzymatic inhibitory activity of the most active compounds 4, 9 and 20 was done for EGFR, VEGFR-2 and COX-2 as potential targets. The screened compounds showed low micromolar IC50 inhibitory effects against the three targets. Compound 9 demonstrated similar EGFR/VEGFR-2 inhibitory effect to the control drugs and potential inhibitory activity for COX-2 enzyme. In MCF-7 cells, the most active analog 9 caused 41.02% total apoptosis, and arrested the cell cycle at the G2/M phase. Taken as a whole, the findings of this study provide significant new understandings into the relationship between COX inhibition and cancer therapy. Furthermore, the outcomes showcased the encouraging efficacy of these compounds with a multi-target mechanism, making them excellent choices for additional research and development into possible anticancer drug.
Collapse
Affiliation(s)
- Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Wafaa A Ewes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Adel S El-Azab
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed M Hefnawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hazem A Ghabbour
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Alaa A-M Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Meng X, Li C, Gao A, Wang H, Wei L, Sun L. Integrated metabolomics and network pharmacology approach to exploring the anti-inflammatory mechanisms of Chuanwang xiaoyan capsules. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124197. [PMID: 38889492 DOI: 10.1016/j.jchromb.2024.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Chuanwang xiaoyan capsules (CWXYC) have anti-inflammatory and detoxification effect, are used in the treatment of acute and chronic tonsillitis, pharyngitis and other inflammation-related diseases clinically. However, the anti-inflammatory mechanisms have not been elucidated. This study aimed to investigate the anti-inflammatory mechanisms of CWXYC using cell metabolomics and network pharmacology strategy. Specifically, CWXYC could efficiently reduce the content of nitric oxide (NO), the cytokines Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in LPS-induced RAW264.7 cells. Furthermore, metabolomics was performed to achieve 23 differential metabolites and 9 metabolic pathways containing glutamate metabolism, glutathione metabolism, arginine and proline metabolism, urea cycle, malate-aspartate shuttle, phosphatidylcholine biosynthesis, transfer of acetyl groups into mitochondria, cysteine metabolism and ammonia recycling. The results of network pharmacology showed that CWXYC could treat inflammation through 10 active components, 10 key targets and 55 pathways. Then the results of molecular docking also approved that there existed strong binding energy between the active components and the key targets. Finally, metabolomics and network pharmacology were integrated to get core targets AKT1, SRC and EGFR. Western blot experiments verified that CWXYC could exert anti-inflammatory effect by down-regulating the activated Akt1 and Src proteins. This study demonstrated that CWXYC exerted effects against inflammation, and the potential mechanisms were elucidated. These novel findings will provide an important basis for further mechanism investigations.
Collapse
Affiliation(s)
- Xiangping Meng
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Caihong Li
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Aichun Gao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Hongjin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China
| | - Lan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China.
| | - Lixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Wu J, Chen Y, Li R, Guan Y, Chen M, Yin H, Yang X, Jin M, Huang B, Ding X, Yang J, Wang Z, He Y, Wang Q, Luo J, Wang P, Mao Z, Huen MS, Lou Z, Yuan J, Gong F. Synergistic anticancer effect by targeting CDK2 and EGFR-ERK signaling. J Cell Biol 2024; 223:e202203005. [PMID: 37955924 PMCID: PMC10641568 DOI: 10.1083/jcb.202203005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 11/14/2023] Open
Abstract
The EGFR-RAS-ERK pathway is one of the most important signaling cascades in cell survival, growth, and proliferation. Aberrant activation of this pathway is a common mechanism in various cancers. Here, we report that CDK2 is a novel regulator of the ERK pathway via USP37 deubiquitinase (DUB). Mechanistically, CDK2 phosphorylates USP37, which is required for USP37 DUB activity. Further, USP37 deubiquitinates and stabilizes ERK1/2, thereby enhancing cancer cell proliferation. Thus, CDK2 is able to promote cell proliferation by activating USP37 and, in turn, stabilizing ERK1/2. Importantly, combined CDK1/2 and EGFR inhibitors have a synergetic anticancer effect through the downregulation of ERK1/2 stability and activity. Indeed, our patient-derived xenograft (PDX) results suggest that targeting both ERK1/2 stability and activity kills cancer cells more efficiently even at lower doses of these two inhibitors, which may reduce their associated side effects and indicate a potential new combination strategy for cancer therapy.
Collapse
Affiliation(s)
- Jinhuan Wu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yuping Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Rui Li
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yaping Guan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mu Chen
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Yin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoning Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Mingpeng Jin
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Bingsong Huang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Ding
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhe Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Yiming He
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qianwen Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jian Luo
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Michael S.Y. Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong S.A.R
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Le HT, Do KM, Nguyen QP, Doan CNM, Nguyen NA, Phan TT, Tran XTC, Ha QTK, Tran DQ, Morita H, Bui HTB. Syntheses and Cytotoxicities of Quinazolinone-Based Conjugates. Chem Pharm Bull (Tokyo) 2024; 72:61-67. [PMID: 38220213 DOI: 10.1248/cpb.c23-00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Two novel series of quinazolinone-based hybrids, including quinazolinone-1,3,4-oxadiazoles (10a-l) and quinazolinone-1,3,4-oxadiazole-benzimidazoles (8a-e), were designed and synthesized and their cytotoxic activities against three human cancer cell lines, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7), were evaluated. The cytotoxic assays revealed that 10i with a lipophilic 4-fluoro-phenyl moiety at the C-2 position of the quinazolinone ring displayed good cytotoxicities against the A549 and MCF-7 cell lines, while 8b-d with the thioether-linked benzimidazole moiety incorporated on the right side of the oxadiazole ring induced comparable stronger activities toward the MCF-7 cell line, relative to the simple two-heterocycle-containing hybrid 10i. These novel quinazolinone-based hybrids could be considered as lead compounds that merit further optimization and development as anti-cancer agents.
Collapse
Affiliation(s)
- Hieu Trong Le
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama
| | - Quy Phu Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University
- Faculty of Pharmacy and Nursing, Tay Do University
| | | | - Nhi Ai Nguyen
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Tai Thi Phan
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Xuyen Thi Cam Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - Quy Thi Kim Ha
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | - De Quang Tran
- Department of Chemistry, College of Natural Sciences, Can Tho University
| | | | - Hue Thi Buu Bui
- Department of Chemistry, College of Natural Sciences, Can Tho University
| |
Collapse
|
8
|
Elgun T, Yurttas AG, Cinar K, Ozcelik S, Gul A. Effect of aza-BODIPY-photodynamic therapy on the expression of carcinoma-associated genes and cell death mode. Photodiagnosis Photodyn Ther 2023; 44:103849. [PMID: 37863378 DOI: 10.1016/j.pdpdt.2023.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Breast cancer is the most common cancer affecting women worldwide.Photodynamic therapy(PDT) has now proven to be a promising form of cancer therapy due to its targeted and low cytotoxicity to healthy cells and tissues.PDT is a technique used to create cell death localized by light after application of a light-sensitive agent.Aza-BODIPY is a promising photosensitizer for use in PDT. Our results showed that aza-BODIPY-PDT induced apoptosis, probably through p53 and caspase3 in MCF-7 cells. Future studies should delineate the molecular mechanisms underlying aza-BODIPY-PDT-induced cell death for a better understanding of the signaling pathways modulated by the therapy so that this novel technology could be implemented in the clinic for treating breast cancer. AIM In this study,we aimed to determine the change in the expression levels of 88 carcinoma-associated genes induced by aza-BODIPY-PDT were analyzed so as to understand the specific pathways that are modulated by aza-BODIPY-PDT. MATERIAL METHOD In this study,the molecular basis of the anti-cancer activity of aza-BODIPY-PDT was investigated.Induction of apoptosis and necrosis in MCF-7 breast cancer cells after treatment with aza- BODIPY derivative with phthalonitrile substituents (aza-BODIPY) followed by light exposure was evaluated by Annexin V 7- Aminoactinomycin D (7-AAD) flow cytometry. RESULTS Aza-BODIPY-PDT induced cell death in MCF-7 cells treated with aza-BODIPY-PDT; flow cytometry revealed that 28 % of the cells died by apoptosis. Seven of the 88 carcinoma-associated genes that were assayed were differentially expressed -EGF, LEF1, WNT1, TCF7, and TGFBR2 were downregulated, and CASP3 and TP53 were upregulated - in cells subjected to aza-BODIPY-PDT.This made us think that the aza-BODIPY-PDT induced caspase 3 and p53-mediated apoptosis in MCF7 cells. CONCLUSION In our study,it was determined that the application of aza-BODIPY-PDT to MCF7 cells had a negative effect on cell connectivity and cell cycle.The fact that the same effect was not observed in control cells and MCF7 cells in the dark field of aza-BODIPY indicates that aza-BODIPY has a strong phodynamic anticancer effect.
Collapse
Affiliation(s)
- Tugba Elgun
- Department of Medical Biology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Cinar
- Department of Physics, Faculty of Basic Sciences, Gebze Technical University, Istanbul, Turkey
| | - Sennur Ozcelik
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ahmet Gul
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Akbarzadeh-Khiavi M, Safary A, Omidi Y. Targeting long non-coding RNAs as new modulators in anti-EGFR resistance mechanisms. BIOIMPACTS : BI 2023; 14:27696. [PMID: 38327631 PMCID: PMC10844586 DOI: 10.34172/bi.2023.27696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/15/2023] [Accepted: 08/22/2023] [Indexed: 02/09/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a cell surface protein that plays a vital role in regulating cell growth and division. However, certain tumors, such as colorectal cancer (CRC), can exhibit an overexpression of EGFR, resulting in uncontrolled cell growth and tumor progression. To address this issue, therapies targeting and inhibiting EGFR activity have been developed to suppress cancer growth. Nevertheless, resistance to these therapies poses a significant obstacle in cancer treatment. Recent research has focused on comprehending the underlying mechanisms contributing to anti-EGFR resistance and identifying new targets to overcome this striking challenge. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. Emerging evidence suggests that lncRNAs may participate in modulating resistance to anti-EGFR therapies in CRC. Consequently, combining lncRNA targeting with the existing treatment modalities could potentially yield improved clinical outcomes. Illuminating the involvement of lncRNAs in anti-EGFR resistance mechanisms of cancer cells can provide valuable insights into the development of novel anti-EGFR therapies in several solid tumors.
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
10
|
Venugopal S, Kaur B, Verma A, Wadhwa P, Magan M, Hudda S, Kakoty V. Recent advances of benzimidazole as anticancer agents. Chem Biol Drug Des 2023; 102:357-376. [PMID: 37009821 DOI: 10.1111/cbdd.14236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Cancer is the second leading cause of death globally, with 9.6 million deaths yearly. As a life-threatening disease, it necessitates the emergence of new therapies. Resistance to current chemotherapies drives scientists to develop new medications that will eventually be accessible. Because heterocycles are so common in biological substances, compounds play a big part in the variety of medications that have been developed. The "Master Key" is the benzimidazole nucleus, which consists of a six-membered benzene ring fused with a five-membered imidazole/imidazoline ring, which is an azapyrrole. One of the five-membered aromatic nitrogen heterocycles identified in American therapies that have been approved by the Food and Drug Administration (FDA). Our results show that benzimidazole's broad therapeutic spectrum is due to its structural isosteres with purine, which improves hydrogen bonding, electrostatic interactions with topoisomerase complexes, intercalation with DNA, and other functions. It also enhances protein and nucleic acid inhibition, tubulin microtubule degeneration, apoptosis, DNA fragmentation, and other functions. Additionally, readers for designing the more recent benzimidazole analogues as prospective cancer treatments.
Collapse
Affiliation(s)
- Sneha Venugopal
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Balwinder Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Anil Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Pankaj Wadhwa
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Muskan Magan
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Sharwan Hudda
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| | - Violina Kakoty
- Department of Pharmaceutical Sciences, School of Pharmacy, Lovely Professional University, Punjab, India
| |
Collapse
|
11
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
12
|
Son SY, Choi JH, Kim EB, Yin J, Seonu SY, Jin SY, Oh JY, Lee MW. Chemopreventive Activity of Ellagitannins from Acer pseudosieboldianum (Pax) Komarov Leaves on Prostate Cancer Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1047. [PMID: 36903908 PMCID: PMC10005130 DOI: 10.3390/plants12051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Several studies have shown that compounds from Acer pseudosieboldianum (Pax) Komarov leaves (APL) display potent anti-oxidative, anti-inflammatory, and anti-proliferative activities. Prostate cancer (PCa) is the most common cancer among older men, and DNA methylation is associated with PCa progression. This study aimed to investigate the chemopreventive activities of the compounds which were isolated from APL on prostate cancer cells and elucidate the mechanisms of these compounds in relation to DNA methylation. One novel ellagitannin [komaniin (14)] and thirteen other known compounds, including glucose derivatives [ethyl-β-D-glucopyranose (3) and (4R)-p-menth-1-ene-7,8-diol 7-O-β-D-glucopyranoside (4)], one phenylpropanoid [junipetrioloside A (5)], three phenolic acid derivatives [ellagic acid-4-β-D-xylopyranoside (1), 4-O-galloyl-quinic acid (2), and gallic acid (8)], two flavonoids [quercetin (11) and kaempferol (12)], and five hydrolysable tannins [geraniin (6), punicafolin (7), granatin B (9), 1,2,3,4,6-penta-galloyl-β-D-glucopyranoside (10), and mallotusinic acid (13)] were isolated from APL. The hydrolyzable tannins (6, 7, 9, 10, 13, and 14) showed potent anti-PCa proliferative and apoptosis-promoting activities. Among the compounds, the ellagitannins in the dehydrohexahydroxydiphenoyl (DHHDP) group (6, 9, 13, and 14), the novel compound 14 showed the most potent inhibitory activity on DNA methyltransferase (DNMT1, 3a and 3b) and glutathione S-transferase P1 methyl removing and re-expression activities. Thus, our results suggested that the ellagitannins (6, 9, 13, and 14) isolated from APL could be a promising treatment option for PCa.
Collapse
|
13
|
Islam R, Zhao L, Zhang X, Liu LZ. MiR-218-5p/EGFR Signaling in Arsenic-Induced Carcinogenesis. Cancers (Basel) 2023; 15:1204. [PMID: 36831545 PMCID: PMC9954652 DOI: 10.3390/cancers15041204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Arsenic is a well-known carcinogen inducing lung, skin, bladder, and liver cancer. Abnormal epidermal growth factor receptor (EGFR) expression is common in lung cancer; it is involved in cancer initiation, development, metastasis, and treatment resistance. However, the underlying mechanism for arsenic-inducing EGFR upregulation remains unclear. METHODS RT-PCR and immunoblotting assays were used to detect the levels of miR-218-5p and EGFR expression. The Luciferase assay was used to test the transcriptional activity of EGFR mediated by miR-218-5p. Cell proliferation, colony formation, wound healing, migration assays, tube formation assays, and tumor growth assays were used to study the function of miR-218-5p/EGFR signaling. RESULTS EGFR and miR-218-5p were dramatically upregulated and downregulated in arsenic-induced transformed (As-T) cells, respectively. MiR-218-5p acted as a tumor suppressor to inhibit cell proliferation, migration, colony formation, tube formation, tumor growth, and angiogenesis. Furthermore, miR-218-5p directly targeted EGFR by binding to its 3'-untranslated region (UTR). Finally, miR-218-5p exerted its antitumor effect by inhibiting its direct target, EGFR. CONCLUSION Our study highlights the vital role of the miR-218-5p/EGFR signaling pathway in arsenic-induced carcinogenesis and angiogenesis, which may be helpful for the treatment of lung cancer induced by chronic arsenic exposure in the future.
Collapse
Affiliation(s)
| | | | | | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Bandi SR, Kavitha N, Nukala SK, Thirukovela NS, Manchal R, Palabindela R, Narsimha S. Synthesis and biological evaluation of novel [1,2,3]triazolo-pyrrolo[1,2-a]pyrido[4,3-d]pyrimidines as EGFR targeting anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Kühl L, Schäfer AK, Kraft S, Aschmoneit N, Kontermann RE, Seifert O. eIg-based bispecific T-cell engagers targeting EGFR: Format matters. MAbs 2023; 15:2183540. [PMID: 36864566 PMCID: PMC9988351 DOI: 10.1080/19420862.2023.2183540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Bispecific antibodies are molecules with versatile modes of action and applications for therapy. They are commonly developed as T-cell engagers (TCE), which simultaneously target an antigen expressed by tumor cells and CD3 expressed by T-cells, thereby inducing T-cell-mediated target cell killing. There is growing evidence that the molecular composition and valency for the target antigen influence the activity of TCEs. Here, the eIg platform technology was used to generate a set of bispecific TCEs targeting epidermal growth factor receptors (EGFR) and CD3. These molecules either included or lacked an Fc region and exhibited one binding site for CD3 and either one or two binding sites for EGFR (1 + 1 or 2 + 1 formats) utilizing different molecular arrangements of the binding sites. In total, 11 different TCE formats were analyzed for binding to target cells and T cells, T cell-mediated killing of tumor cells, and for the activation of T cells (release of cytokines and proliferation of T-cells). Bivalent binding to EGFR strongly increased binding and T cell-mediated killing. However, the molecular composition and position of the CD3-binding arm also affected target cell killing, cytokine release, and T-cell proliferation. Our findings support that screening of a panel of formats is beneficial to identify the most potent bispecific TCE, and that format matters.
Collapse
Affiliation(s)
- Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Annelie K Schäfer
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Sebastian Kraft
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
16
|
An ultra-performance LC-MS/MS method for determination of JRF103 in human plasma: application in first-in-patient study. Bioanalysis 2022; 14:1165-1175. [PMID: 36251611 DOI: 10.4155/bio-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: JRF103, a novel pan-HER inhibitor, has shown potent activity against HER1, HER2, HER4 and EGFR in vitro. To support its first-in-patient trial, a sensitive and rapid method was developed and validated using ultra-performance LC-MS/MS. Materials & methods: JRF103 was extracted from plasma using protein precipitation. Extracts were subjected to ultra-performance LC-MS/MS with electrospray ionization. Results: Separation of analyte was achieved using a 1.7-μm C18 column (2.1 × 50-mm internal diameter) with a gradient elution. The developed method was fully validated following the international guides. Conclusion: The developed method was sensitive, specific and suitable for measuring JRF103 concentration in patients with advanced solid tumors in the first-in-patient study of JRF103.
Collapse
|
17
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
18
|
N MK, Nukala SK, Thirukovela NS, Sreerama R, E RS, Kamarajugadda P, Narsimha S. Ramachary-Bressy-Wang [3+2]cycloaddition reaction: Synthesis of fully decorated 1,2,3-triazoles as potent anticancer and EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Design, synthesis and mechanistic studies of novel imidazo[1,2-a]pyridines as anticancer agents. Bioorg Chem 2022; 128:106042. [PMID: 35878430 DOI: 10.1016/j.bioorg.2022.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Accepted: 07/17/2022] [Indexed: 11/20/2022]
Abstract
Herein, the design, synthesis and mechanistic study of five series of imidazo[1,2-a]pyridines 8a-d, 9a-f, 11a-c, 12a-d and 14a-d as anticancer agents were discussed. The cytotoxicity of imidazo[1,2-a]pyridine derivatives was screened against NCI 60 cancer cell lines. The cytotoxicity of compounds 8b, 8c, 9e and 9f was then evaluated against leukemia K-562 cancer cell line and normal lung fibroblasts (WI38). The hydrazone derivatives 8b and 8c exhibited significant cytotoxic activities against the leukemia K-562 cancer cell line with good safety margins (IC50 = 2.91 µM, SI = 8.32 and IC50 = 1.09 µM, SI = 10.54, respectively). In addition, compounds 8b, 8c, 9e and 9f were tested for their EGFR and COX-2 inhibitory activities. The hydrazone derivatives 8b and 8c were the most active EGFR inhibitors with IC50 values of 0.123 and 0.072 µM, respectively. Compound 8c selectively inhibited COX-2 (IC50 = 1.09 µM, SI = 13.78). Moreover, the potential of compound 8c to induce apoptosis in leukemia K-562 cell line was determined. Compound 8c showed a pre-G1 apoptosis and a growth arrest of leukemia K-562 cell line at G1 phase of cell cycle. Also, compound 8c was able to induce caspase-3 overexpression (6.98 folds), if compared to control. Finally, molecular docking studies and physicochemical properties calculation of compounds 8b, 8c, 9e and 9f were carried out to explain the biological data and to predict bioavailability of the most active compounds.
Collapse
|
20
|
Alaaeldin R, Hassan HA, Abdel-Rahman IM, Mohyeldin RH, Youssef N, Allam AE, Abdelwahab SF, Zhao QL, Fathy M. A New EGFR Inhibitor from Ficus benghalensis Exerted Potential Anti-Inflammatory Activity via Akt/PI3K Pathway Inhibition. Curr Issues Mol Biol 2022; 44:2967-2981. [PMID: 35877429 PMCID: PMC9324879 DOI: 10.3390/cimb44070205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6, PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Islam M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Reham H. Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Nancy Youssef
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia 61512, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
21
|
Synthesis, antiproliferative, docking and DFT studies of benzimidazole derivatives as EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Yan FF, Jiang Q, Ru B, Fei XJ, Ruan J, Zhang XC. Metastatic urothelial carcinoma harboring ERBB2/3 mutations dramatically respond to chemotherapy plus anti-PD-1 antibody: A case report. World J Clin Cases 2022; 10:2497-2503. [PMID: 35434068 PMCID: PMC8968593 DOI: 10.12998/wjcc.v10.i8.2497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/25/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) targeting the programmed death (PD)-1 pathway have substantially changed the clinical management of metastatic urothelial carcinoma (mUC); however, the response rate remains low. There are ongoing efforts to identify robust biomarkers that can effectively predict the treatment response to ICIs. Previous studies have suggested that ERBB2/3 mutations are associated with the efficacy of ICIs in gallbladder carcinoma.
CASE SUMMARY We present a 59-year-old man with mUC harboring ERBB2/3 mutations (in-frame insertion of ERBB2 and ERBB3 amplification), negative PD-ligand 1 expression, and low tumor mutation burden. He received anti-PD-1 antibodies and paclitaxel as second-line treatment. After two cycles of treatment, the lung metastases had significantly shrunk, achieving good partial remission. After six cycles of combination therapy, the patient received sindilimab 200 mg once every 3 wk as maintenance monotherapy. At the last follow-up, the patient continued to exhibit a partial response and progression-free survival for as long as 19 mo.
CONCLUSION ERBB2/3 mutations may represent a predictive biomarker for selecting a subgroup of mUC patients who will benefit from ICIs.
Collapse
Affiliation(s)
- Fei-Fei Yan
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Qi Jiang
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| | - Bin Ru
- Department of Pain Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang Province, China
| | - Xiao-Jie Fei
- Department of Surgical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou 313000, Zhejiang Province, China
| | - Jian Ruan
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiao-Chen Zhang
- Department of Medical Oncology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
23
|
Mahmoud MA, Mohammed AF, Salem OIA, Gomaa HAM, Youssif BGM. New 1,3,4-oxadiazoles linked with the 1,2,3-triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch Pharm (Weinheim) 2022; 355:e2200009. [PMID: 35195309 DOI: 10.1002/ardp.202200009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
A series of 1,3,4-oxadiazole-1,2,3-triazole hybrids bearing different pharmacophoric moieties has been designed and synthesized. Their antiproliferative activity was evaluated against four human cancer cell lines (Panc-1, MCF-7, HT-29, and A-549) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The preliminary activity test displayed that the most active compounds, 6d, 6e, and 8a-e, suppressed cancer cell growth (GI50 = 0.23-2.00 µM) comparably to erlotinib (GI50 = 0.06 µM). Compounds 6d, 6e, and 8a-e inhibited the epidermal growth factor receptor tyrosine kinase (EGFR-TK) at IC50 = 0.11-0.73 µM, compared to erlotinib (IC50 = 0.08 ± 0.04 µM). The apoptotic mechanism revealed that the most active hybrid 8d induced expression levels of caspase-3, caspase-9, and cytochrome-c in the human cancer cell line Panc-1 by 7.80-, 19.30-, and 13-fold higher than doxorubicin. Also, 8d increased the Bax level by 40-fold than doxorubicin, along with decreasing Bcl-2 levels by 6.3-fold. Cell cycle analysis after treatment of Panc-1 cells with hybrid 8d revealed a high proportion of cell accumulation (41.53%) in the pre-G1 phase, indicating cell cycle arrest at the G1 transition. Computational docking of the 8d and 8e hybrids with the EGFR binding site revealed their ability to bind with EGFR similar to erlotinib. Finally, in silico absorption, distribution, metabolism, and excretion/pharmacokinetic studies for the most active hybrids are discussed.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
24
|
Chu J, Fang X, Sun Z, Gai L, Dai W, Li H, Yan X, Du J, Zhang L, Zhao L, Xu D, Yan S. Non-Coding RNAs Regulate the Resistance to Anti-EGFR Therapy in Colorectal Cancer. Front Oncol 2022; 11:801319. [PMID: 35111681 PMCID: PMC8802825 DOI: 10.3389/fonc.2021.801319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third prevalent cancer worldwide, the morbidity and mortality of which have been increasing in recent years. As molecular targeting agents, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC) patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely involved in tumorigenesis and tumor progression. They function as essential regulators controlling the expression and function of oncogenes. Increasing data have shown ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring ncRNAs as new molecular targets and prognostic markers for CRC.
Collapse
Affiliation(s)
- Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xianzhu Fang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, China
| | - Zhonghou Sun
- Department of Pediatrics of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Linlin Gai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Haibo Li
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xinyi Yan
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinke Du
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
25
|
Alam MM, Nazreen S, Almalki ASA, Elhenawy AA, Alsenani NI, Elbehairi SEI, Malebari AM, Alfaifi MY, Alsharif MA, Alfaifi SYM. Naproxen Based 1,3,4-Oxadiazole Derivatives as EGFR Inhibitors: Design, Synthesis, Anticancer, and Computational Studies. Pharmaceuticals (Basel) 2021; 14:870. [PMID: 34577570 PMCID: PMC8469912 DOI: 10.3390/ph14090870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
A library of novel naproxen based 1,3,4-oxadiazole derivatives (8-16 and 19-26) has been synthesized and screened for cytotoxicity as EGFR inhibitors. Among the synthesized hybrids, compound2-(4-((5-((S)-1-(2-methoxynaphthalen-6-yl)ethyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol(15) was the most potent compound against MCF-7 and HepG2cancer cells with IC50 of 2.13 and 1.63 µg/mL, respectively, and was equipotent to doxorubicin (IC50 1.62 µg/mL) towards HepG2. Furthermore, compound 15 inhibited EGFR kinase with IC50 0.41 μM compared to standard drug Erlotinib (IC50 0.30 μM). The active compound induces a high percentage of necrosis towards MCF-7, HePG2 and HCT 116 cells. The docking studies, DFT and MEP also supported the biological data. These results demonstrated that these synthesized naproxen hybrids have EGFR inhibition effects and can be used as leads for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | | | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Nawaf I. Alsenani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (S.E.I.E.); (M.Y.A.)
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 22311, Egypt
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (S.E.I.E.); (M.Y.A.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia;
| | - Sulaiman Y. M. Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
26
|
Predictive and prognostic value of magnesium serum level in FOLFIRI plus cetuximab or bevacizumab treated patients with stage IV colorectal cancer: results from the FIRE-3 (AIO KRK-0306) study. Anticancer Drugs 2021; 31:856-865. [PMID: 32639280 DOI: 10.1097/cad.0000000000000965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnesium wasting is a frequent side effect of epidermal growth factor receptor (EGFR)-antibody treatment as magnesium-absorption mechanisms are dependent on EGFR signaling. EGFR-inhibition results in decreased renal reabsorption. There is evidence that hypomagnesemia during cetuximab treatment correlates with response. The prognostic role of hypomagnesemia during bevacizumab treatment has not been studied yet. Here, we evaluate the prognostic value of hypomagnesemia in patients with metastatic colorectal cancer treated with FOLFIRI plus cetuximab or bevacizumab as first-line therapy. A total of 391 of 752 patients of the firstline irinotecan study population had magnesium levels measured at baseline and for the first three cycles (6 weeks) of treatment. Of those, 240 had Rat Sarkoma wildtype tumors. Overall hypomagnesemia was more common in the cetuximab compared to the bevacizumab arm (80 vs. 43%, P < 0.005). During therapy, magnesium showed a time-dependent decrease to 80% of baseline in the cetuximab and to 89% in the bevacizumab arm. Whereas magnesium continued to decrease over time in the cetuximab-treated patients, it remained stable in the bevacizumab-treated. Overall response rate (ORR) was associated with higher magnesium at week 6 (20.9 vs. 79.1%, P = 0.041). Bevacizumab-treated patients with magnesium levels below the median value at week 6 had a significantly longer progression-free survival (PFS; 11.7 vs. 9.9 months, P = 0.034; hazard ratio 0.73) and a trend towards longer overall survival (OS) (29.6 vs. 23.2 months, P = 0.089; hazard ratio 0.77). Hypomagnesemia at predefined time points and magnesium nadir had no significant effect on ORR, OS and PFS in the cetuximab arm. Our data show different magnesium kinetics in patients with metastatic colorectal cancer treated with cetuximab or bevacizumab. For patients treated with cetuximab, hypomagnesemia did not have an impact on response and survival. Hypomagnesemia might have a prognostic value in bevacizumab treatment.
Collapse
|
27
|
Chautard R, Corset L, Ibrahim S, Desvignes C, Paintaud G, Baroukh N, Guéguinou M, Lecomte T, Raoul W. Panitumumab and cetuximab affect differently miRNA expression in colorectal cancer cells. Biomark Med 2021; 15:685-696. [PMID: 34169732 DOI: 10.2217/bmm-2020-0520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background & aim: Resistance to anti-EGFR monoclonal antibodies in metastatic colorectal cancer (CRC) is frequent and prognostic biomarkers are lacking. MicroRNAs (miR) are good candidates in this context. We aimed to characterize cetuximab and panitumumab exposure influence on miR expression in colorectal cancer cells to identify those regulating the EGFR pathway and implicated in resistance to treatment. Finally, we aimed to identify miR expression in serum of patients with advanced CRC treated with cetuximab or panitumumab. Results: Cetuximab and panitumumab exposure induced significant expression variations of 17 miR out of a miRnome panel of 752. Six of those miR interacted with at least one downstream element of the EGFR pathway. Conclusion: After the bioinformatics two-phase process, five miR rarely described before could be potential actors of anti-EGFR monoclonal antibody resistance: miR-95-3p, miR-139-5p, miR-145-5p, miR-429 and miR-1247-5p. In vivo, we detected the expression of miR-139-5p and miR-145-5p in serum of patients with metastatic CRC.
Collapse
Affiliation(s)
- Romain Chautard
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, France
- Université de Tours, EA 7501, GICC, France
| | - Laetitia Corset
- Université de Tours, EA 7501, GICC, France
- CNRS ERL 7001 LNOx, Université de Tours, France
| | | | - Céline Desvignes
- CHRU de Tours, Centre Pilote de suivi Biologique des traitements par Anticorps (CePiBAc), Tours, France
- Université de Tours, Tours, EA 4245 T2I, France
| | - Gilles Paintaud
- CHRU de Tours, Centre Pilote de suivi Biologique des traitements par Anticorps (CePiBAc), Tours, France
- Université de Tours, Tours, EA 4245 T2I, France
| | | | | | - Thierry Lecomte
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, France
- Université de Tours, EA 7501, GICC, France
| | - William Raoul
- Université de Tours, EA 7501, GICC, France
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, France
| |
Collapse
|
28
|
Karayel A. Molecular stabilities, conformational analyses and molecular docking studies of benzimidazole derivatives bearing 1,2,4-triazole as EGFR inhibitors. Struct Chem 2021. [DOI: 10.1007/s11224-021-01760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Kumar M, Joshi G, Chatterjee J, Kumar R. Epidermal Growth Factor Receptor and its Trafficking Regulation by Acetylation: Implication in Resistance and Exploring the Newer Therapeutic Avenues in Cancer. Curr Top Med Chem 2021; 20:1105-1123. [PMID: 32031073 DOI: 10.2174/1568026620666200207100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The EGFR is overexpressed in numerous cancers. So, it becomes one of the most favorable drug targets. Single-acting EGFR inhibitors on prolong use induce resistance and side effects. Inhibition of EGFR and/or its interacting proteins by dual/combined/multitargeted therapies can deliver more efficacious drugs with less or no resistance. OBJECTIVE The review delves deeper to cover the aspects of EGFR mediated endocytosis, leading to its trafficking, internalization, and crosstalk(s) with HDACs. METHODS AND RESULTS This review is put forth to congregate relevant literature evidenced on EGFR, its impact on cancer prognosis, inhibitors, and its trafficking regulation by acetylation along with the current strategies involved in targeting these proteins (EGFR and HDACs) successfully by involving dual/hybrid/combination chemotherapy. CONCLUSION The current information on cross-talk of EGFR and HDACs would likely assist researchers in designing and developing dual or multitargeted inhibitors through combining the required pharmacophores.
Collapse
Affiliation(s)
- Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Gaurav Joshi
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
30
|
Liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol Res 2020; 161:105164. [PMID: 32846211 DOI: 10.1016/j.phrs.2020.105164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR), also known as ErbB-1/HER-1, plays a key role in the regulation of the cell proliferation, migration, differentiation, and survival. Since the constitutive activation or overexpression of EGFR is nearly found in various cancers, the applications focused on EGFR are the most widely used in the clinical level, including the therapeutic drugs of targeting EGFR, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs).Over the past decades, the compounds from natural sources have been a productive source of novel drugs, especially in both discovery and development of anti-tumor drugs by targeting the EGFR pathways as the TKIs. This work presents a review of the compounds from natural sources as potential EGFR-TKIs involved in the regulation of cancer. Moreover, high-throughput drug screening of EGFR-TKIs from the natural compounds has also been summarized.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
31
|
Hintelmann K, Kriegs M, Rothkamm K, Rieckmann T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front Oncol 2020; 10:1260. [PMID: 32903756 PMCID: PMC7438822 DOI: 10.3389/fonc.2020.01260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoradiation, either alone or in combination with surgery or induction chemotherapy, is the current standard of care for most locally advanced solid tumors. Though chemoradiation is usually performed at the maximum tolerated doses of both chemotherapy and radiation, current cure rates are not satisfactory for many tumor entities, since tumor heterogeneity and plasticity result in chemo- and radioresistance. Advances in the understanding of tumor biology, a rapidly growing number of molecular targeting agents and novel technologies enabling the in-depth characterization of individual tumors, have fuelled the hope of entering an era of precision oncology, where each tumor will be treated according to its individual characteristics and weaknesses. At present though, molecular targeting approaches in combination with radiotherapy or chemoradiation have not yet proven to be beneficial over standard chemoradiation treatment in the clinical setting. A promising approach to improve efficacy is the combined usage of two targeting agents in order to inhibit backup pathways or achieve a more complete pathway inhibition. Here we review preclinical attempts to utilize such dual targeting strategies for future tumor radiosensitization.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Pethő L, Kasza G, Lajkó E, Láng O, Kőhidai L, Iván B, Mező G. Amphiphilic drug-peptide-polymer conjugates based on poly(ethylene glycol) and hyperbranched polyglycerol for epidermal growth factor receptor targeting: the effect of conjugate aggregation on in vitro activity. SOFT MATTER 2020; 16:5759-5769. [PMID: 32530018 DOI: 10.1039/d0sm00428f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Numerous peptide-drug conjugates have been developed over the years to enhance the specificity and selectivity of chemotherapeutic agents for tumour cells. In our present work, epidermal growth factor receptor targeting drug-peptide conjugates were prepared using GE11 and D4 peptides. To ensure the drug release, the cathepsin B labile GFLG spacer was incorporated between the targeting peptide and the drug molecule (daunomycin), which significantly increased the hydrophobicity and thereby decreased the water solubility of the conjugates. To overcome the solubility problem, drug-peptide-polymer conjugates with systematic structural variations were prepared, by linking poly(ethylene glycol) (PEG) or a well-defined amino-monofunctional hyperbranched polyglycerol (HbPG) directly or via a pentaglycine spacer to the targeting peptides. All the drug-peptide-polymer conjugates were water-soluble as confirmed by turbidimetric measurements. The results of the in vitro cell viability and cellular uptake measurements on HT-29 human colon adenocarcinoma cells proved that the HbPG and the PEG highly influenced the biological activity. The conjugation of the hydrophilic polymer resulted in the amphiphilic character of the conjugates, which led to self-aggregation and nanoparticle formation that decreased the cellular uptake above a specific aggregation concentration. On the other hand, the hydrodynamic volume and the different polymer chain topology of the linear PEG and the compact hyperbranched HbPG also played an important role in the biological activity. Therefore, in similar systems, the investigation of the colloidal properties is inevitable for the better understanding of the biological activity, which can reveal the structure-activity relationship of amphiphilic drug-peptide-polymer conjugates for efficient tumour targeting.
Collapse
Affiliation(s)
- Lilla Pethő
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary.
| | - György Kasza
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | - Eszter Lajkó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Orsolya Láng
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - László Kőhidai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Béla Iván
- Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary. and Eötvös Loránd University, Faculty of Science, Institute of Chemistry, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary
| |
Collapse
|
33
|
El-Sayed NA, Nour MS, Salem MA, Arafa RK. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur J Med Chem 2019; 183:111693. [DOI: 10.1016/j.ejmech.2019.111693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022]
|
34
|
Pei X, Zheng D, She S, Fang Z, Zhang S, Hu H, Xu K, Wang Y. Elevated Expression Levels of PC3-Secreted Microprotein (PSMP) in Prostate Cancer Associated With Increased Xenograft Growth and Modification of Immune-Related Microenvironment. Front Oncol 2019; 9:724. [PMID: 31555577 PMCID: PMC6723336 DOI: 10.3389/fonc.2019.00724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa), especially metastatic PCa, is one of the main cancer types accounting for male mortality worldwide. Over decades, researchers have tried to search for effective curative methods for PCa, but many attempts have failed. The therapeutic failure of PCa is usually due to off-target or side effects; thus, finding a key molecule that could prevent PCa metastatic progression has become the most important goal for curing aggressive PCa. In this study, we collected hundreds of PCa tissues and serum and urine samples from patients to verify the upregulated expression of PC3-secreted microprotein (PSMP) in PCa tumor tissues with high Gleason scores. According to biopsy results, PSMP expression was found related to extraprostatic extension (EPE), contributing to PCa metastasis. Mechanistically, recombinant PSMP protein could promote the proliferation both in vitro and in vivo, and rhPSMP could promote epithelial–mesenchymal transition (EMT) of PC3 in vitro. Additionally, PSMP could also influence cytokine production in the xenograft model and monocyte migration and macrophage polarization in vitro. Our most important finding was that neutralizing antibodies against PSMP could suppress xenograft PC3 growth and promote the survival of PC3 metastatic mice model, providing an effective option to cure human PCa.
Collapse
Affiliation(s)
- Xiaolei Pei
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Danfeng Zheng
- Department of Laboratory Medicine, Center of Clinical Laboratory, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shaoping She
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhiwei Fang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Shiying Zhang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Hao Hu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
35
|
Celik İ, Ayhan-Kılcıgil G, Guven B, Kara Z, Gurkan-Alp AS, Karayel A, Onay-Besikci A. Design, synthesis and docking studies of benzimidazole derivatives as potential EGFR inhibitors. Eur J Med Chem 2019; 173:240-249. [DOI: 10.1016/j.ejmech.2019.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 01/09/2023]
|
36
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
37
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
38
|
Osumi H, Shinozaki E, Takeda Y, Wakatsuki T, Ichimura T, Saiura A, Yamaguchi K, Takahashi S, Noda T, Zembutsu H. Clinical relevance of circulating tumor DNA assessed through deep sequencing in patients with metastatic colorectal cancer. Cancer Med 2018; 8:408-417. [PMID: 30575318 PMCID: PMC6346227 DOI: 10.1002/cam4.1913] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Because circulating tumor DNA (ctDNA) studies focusing on only one or a few genes to monitor the disease progress or treatment response are unlikely to find its clinical significance, the development of cell‐free DNA (cfDNA) panel covering hundreds of mutation hot spots is important for the establishment of clinically practical ctDNA detection system. We enrolled 101 patients with metastatic colorectal cancer (mCRC) who received chemotherapy. Amplicon‐based genomic profiling of 14 genes, which are commonly mutated in CRC, in plasma by next‐generation sequencing (NGS) was carried out to evaluate the feasibility of this assay and was compared with their clinical parameters and RAS status in matched tissue samples. Somatic mutations of the 14 genes in plasma cfDNA were detected in 88 patients (87.1%) with mCRC. Mutations in TP53, KRAS, and APC genes were detected in 70 (69.3%), 39 (38.6%), and 24 (23.7%) patients, respectively. Mutant allele frequencies in plasma were significantly associated with metastasis (liver, P = 0.00004, lymph node, P = 0.008, number of metastatic organs, P = 0.0006), tumor markers (CEA, P = 0.000007, CA19‐9, P = 0.006, LDH, P = 0.00001), and tumor diameter (maximum, P = 0.00002, sum of diameter, P = 0.00009). The overall concordance rate of RAS status between ctDNA and matched tissue was 77.2% (78/101). Our data confirmed that mutant allele in cfDNA can be sensitively detected by amplicon‐based NGS system. These results suggest that ctDNA could be a novel diagnostic biomarker to monitor changes in mutational status and tumor burden in patients with mCRC.
Collapse
Affiliation(s)
- Hiroki Osumi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Eiji Shinozaki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshinori Takeda
- Department of Hepato-Biliary-Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeru Wakatsuki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Ichimura
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akio Saiura
- Department of Hepato-Biliary-Pancreatic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitoshi Zembutsu
- Cancer Precision Medicine Center, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
39
|
Insights into the structural/conformational requirements of cytotoxic oxadiazoles as potential chemotherapeutic target binding agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Milik SN, Abdel-Aziz AK, Lasheen DS, Serya RAT, Minucci S, Abouzid KAM. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors. Eur J Med Chem 2018; 155:316-336. [PMID: 29902719 DOI: 10.1016/j.ejmech.2018.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance.
Collapse
Affiliation(s)
- Sandra N Milik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rabah A T Serya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy; Department of Biosciences, University of Milan, Milan, 20100, Italy
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
41
|
Demirel S, Ayhan Kilcigil G, Kara Z, Güven B, Onay Beşikci A. Synthesis and Pharmacologic Evaluation of Some Benzimidazole Acetohydrazide Derivatives as EGFR Inhibitors. Turk J Pharm Sci 2017; 14:285-289. [PMID: 32454626 DOI: 10.4274/tjps.24008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 12/01/2022]
Abstract
Objectives In this study, some novel 2-(2-phenyl)-1H-benzo[d]imidazol-1-yl)-N'-(arylmethylene) acetohydrazide derivatives (1-12) were designed and synthesized. Materials and Methods Compounds 1-12 were obtained by condensing 2-(2-phenyl)-1H-benzo[d]imidazol-1-yl)acetohydrazide (III) with the corresponding aromatic aldehyde derivatives in the presence of catalytic amounts of hydrochloric acid in ethanol. Results Following the structure elucidation, epidermal growth factor receptor kinase inhibitor activity was measured. The ADP-GloTM kinase assay determines kinase activity based on the quantification of the amount of ADP produced during a kinase reaction. Conclusion Almost all of the compounds' kinase inhibitor activities were rather limited.
Collapse
Affiliation(s)
- Serkan Demirel
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey
| | - Gülgün Ayhan Kilcigil
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ankara, Turkey
| | - Zümra Kara
- Ankara University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Berna Güven
- Ankara University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Arzu Onay Beşikci
- Ankara University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
42
|
Chen Y, Zhou Q, Li X, Wang F, Heist K, Kuick R, Owens SR, Wang TD. Ultrasmall Paramagnetic Iron Oxide Nanoprobe Targeting Epidermal Growth Factor Receptor for In Vivo Magnetic Resonance Imaging of Hepatocellular Carcinoma. Bioconjug Chem 2017; 28:2794-2803. [DOI: 10.1021/acs.bioconjchem.7b00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yan Chen
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Quan Zhou
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xue Li
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fa Wang
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin Heist
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rork Kuick
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Scott R. Owens
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas D. Wang
- Department of Internal Medicine, ‡Department of Biomedical Engineering, §Department of Radiology, ∥Department of Biostatistics, ⊥Department of Pathology, and #Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Eloy JO, Petrilli R, Trevizan LNF, Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces 2017; 159:454-467. [PMID: 28837895 DOI: 10.1016/j.colsurfb.2017.07.085] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/26/2017] [Accepted: 07/29/2017] [Indexed: 12/31/2022]
Abstract
Nanoparticles, especially liposomes, have gained prominence in the field of drug delivery for the treatment of human diseases, particularly cancer; they provide several advantages, including controlled drug release, protection of the drug against degradation, improved pharmacokinetics, long circulation, and passive targeting to tumors and inflammatory sites due to the enhanced permeability and retention effect. The functionalization of liposomes with monoclonal antibodies or antibody fragments to generate immunoliposomes has emerged as a promising strategy for targeted delivery to and uptake by cells overexpressing the antigens to these antibodies, with a consequent reduction in side effects. In this review, we address functionalization strategies for the non-covalent and covalent attachment of monoclonal antibodies and their fragments to liposomal surfaces. The main reaction occurs between the sulfhydryl groups of thiolated antibodies and maleimide-containing liposomes. Furthermore, we explore the main targeting possibilities with these ligands for the treatment of a variety of pathologies, including HER2- and EGFR-positive cancers, inflammatory and cardiovascular diseases, infectious diseases, and autoimmune and neurodegenerative diseases, which have not previously been reviewed together. Overall, many studies have shown selective delivery of immunoliposomes to target cells, with promising in vivo results, particularly for cancer treatment. Although clinical trials have been conducted, immunoliposomes have not yet received clinical approval. However, immunoliposomes are promising formulations that are expected to become available for therapeutic use after clinical trials prove their safety and efficacy, and after scaling issues are resolved.
Collapse
Affiliation(s)
- Josimar O Eloy
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, São Paulo State University, USP, Department of Pharmaceutical Sciences, Ribeirão Preto, SP, Brazil
| | - Lucas Noboru Fatori Trevizan
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University, UNESP, Department of Drugs and Medicines, Araraquara, SP, Brazil
| |
Collapse
|
44
|
Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling. Cell Oncol (Dordr) 2017; 40:549-561. [DOI: 10.1007/s13402-017-0343-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
|
45
|
Sapiezynski J, Taratula O, Rodriguez-Rodriguez L, Minko T. Precision targeted therapy of ovarian cancer. J Control Release 2016; 243:250-268. [PMID: 27746277 DOI: 10.1016/j.jconrel.2016.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
The review is aimed at describing modern approaches to detection as well as precision and personalized treatment of ovarian cancer. Modern methods and future directions of nanotechnology-based targeted and personalized therapy are discussed.
Collapse
Affiliation(s)
- Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, Oregon State University, Portland, OR 97239, United States
| | - Lorna Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Department of Obstetrics and Gynecology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States.
| |
Collapse
|
46
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
47
|
Torrealba N, Rodríguez-Berriguete G, Fraile B, Olmedilla G, Martínez-Onsurbe P, Guil-Cid M, Paniagua R, Royuela M. Expression of several cytokines in prostate cancer: Correlation with clinical variables of patients. Relationship with biochemical progression of the malignance. Cytokine 2016; 89:105-115. [PMID: 27527810 DOI: 10.1016/j.cyto.2016.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND This work is focused on finding new markers that complement or diagnoses currently used towards improving knowledge histological and statistical aspects that allow us to predict the local stage carcinomas and to identify and understand all the factors related to the progression of this disease. MATERIALS AND METHODS Prostates were obtained from: normal prostates from 20 men, diagnosis of BPH (Benign Prostatic Hyperplasia) from 35 men and prostate cancer from 86 men. We studied the behavior of cytokines that have been implicated in inflammatory processes: TNF-alfa, IL-6, IL-1, EGF and TGF-B. Expression of these cytokines and its receptors was analyzed by immunohistochemistry. Spearman's test, Kaplan-Meier curves, univariate and multivariate Cox proportional hazard regression analyses were performed. RESULTS Spearman's analysis showed that there was at least one correlation between TGFB-B, IL-6, gp-130, IL-1B, IL-1R, IL-1RII and clinic pathological feature (preoperative serum PSA, clinical t stage, pathological t stage, positive surgical margins, biochemical progression, survival). Immunostaining score was correlated with some of the clinicopathological feature. In Cox multivariate analysis between the prognostic variables (pathological T stage, Gleason score and lymph node) and immunohistochemical parameters (TGF-B, IL-1a, intensity TGFBRI and intensity TGFBRII) only the expression of IL-1a was retained as independent predictors of biochemical progression after radical prostatectomy. CONCLUSIONS Our results suggest a role for prostatic expression of TGF-B, IL-1a, TGFBRI and TGFBRII as prognostic markers for prostate cancer. The rational combination of novel agents directed toward the inactivation of TGF-B, IL-1a, TGFBRI and TGFBRII could disrupt complementary tumor cell proliferation pathways.
Collapse
Affiliation(s)
- Norelia Torrealba
- Department of Biomedicine and Biotechnology, University of Alcalá, Spain.
| | | | - Benito Fraile
- Department of Biomedicine and Biotechnology, University of Alcalá, Spain.
| | - Gabriel Olmedilla
- Department of Pathology, Príncipe de Asturias Hospital, Alcalá de Henares, Madrid, Spain.
| | - Pilar Martínez-Onsurbe
- Department of Pathology, Príncipe de Asturias Hospital, Alcalá de Henares, Madrid, Spain.
| | - Manuel Guil-Cid
- Department of Urology, Príncipe de Asturias Hospital, Alcalá de Henares, Madrid, Spain.
| | - Ricardo Paniagua
- Department of Biomedicine and Biotechnology, University of Alcalá, Spain.
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, Spain.
| |
Collapse
|
48
|
|
49
|
Yang L, Levi E, Du JH, Zhou HH, Miller R, Majumdar APN. Associations between markers of colorectal cancer stem cells, mutation, microRNA and the clinical features of ulcerative colitis. Colorectal Dis 2016; 18:O185-93. [PMID: 27153478 DOI: 10.1111/codi.13371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023]
Abstract
AIM Several factors have been implicated in the pathogenesis of colorectal cancer (CRC) associated with ulcerative colitis (UC). We investigated markers of cancer cell pluripotency, including CD44 and CD166, microRNA-21 (miR-21) and microRNA-215 (miR-215), and APC, K-ras and DCC mutations in biopsy specimens from patients with UC to evaluate any correlations with clinical risk factors. METHOD We observed 18 patients with UC and collected two biopsy specimens from each patient at diagnosis and at a follow-up end-point. We examined the expression of CD44, CD166, miR-21 and miR-215, and APC, K-ras and DCC mutations. We compared these markers at the two time points and assessed their associations with clinical characteristics, including the duration of colitis, histological alterations and the age of the patient at the onset of UC. RESULTS Most (16/18) patients had alleviation of mucosal inflammation or remained stable during follow-up; one patient developed dysplasia and one had severe aggravation of the lesion during follow-up. Enhanced expression of CD44, CD166 and miR-21 with miR-215 was found in the specimens obtained at follow-up, despite alleviation of mucosal lesions. Coherence of cancer stem cell markers and miRNAs was seen in patients who had significant worsening of inflammation, dysplasia and a long duration of colitis. APC mutation occurred in only one patient; this patient had the longest duration of UC (23 years). CONCLUSION Enhanced markers of CRC in follow-up colonic mucosal samples support the conclusion that the duration of UC plays the most important role in UC-related carcinogenesis.
Collapse
Affiliation(s)
- L Yang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - E Levi
- Division of Gastroenterology and Department of Internal Medicine, Veterans Administration Medical Center, Detroit, Michigan, USA
| | - J H Du
- Division of Gastroenterology and Department of Internal Medicine, Veterans Administration Medical Center, Detroit, Michigan, USA.,Wayne State University School of Medicine, Detroit, Michigan, USA
| | - H H Zhou
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - R Miller
- Division of Gastroenterology and Department of Internal Medicine, Veterans Administration Medical Center, Detroit, Michigan, USA.,Wayne State University School of Medicine, Detroit, Michigan, USA
| | - A P N Majumdar
- Division of Gastroenterology and Department of Internal Medicine, Veterans Administration Medical Center, Detroit, Michigan, USA.,Wayne State University School of Medicine, Detroit, Michigan, USA.,Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
50
|
Kassab AE, Gedawy EM, El-Nassan HB. Synthesis of 4-Heteroaryl-Quinazoline Derivatives as Potential Anti-breast Cancer Agents. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. E. Kassab
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy; Cairo University; Cairo 11562 Egypt
| | - E. M. Gedawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy; Cairo University; Cairo 11562 Egypt
| | - H. B. El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy; Cairo University; Cairo 11562 Egypt
| |
Collapse
|