1
|
Azam H, Veale C, Zitzmann K, Marcone S, Gallagher WM, Prencipe M. Identification of druggable targets from the interactome of the Androgen Receptor and Serum Response Factor pathways in prostate cancer. PLoS One 2024; 19:e0309491. [PMID: 39671399 PMCID: PMC11642960 DOI: 10.1371/journal.pone.0309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND The Androgen Receptor (AR) pathway is crucial in driving the progression of prostate cancer (PCa) to an advanced state. Despite the introduction of second-generation AR antagonists, such as enzalutamide, majority of patients develop resistance. Several mechanisms of resistance have been identified, including the constitutive activation of the AR pathway, the emergence of AR spliced variants, and the influence of other signalling pathways. The Serum Response Factor (SRF) was previously identified as a possible player of resistance involved in a crosstalk with the AR signalling pathway. Elevated SRF levels in PCa patients were associated with disease progression and resistance to enzalutamide. However, the molecular mediators of the crosstalk between SRF and AR still need to be elucidated. The objective of this study was to identify common interactors of the AR/SRF crosstalk as therapeutic targets. METHODS Here we used affinity purification mass spectrometry (MS) following immunoprecipitation of SRF and AR, to identify proteins that interact with both SRF and AR. The list of common interactors was expanded using STRING. Four common interactors were functionally validated using MTT assays. RESULTS Seven common interactors were identified, including HSP70, HSP0AA1, HSP90AB1, HSAP5, PRDX1 and GAPDH. Pathway analysis revealed that the PI3k/AKT pathway was the most enriched in the AR/SRF network. Moreover, pharmacological inhibition of several proteins in this network, including HSP70, HSP90, PI3k and AKT, significantly decreased cellular viability of PCa cells. CONCLUSIONS This study identified a list of AR/SRF common interactors that represent a pipeline of druggable targets for the treatment of PCa.
Collapse
Affiliation(s)
- Haleema Azam
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Colin Veale
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Kim Zitzmann
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - William M. Gallagher
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Maria Prencipe
- Cancer Biology and Therapeutics Laboratory, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
3
|
Montazeri-Najafabady N, Chatrabnous N, Arabnezhad MR, Azarpira N. Anti-androgenic effect of astaxanthin in LNCaP cells is mediated through the aryl hydrocarbon-androgen receptors cross talk. J Food Biochem 2021; 45:e13702. [PMID: 33694182 DOI: 10.1111/jfbc.13702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the anti-androgenic effects of astaxanthin (AST) on human prostatic cancer cell growth, and its impact on androgen receptor (AR) signaling using prostate cancer (PCa) cell line LNCaP. LNCaP cells were treated with AST alone and in combination with CH223191 and flutamide (Flu) in the presence and absence of testosterone. MTT assay, cellular prostate-specific antigen (PSA) and dihydrotestosterone (DHT) production, mRNA levels of CYP1A1, PSA, Kallikrein-Related Peptidase 2 (KLK2), Transmembrane Serine Protease 2 (TMPRSS2), and AR genes were measured as endpoints. The expression of CYP1A1, PSA, KLK2, TMPRSS2, and AR mRNA levels was decreased which results in reducing the production of PSA and DHT in the presence of testosterone. Our data clearly demonstrate that AST has a potential ability to suppress the human prostate LNCaP cells growth at high concentrations. AST was able to repress the testosterone-induced transcription of AR-target genes. PRACTICAL APPLICATIONS: Astaxanthin is a natural compound with the most potent antioxidant activity among other antioxidants. In the current study, ASX suppressed the LNCaP cells at high concentrations. Furthermore, AST inhibited testosterone-induced transcriptional activation of androgen-related genes. AST induced the expression of CYP1A1, which is able to metabolize the steroid hormones. It seems that AST can act as AhR exogenous ligand by induction of CYP1A1, which results in testosterone metabolism and consequent suppression of AR genes. So that, AST could prevent the growth of testosterone-dependent PCa cells, downregulate downstream genes in testosterone pathways, and enhance the metabolism of testosterone via AhR pathway. Collectively, AST could be considered as a potential candidate for the treatment of PCa.
Collapse
Affiliation(s)
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Richmond O, Ghotbaddini M, Allen C, Walker A, Zahir S, Powell JB. The aryl hydrocarbon receptor is constitutively active in advanced prostate cancer cells. PLoS One 2014; 9:e95058. [PMID: 24755659 PMCID: PMC3995675 DOI: 10.1371/journal.pone.0095058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/23/2014] [Indexed: 11/30/2022] Open
Abstract
Background Distant prostate cancers are commonly hormone refractory and exhibit increased growth no longer inhibited by androgen deprivation therapy. Understanding all molecular mechanisms contributing to uncontrolled growth is important to obtain effective treatment strategies for hormone refractory prostate cancers (HRPC). The aryl hydrocarbon receptor (AhR) affects a number of biological processes including cell growth and differentiation. Several studies have revealed that exogenous AhR ligands inhibit cellular proliferation but recent evidence suggests AhR may possess intrinsic functions that promote cellular proliferation in the absence of exogenous ligands. Methods/Results qRT-PCR and western blot analysis was used to determine AhR mRNA and protein expression in hormone sensitive LNCaP cells as well as hormone refractory DU145, PC3 and PC3M prostate cancer cell lines. LNCaP cells express AhR mRNA and protein at a much lower level than the hormone refractory cell models. Cellular fractionation and immunocytochemistry revealed nuclear localization of AhR in the established hormone refractory cell lines while LNCaP cells are devoid of nuclear AhR protein. qRT-PCR analysis used to assess basal CYP1B1 levels and a xenobiotic responsive element binding assay confirmed ligand independent transcriptional activity of AhR in DU145, PC3 and PC3M cells. Basal CYP1B1 levels were decreased by treatment with specific AhR inhibitor, CH223191. An in vitro growth assay revealed that CH223191 inhibited growth of DU145, PC3 and PC3M cells in an androgen depleted environment. Immunohistochemical staining of prostate cancer tissues revealed increased nuclear localization of AhR in grade 2 and grade 3 cancers compared to the well differentiated grade 1 cancers. Conclusions Together, these results show that AhR is constitutively active in advanced prostate cancer cell lines that model hormone refractory prostate cancer. Chemical ablation of AhR signaling can reduce the growth of advanced prostate cancer cells, an effect not achieved with androgen receptor inhibitors or growth in androgen depleted media.
Collapse
Affiliation(s)
- Oliver Richmond
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Maryam Ghotbaddini
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Cidney Allen
- Clark Atlanta University Department of Biological Sciences, Atlanta, Georgia, United States of America
| | - Alice Walker
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
| | - Shokouh Zahir
- Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Joann B. Powell
- Clark Atlanta University Center for Cancer Research and Therapeutic Development (CCRTD), Atlanta, Georgia, United States of America
- Clark Atlanta University Department of Biological Sciences, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
5
|
Powell JB, Goode GD, Eltom SE. The Aryl Hydrocarbon Receptor: A Target for Breast Cancer Therapy. ACTA ACUST UNITED AC 2013; 4:1177-1186. [PMID: 25068070 PMCID: PMC4111475 DOI: 10.4236/jct.2013.47137] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a battery of genes in response to exposure to a broad class of environmental poly aromatic hydrocarbons (PAH). AhR is historically characterized for its role in mediating the toxicity and adaptive responses to these chemicals, however mounting evidence has established a role for it in ligand-independent physiological processes and pathological conditions, including cancer. The AhR is overexpressed and constitutively activated in advanced breast cancer cases and was shown to drive the progression of breast cancer. In this article we will review the current state of knowledge on the possible role of AhR in breast cancer and how it will be exploited in targeting AhR for breast cancer therapy.
Collapse
Affiliation(s)
- Joann B Powell
- Department of Biological Sciences & Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, USA
| | - Gennifer D Goode
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, USA
| | - Sakina E Eltom
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, USA
| |
Collapse
|
6
|
Matulis CK, Mayo KE. The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-α subunit gene in ovarian granulosa cells. Mol Endocrinol 2012; 26:1278-90. [PMID: 22734036 DOI: 10.1210/me.2011-1347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nuclear receptor transcriptional activity is enhanced by interaction with coactivators. The highly related nuclear receptor 5A (NR5A) subfamily members liver receptor homolog 1 and steroidogenic factor 1 bind to and activate several of the same genes, many of which are important for reproductive function. To better understand transcriptional activation by these nuclear receptors, we sought to identify interacting proteins that might function as coactivators. The LIM domain protein four and a half LIM domain 2 (FHL2) was identified as interacting with the NR5A receptors in a yeast two-hybrid screen of a human ovary cDNA library. FHL2, and the closely related FHL1, are both expressed in the rodent ovary and in granulosa cells. Small interfering RNA-mediated knockdown of FHL1 and FHL2 in primary mouse granulosa cells reduced expression of the NR5A target genes encoding inhibin-α and P450scc. In vitro assays confirmed the interaction between the FHL and NR5A proteins and revealed that a single LIM domain of FHL2 is sufficient for this interaction, whereas determinants in both the ligand binding domain and DNA binding domain of NR5A proteins are important. FHL2 enhances the ability of both liver receptor homolog 1 and steroidogenic factor 1 to activate the inhibin-α subunit gene promoter in granulosa cells and thus functions as a transcriptional coactivator. FHL2 also interacts with cAMP response element-binding protein and substantially augments activation of inhibin gene expression by the combination of NR5A receptors and forskolin, suggesting that FHL2 may facilitate integration of these two signals. Collectively these results identify FHL2 as a novel coactivator of NR5A nuclear receptors in ovarian granulosa cells and suggest its involvement in regulating target genes important for mammalian reproduction.
Collapse
Affiliation(s)
- Christina K Matulis
- Department of Molecular Biosciences and Center of Reproductive Science, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
7
|
Kollara A, Brown TJ. Expression and function of nuclear receptor co-activator 4: evidence of a potential role independent of co-activator activity. Cell Mol Life Sci 2012; 69:3895-909. [PMID: 22562579 PMCID: PMC3492700 DOI: 10.1007/s00018-012-1000-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/22/2022]
Abstract
Nuclear receptor coactivator 4 (NcoA4), also known as androgen receptor-associated protein 70 (ARA70), was initially discovered as a component of Ret-Fused Gene expressed in a subset of papillary thyroid carcinomas. Subsequent studies have established NcoA4 as a coactivator for a variety of nuclear receptors, including peroxisome proliferator activated receptors α and γ, and receptors for steroid hormones, vitamins D and A, thyroid hormone, and aryl hydrocarbons. While human NcoA4 has both LXXLL and FXXLF motifs that mediate p160 coactivator nuclear receptor interactions, this ubiquitously expressed protein lacks clearly defined functional domains. Several studies indicate that NcoA4 localizes predominantly to the cytoplasm and affects ligand-binding specificity of the androgen receptor, which has important implications for androgen-independent prostate cancer. Two NcoA4 variants, which may exert differential activities, have been identified in humans. Recent studies suggest that NcoA4 may play a role in development, carcinogenesis, inflammation, erythrogenesis, and cell cycle progression that may be independent of its role as a receptor coactivator. This review summarizes what is currently known of the structure, expression, regulation, and potential functions of this unique protein in cancerous and non-cancerous pathologies.
Collapse
Affiliation(s)
- Alexandra Kollara
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 25 Orde Street, 6-1001TB, Toronto, ON, M5T 3H7, Canada
| | | |
Collapse
|
8
|
Kurakula K, van der Wal E, Geerts D, van Tiel CM, de Vries CJM. FHL2 protein is a novel co-repressor of nuclear receptor Nur77. J Biol Chem 2011; 286:44336-43. [PMID: 22049082 DOI: 10.1074/jbc.m111.308999] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the NR4A orphan nuclear receptor subfamily Nur77, Nurr1, and NOR-1, regulate a variety of biological functions including vascular disease and metabolism. In this study, we identified Four and a half LIM domains protein-2 (FHL2) as a novel interacting protein of NR4A nuclear receptors by yeast two-hybrid screen and co-immunoprecipitation studies. Each of the four LIM domains of FHL2 can bind Nur77, and both the amino-terminal domain and the DNA binding domain of Nur77 are involved in the interaction between FHL2 and Nur77. FHL2 represses Nur77 transcriptional activity in a dose-dependent manner, and short hairpin RNA-mediated knockdown of FHL2 results in increased Nur77 transcriptional activity. ChIP experiments on the enolase3 promoter revealed that FHL2 inhibits the association of Nur77 with DNA. FHL2 is highly expressed in human endothelial and smooth muscle cells, but not in monocytes or macrophages. To substantiate functional involvement of FHL2 in smooth muscle cell physiology, we demonstrated that FHL2 overexpression increases the growth of these cells, whereas FHL2 knockdown results in reduced DNA synthesis. Collectively, these studies suggest that association of FHL2 with Nur77 plays a pivotal role in vascular disease.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Kollara A, Brown TJ. Variable expression of nuclear receptor coactivator 4 (NcoA4) during mouse embryonic development. J Histochem Cytochem 2010; 58:595-609. [PMID: 20354146 DOI: 10.1369/jhc.2010.955294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human nuclear receptor coactivator 4 (NcoA4) amplifies the activity of several ligand-activated nuclear transcription factors, including the aryl hydrocarbon receptor (AhR) and androgen receptor (AR). Because these receptors exert important regulatory effects during development, with AhR ubiquitously expressed after embryonic day 9.5 (E9.5) and AR expressed from E12 onward, we examined NcoA4 expression in mouse embryos from E9.5 to E17.5. Full-length NcoA4 transcript was detected by RT-PCR at all embryonic stages and in all adult mouse tissues examined, although a novel splice variant was also detected. Western blot analysis indicated the expression of full-length NcoA4 protein, which was more highly expressed at later (E15.5-E17.5) embryonic stages. NcoA4 protein was also present at varying levels in all adult mouse tissues examined. A dynamic expression profile for NcoA4 during early development was indicated by immunohistochemistry in cardiac, hepatic, and lung tissue. Unlike human NcoA4, murine NcoA4 lacks an LXXLL motif, which has been implicated in the interaction with AR. Overexpression of murine NcoA4 augmented the transcriptional activity of AhR by 5-fold and AR by only 1.5-fold in COS cells. These studies demonstrate ubiquitous NcoA4 expression throughout development and suggest that this coactivator may play a role in modulating nuclear receptor activity, particularly that of the AhR, during development.
Collapse
Affiliation(s)
- Alexandra Kollara
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, ON, Canada
| | | |
Collapse
|
10
|
Kollara A, Brown TJ. Four and a half LIM domain 2 alters the impact of aryl hydrocarbon receptor on androgen receptor transcriptional activity. J Steroid Biochem Mol Biol 2010; 118:51-8. [PMID: 19815066 DOI: 10.1016/j.jsbmb.2009.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 11/30/2022]
Abstract
Aryl hydrocarbon receptor (AhR) ligands modulate androgen receptor (AR) signaling in prostate cancer cells through partially defined mechanisms. Furthermore, these facilitatory and inhibitory effects of AhR on AR signaling appear to be cell or context specific. In the present study we demonstrate that both AhR and AhR-nuclear translocator (ARNT) interact with AR. AhR but not ARNT enhanced the AR-transcriptional activity which was independent of exogenous AhR ligand treatment (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). We then tested if coactivators common to both receptors alter the facilitatory effect of AhR on AR activity. NcoA4 overexpression did not alter the AhR facilitatory effect on AR, whereas SRC1 overexpression further enhanced the effect. In contrast, FHL2 overexpression blocked the facilitatory effect of AhR. In the presence of exogenous FHL2 expression, AhR repressed AR activity, whereas at low endogenous levels of FHL2 expression, AhR overexpression enhanced AR activity. At high FHL2 expression levels, TCDD treatment decreased AR activity and this effect was reversed by AhR overexpression. These findings demonstrate that AhR modulation of AR activity is differentially altered by the level of FHL2 and AhR present in the cell.
Collapse
Affiliation(s)
- Alexandra Kollara
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|