1
|
Yang H, Chen Y, Zhou Z, Wang Y, Li P, Li Y. Integrating multi-omics and experimental techniques to decode ubiquitinated protein modifications in hepatocellular carcinoma. Front Pharmacol 2025; 16:1545472. [PMID: 40290433 PMCID: PMC12022440 DOI: 10.3389/fphar.2025.1545472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Background Ubiquitination, a critical post-translational modification, plays a pivotal role in regulating protein stability and activity, influencing various aspects of cancer development, including metabolic reprogramming, immune evasion, and tumor progression. However, the specific role of ubiquitination in hepatocellular carcinoma (HCC), particularly in relation to the tumor microenvironment (TME), remains poorly understood. This study aims to systematically explore the role of ubiquitination in shaping the TME of HCC, with a focus on its impact on cancer progression and immune modulation. Methods We performed bioinformatics analysis by integrating multiple publicly available HCC datasets to assess the ubiquitination status across various cell types in the TME, including plasma cells, fibroblasts, endothelial cells, and epithelial-mesenchymal transition (EMT) cells. Ubiquitination scores were calculated to categorize these cell types, and survival data, along with spatial transcriptomics, were employed to evaluate how different levels of ubiquitination influence HCC progression. In vitro experiments, such as transwell, CCK8, and wound healing assays, were used to further investigate the role of the key ubiquitination gene UBE2C in HCC phenotypes. Results Our study revealed that ubiquitination-related genes are significantly upregulated in HCC tissues, with high expression levels correlating with poor prognosis in patients. Pathway analysis showed that these genes are enriched in key processes such as cell cycle regulation, DNA repair, metabolic reprogramming, and p53 signaling. These pathways contribute to the TME by promoting tumor cell proliferation, facilitating matrix remodeling, and enhancing angiogenesis. Notably, UBE2C, a critical ubiquitination enzyme, appears to play a key role in immune evasion, potentially by inhibiting anti-tumor immune responses and reducing the immune system's ability to recognize and eliminate tumor cells. Furthermore, experimental data confirmed that UBE2C overexpression promotes HCC cell proliferation, invasion, and metastasis, further supporting its role in tumor progression and TME remodeling. Conclusion This study reveals the multifaceted regulatory roles of ubiquitination in HCC. Ubiquitination not only supports proliferation and anti-apoptotic functions within tumor cells but also promotes tumor progression by modulating the activity of immune and stromal cells. Among all ubiquitination-related genes, UBE2C emerges as a potential prognostic biomarker and therapeutic target in HCC, offering new directions for precision treatment of HCC in the future.
Collapse
Affiliation(s)
- Haikun Yang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Yuan Chen
- Department of Geriatric Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Zhou
- The Hepatobiliary and Pancreatic Disease Area Department of Shanxi Provincial People Hospital, Taiyuan, China
| | - Yanjing Wang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Peng Li
- The Hepatobiliary and Pancreatic Disease Area Department of Shanxi Provincial People Hospital, Taiyuan, China
| | - Yang Li
- Department of Geriatric Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Ye Y, Liu N, Zeng Y, Guo Z, Wang X, Xu X. Aclacinomycin enhances the killing effect of allogeneic NK cells on acute myeloid leukemia cells by inducing immunogenic cell death. Front Immunol 2025; 16:1521939. [PMID: 40051630 PMCID: PMC11882597 DOI: 10.3389/fimmu.2025.1521939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/13/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Natural killer (NK) cells, which exert spontaneous cytotoxicity against infectious diseases and cancer, also play an important role in leukemia therapy. Despite the success of NK-based therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in these hematologic malignancies remains elusive. The aim of the present study was to investigate whether allogeneic NK cells combined with aclacinomycin (ACM) could enhance anti-leukemic functionality against an acute myeloid leukemia (AML) cell line and to clarify the underlying mechanism. Methods KG-1α and HL-60 AML cell lines were subjected to different treatments. The effects of different drug combinations on cytotoxicity, cell viability, and apoptotic status were examined. Results The results showed that the combination of ACM (40 nmol/l) and allogeneic NK cells (ratio 20:1) was significantly cytotoxic to AML cells and increased the apoptosis of AML cells, especially after 72 h of treatment. Subsequent analyses revealed that the expression of immunogenic cell death (ICD)-related molecules calreticulin, adenosine triphosphate, and high mobility group box 1, as well as NK cell effector production-perforin and granzyme B-was markedly increased in the combination treatment group. These findings suggest that ACM enhances the anti-leukemic activity of allogeneic NK cells through the ICD pathway. Discussion These results demonstrated that allogeneic NK cells had enhanced functional responses when stimulated with ACM in vitro, exhibiting superior effector cytokine production and cytotoxicity compared to the control, which contained conventional NK cells. In conclusion, the present study suggested that the combination of ACM and allogeneic NK cells is a promising therapeutic strategy against AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Aclarubicin/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- Immunogenic Cell Death/drug effects
- Immunogenic Cell Death/immunology
- Cytotoxicity, Immunologic/drug effects
- Cell Line, Tumor
- HL-60 Cells
- Cell Survival/drug effects
- Antibiotics, Antineoplastic/pharmacology
Collapse
Affiliation(s)
- Yongbin Ye
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, Guangdong, China
| | - Ning Liu
- Department of Hematology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, Guangdong, China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
- Internal Medicine Department, Tianyang People’s Hospital of Baise City, Baise, China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Steidl E, Neuhaus E, Shrestha M, Deichmann R, Weber K, Steinbach JP, Pilatus U, Hattingen E, Schüre JR. Pathological tissue changes in brain tumors affect the pH-sensitivity of the T1-corrected apparent exchange dependent relaxation (AREX) of the amide protons. NMR IN BIOMEDICINE 2025; 38:e5285. [PMID: 39467029 PMCID: PMC11602268 DOI: 10.1002/nbm.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Measuring the intracellular pH (pHi) is of interest for brain tumor diagnostics. Common metrics of CEST imaging like the amide proton transfer-weighted (APTw) MTRasym are pHi sensitive and allow differentiating malignant tumor from healthy tissue. Yet, the image contrast also depends on additional magnetization transfer effects and T1. In contrast, the apparent exchange-dependent relaxation (AREX) provides a T1 corrected exchange rate of the amide protons. As AREX still depends on amide proton density, its pHi sensitivity remains ambiguous. Hence, we conducted this study to assess the influence of pathologic tissue changes on the pHi sensitivity of AREX in vivo. Patients with newly diagnosed intra-axial brain tumors were prospectively recruited and underwent conventional MRI, quantitative T1 relaxometry, APT-CEST and 31P-MRS on a 3T MRI scanner. Tumors were segmented into contrast-enhancing tumor (CE), surrounding T2 hyperintensity (T2-H) and contralateral normal appearing white matter (CNAWM). T1 mapping and APT-CEST metrics were correlated with 31P-MRS-derived pHi maps (Pearson's correlation). Without differentiating tissue subtypes, pHi did not only correlate significantly with MTRasym (r = 0.46) but also with T1 (r = 0.49). Conversely, AREX only correlated poorly with pHi (r = 0.17). Analyzing different tissue subtypes separately revealed a tissue dependency of the pHi sensitivity of AREX with a significant correlation (r = 0.6) in CNAWM and no correlation in T2-H or CE (r = -0.11/-0.24). CE showed significantly increased MTRasym, pHi, and T1 compared with CNAWM (p < 0.001). In our study, the pHi sensitivity of AREX was limited to CNAWM. The lack of sensitivity in CE and T2-H is probably attributable to altered amide and water proton concentrations in these tissues. Conversely, the correlation of pHi with MTRasym may be explained by the coincidental contrast increase through increased T1 and amide proton density. Therefore, limited structural deviations from CNAWM might be a perquisite for the use of CEST contrasts as pHi-marker.
Collapse
Affiliation(s)
- Eike Steidl
- University Hospital, Institute of NeuroradiologyGoethe University FrankfurtFrankfurtGermany
- University Hospital, University Cancer Center (UCT)Goethe University FrankfurtFrankfurtGermany
| | - Elisabeth Neuhaus
- University Hospital, Institute of NeuroradiologyGoethe University FrankfurtFrankfurtGermany
| | - Manoj Shrestha
- Brain Imaging CenterGoethe University FrankfurtFrankfurtGermany
| | - Ralf Deichmann
- Brain Imaging CenterGoethe University FrankfurtFrankfurtGermany
| | - Katharina Weber
- University Hospital, University Cancer Center (UCT)Goethe University FrankfurtFrankfurtGermany
- University Hospital, Neurological Institute (Edinger Institute)Goethe University FrankfurtFrankfurtGermany
- Frankfurt Cancer Institute (FCI)Goethe University FrankfurtFrankfurtGermany
- German Cancer Consortium (DKTK)Partner Site Frankfurt, and German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Joachim P. Steinbach
- University Hospital, Institute of NeurooncologyGoethe University FrankfurtFrankfurtGermany
| | - Ulrich Pilatus
- University Hospital, Institute of NeuroradiologyGoethe University FrankfurtFrankfurtGermany
| | - Elke Hattingen
- University Hospital, Institute of NeuroradiologyGoethe University FrankfurtFrankfurtGermany
| | - Jan Rüdiger Schüre
- University Hospital, Institute of NeuroradiologyGoethe University FrankfurtFrankfurtGermany
- Institute of Neuroradiology, University Clinic ErlangenFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
4
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
5
|
Gao B, Zhou P, Wang L, Wang Z, Yi Y, Li X, Zhou J, Fan J, Qiu S, Xu Y. Effects of the subtypes of apolipoprotein E on immune inhibition and prognosis in patients with Hepatocellular Carcinoma. J Cancer Res Clin Oncol 2024; 150:341. [PMID: 38976030 PMCID: PMC11230970 DOI: 10.1007/s00432-024-05856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
PURPOSE To investigate whether prognosis of patients with hepatocellular carcinoma (HCC) is affected by the abundance and subgroups of myeloid-derived suppressor cells (MDSCs) as well as subtypes and expression of apolipoprotein E (apoE). METHODS 31 HCC patients were divided into three groups according to blood total apoE level for detecting the abundance of immunoregulatory cells by flow cytometry. Tumour tissue microarrays from 360 HCC patients were evaluated about the abundance and subgroups of MDSCs and the expression of apoE2, apoE3, apoE4 by immunofluorescence staining and immunohistochemistry staining. Survival analysis by means of univariate, multivariate COX regression and Kaplan-Meier methods of the 360 patients was performed based on clinical and pathological examinations along with 10 years' follow-up data. RESULTS The lower apoE group presented higher abundance of MDSCs in the peripheral blood of HCC patients than higher apoE group. The abundance of monocyte-like MDSCs (M-MDSCs) was higher in the apoE low level group than high level group (p = 0.0399). Lower H-score of apoE2 (HR = 6.140, p = 0.00005) and higher H-score of apoE4 (HR = 7.001, p = 0.009) in tumour tissue were significantly associated with shorter overall survival (OS). The higher infiltration of polymorphonuclear granulocyte-like MDSCs (PMN-MDSCs, HR = 3.762, p = 0.000009) and smaller proportion of M-MDSCs of total cells (HR = 0.454, p = 0.006) in tumour tissue were independent risk factors for shorter recurrence-free survival (RFS). CONCLUSION The abundance of MDSCs in HCC patients' plasma negatively correlates with the level of apoE. The expression of apoE4 in HCC tissue indicated a poor prognosis while apoE2 might be a potential protective factor.
Collapse
Affiliation(s)
- Bowen Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Peiyun Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
- Shanghai Cancer Centre, Fudan University, Shanghai, 200032, China
| | - Li Wang
- Institutes of Biomedical Science, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhutao Wang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian Li
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Guo JY, White E. Role of Tumor Cell Intrinsic and Host Autophagy in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041539. [PMID: 38253423 PMCID: PMC11216174 DOI: 10.1101/cshperspect.a041539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Macroautophagy (autophagy hereafter) is an intracellular nutrient scavenging pathway induced by starvation and other stressors whereby cellular components such as organelles are captured in double-membrane vesicles (autophagosomes), whereupon their contents are degraded through fusion with lysosomes. Two main purposes of autophagy are to recycle the intracellular breakdown products to sustain metabolism and survival during starvation and to eliminate damaged or excess cellular components to suppress inflammation and maintain homeostasis. In contrast to most normal cells and tissues in the fed state, tumor cells up-regulate autophagy to promote their growth, survival, and malignancy. This tumor-cell-autonomous autophagy supports elevated metabolic demand and suppresses tumoricidal activation of the innate and adaptive immune responses. Tumor-cell-nonautonomous (e.g., host) autophagy also supports tumor growth by maintaining essential tumor nutrients in the circulation and tumor microenvironment and by suppressing an antitumor immune response. In the setting of cancer therapy, autophagy is a resistance mechanism to chemotherapy, targeted therapy, and immunotherapy. Thus, tumor and host autophagy are protumorigenic and autophagy inhibition is being examined as a novel therapeutic approach to treat cancer.
Collapse
Affiliation(s)
- Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey 08544, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, New Jersey 08544, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08903, USA
| |
Collapse
|
7
|
Gong Y, Zhou M, Zhu Y, Pan J, Zhou X, Jiang Y, Zeng H, Zheng H, Geng X, Huang D. PVALB Was Identified as an Independent Prognostic Factor for HCC Closely Related to Immunity, and Its Absence Accelerates Tumor Progression by Regulating NK Cell Infiltration. J Hepatocell Carcinoma 2024; 11:813-838. [PMID: 38737383 PMCID: PMC11088852 DOI: 10.2147/jhc.s450479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Hepatocellular carcinoma is the most common primary liver cancer, with poor prognosis. Complex immune microenvironment of the liver is linked to the development of HCC. PVALB is a calcium-binding protein which has been described as a cancer suppressor gene in thyroid cancer and glioma. Nevertheless, the role of PVALB in HCC is unknown. Materials and Methods We obtained data from TCGA and GSE54236 datasets. MCP-counter, WGCNA and LASSO model were applied to identify PVALB. With UALCAN, MethSurv, and other websites, we probed the expression, methylation and survival of PVALB. LinkedOmics and GSEA were adopted for functional analysis, while TIMER, TISIDB, Kaplan-Meier plotter, TIDE databases were utilized to evaluate the relevance of PVALB to the tumor immune microenvironment and predict immunotherapy efficacy. TargetScan, DIANA, LncRNASNP2 databases and relevant experiments were employed to construct ceRNA network. Finally, molecular docking and drug sensitivity of PVALB were characterized by GeneMANIA, CTD, and so on. Results PVALB was recognized as a gene associated with HCC and NK cell. Its expression was down-regulated in HCC tissue, which lead to adverse prognosis. Besides, the hypomethylation of PVALB was related to its reduced expression. Notably, PVALB was tightly linked to immune, and its reduced expression attenuated the anticancer effect of NK cells via the Fas/FasL pathway, leading to a adverse outcome. The lnc-YY1AP1-3/hsa-miR-6735-5p/PVALB axis may regulate the PVALB expression. Finally, we found immunotherapy might be a viable treatment option. Conclusion In a word, PVALB is a prognostic indicator, whose low expression facilitates HCC progression by impacting NK cell infiltration.
Collapse
Affiliation(s)
- Yiyang Gong
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
8
|
Huldani H, Malviya J, Rodrigues P, Hjazi A, Deorari MM, Al-Hetty HRAK, Qasim QA, Alasheqi MQ, Ihsan A. Discovering the strength of immunometabolism in cancer therapy: Employing metabolic pathways to enhance immune responses. Cell Biochem Funct 2024; 42:e3934. [PMID: 38379261 DOI: 10.1002/cbf.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Immunometabolism, which studies cellular metabolism and immune cell function, is a possible cancer treatment. Metabolic pathways regulate immune cell activation, differentiation, and effector functions, crucial to tumor identification and elimination. Immune evasion and tumor growth can result from tumor microenvironment metabolic dysregulation. These metabolic pathways can boost antitumor immunity. This overview discusses immune cell metabolism, including glycolysis, oxidative phosphorylation, amino acid, and lipid metabolism. Amino acid and lipid metabolic manipulations may improve immune cell activity and antitumor immunity. Combination therapy using immunometabolism-based strategies may enhance therapeutic efficacy. The complexity of the metabolic network, biomarker development, challenges, and future approaches are all covered, along with a summary of case studies demonstrating the effectiveness of immunometabolism-based therapy. Metabolomics, stable isotope tracing, single-cell analysis, and computational modeling are also reviewed for immunometabolism research. Personalized and combination treatments are considered. This review adds to immunometabolism expertise and sheds light on metabolic treatments' ability to boost cancer treatment immunological response. Also, in this review, we discussed the immune response in cancer treatment and altering metabolic pathways to increase the immune response against malignancies.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Jitendra Malviya
- Institute of Advance Bioinformatics, Bhopal, Madhya Pradesh, India
| | - Paul Rodrigues
- Department of Computer Engineering, King Khalid University, Al-Faraa, Asir-Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, Prince Sattam bin Abdulaziz University College of Applied Medical Sciences, Al-Kharj, Saudi Arabia
| | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | | | - Ali Ihsan
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
9
|
Chuang YM, Tzeng SF, Ho PC, Tsai CH. Immunosurveillance encounters cancer metabolism. EMBO Rep 2024; 25:471-488. [PMID: 38216787 PMCID: PMC10897436 DOI: 10.1038/s44319-023-00038-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
Tumor cells reprogram nutrient acquisition and metabolic pathways to meet their energetic, biosynthetic, and redox demands. Similarly, metabolic processes in immune cells support host immunity against cancer and determine differentiation and fate of leukocytes. Thus, metabolic deregulation and imbalance in immune cells within the tumor microenvironment have been reported to drive immune evasion and to compromise therapeutic outcomes. Interestingly, emerging evidence indicates that anti-tumor immunity could modulate tumor heterogeneity, aggressiveness, and metabolic reprogramming, suggesting that immunosurveillance can instruct cancer progression in multiple dimensions. This review summarizes our current understanding of how metabolic crosstalk within tumors affects immunogenicity of tumor cells and promotes cancer progression. Furthermore, we explain how defects in the metabolic cascade can contribute to developing dysfunctional immune responses against cancers and discuss the contribution of immunosurveillance to these defects as a feedback mechanism. Finally, we highlight ongoing clinical trials and new therapeutic strategies targeting cellular metabolism in cancer.
Collapse
Affiliation(s)
- Yu-Ming Chuang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Sheue-Fen Tzeng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Chin-Hsien Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Liu M, Lai Z, Yuan X, Jin Q, Shen H, Rao D, Huang D. Role of exosomes in the development, diagnosis, prognosis and treatment of hepatocellular carcinoma. Mol Med 2023; 29:136. [PMID: 37848835 PMCID: PMC10580543 DOI: 10.1186/s10020-023-00731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/17/2023] [Indexed: 10/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is characterized by occult onset resulting in most patients being diagnosed at advanced stages and with poor prognosis. Exosomes are nanoscale vesicles with a lipid bilayer envelope released by various cells under physiological and pathological conditions, which play an important role in the biological information transfer between cells. There is growing evidence that HCC cell-derived exosomes may contribute to the establishment of a favorable microenvironment that supports cancer cell proliferation, invasion, and metastasis. These exosomes not only provide a versatile platform for diagnosis but also serve as a vehicle for drug delivery. In this paper, we review the role of exosomes involved in the proliferation, migration, and metastasis of HCC and describe their application in HCC diagnosis and treatment. We also discuss the prospects of exosome application in HCC and the research challenges.
Collapse
Affiliation(s)
- Meijin Liu
- Ganzhou Jingkai District People's Hospital, Ganzhou, China
| | - Zhonghong Lai
- Department of Traumatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoying Yuan
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
11
|
Jin M, Kim CA, Bae DJ, Kim SY, Kim TY, Kim WB, Shong YK, Kim WG, Jeon MJ. Changes in peripheral blood immune cell population in thyroid cancer patients treated with lenvatinib. Sci Rep 2023; 13:12765. [PMID: 37550394 PMCID: PMC10406916 DOI: 10.1038/s41598-023-39503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
This study evaluated changes in the peripheral blood immune cell population in patients with advanced thyroid cancer receiving lenvatinib treatment to confirm the immune-modulatory effect of lenvatinib. After obtaining informed consent from patients, we prospectively collected 20 ml of whole blood at 2-3 months intervals 2-4 times from each patient; peripheral blood mononuclear cells (PBMCs) were separated, and the Maxpar Direct Immune Profiling Assay was performed. A total of 10 patients were enrolled, and 31 blood samples were obtained. The median age of patients was 65 years, and all patients showed durable responses to the lenvatinib treatment. When we compared the PBMC profiles between the pre-treatment, on-treatment, and off-treatment samples, the peripheral natural killer (NK) cell proportion differed significantly. The proportion of NK cells among total live cells significantly increased from 9.3 ± 4.5 (%) in the pre-treatment samples to 20.8 ± 7.9 (%) in the on-treatment samples (P = 0.009) and decreased to 13.3 ± 3.1 (%) in the off-treatment samples (P = 0.07). There was a significant increase in the peripheral NK cell population with lenvatinib treatment in advanced thyroid cancer patients. This finding confirms the immune-modulatory effect of lenvatinib.
Collapse
Affiliation(s)
- Meihua Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
- Division of Endocrinology and Metabolism, Dankook University College of Medicine, Cheonan, 3116, Korea
| | - Chae A Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Jun Bae
- PrismCDX Co., Ltd., 593-16, Dongtan Giheung-ro, Hwaseoung-si, 18469, Gyeonggi-do, Korea
| | - Sang-Yeob Kim
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
12
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
14
|
Qiao DR, Shan GY, Wang S, Cheng JY, Yan WQ, Li HJ. The mononuclear phagocyte system in hepatocellular carcinoma. World J Gastroenterol 2022; 28:6345-6355. [PMID: 36533105 PMCID: PMC9753057 DOI: 10.3748/wjg.v28.i45.6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
The mononuclear phagocyte system (MPS) consists of monocytes, dendritic cells and macrophages, which play vital roles in innate immune defense against cancer. Hepatocellular carcinoma (HCC) is a complex disease that is affected or initiated by many factors, including chronic hepatitis B virus infection, hepatitis C virus infection, metabolic disorders or alcohol consumption. Liver function, tumor stage and the performance status of patients affect HCC clinical outcomes. Studies have shown that targeted treatment of tumor microenvironment disorders may improve the efficacy of HCC treatments. Cytokines derived from the innate immune response can regulate T-cell differentiation, thereby shaping adaptive immunity, which is associated with the prognosis of HCC. Therefore, it is important to elucidate the function of the MPS in the progression of HCC. In this review, we outline the impact of HCC on the MPS. We illustrate how HCC reshapes MPS cell phenotype remodeling and the production of associated cytokines and characterize the function and impairment of the MPS in HCC.
Collapse
Affiliation(s)
- Duan-Rui Qiao
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Shuai Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Department of Students Affairs, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wei-Qun Yan
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
15
|
He K, Shen F, Zhou F. Prognostic value of indoleamine 2, 3-dioxygenase expression in esophageal cancer: A systematic review and meta-analysis. Asian J Surg 2022; 45:2958-2960. [PMID: 35788320 DOI: 10.1016/j.asjsur.2022.06.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Keyao He
- Department of Thoracic Surgery, Anyang Tumor Hospital, Henan Key Laboratory of Precision Prevention and Treatment of Esophageal Cancer, Anyang, 455000, China
| | - Fangfang Shen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Henan Key Laboratory of Precision Prevention and Treatment of Esophageal Cancer, Anyang, 455000, China.
| |
Collapse
|
16
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
17
|
Long Noncoding RNAs and Circular RNAs in the Metabolic Reprogramming of Lung Cancer: Functions, Mechanisms, and Clinical Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4802338. [PMID: 35757505 PMCID: PMC9217624 DOI: 10.1155/2022/4802338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
As key regulators of gene function, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are generally accepted to be involved in lung cancer pathogenesis and progression. Recent research has clarified the phenomenon of metabolic reprogramming in lung cancer because of its significant role in tumor proliferation, migration, invasion, metastasis, and other malignant biological behaviors. Emerging evidence has also shown a relationship between the aberrant expression of lncRNAs and circRNAs and metabolic reprogramming in lung cancer tumorigenesis. This review provides insight regarding the roles of different lncRNAs and circRNAs in lung cancer metabolic reprogramming, by how they target transporter proteins and key enzymes in glucose, lipid, and glutamine metabolic signaling pathways. The clinical potential of lncRNAs and circRNAs as early diagnostic biomarkers and components of therapeutic strategies in lung cancer is further discussed, including current challenges in their utilization from the bench to the bedside and how to adopt a proper delivery system for their therapeutic use.
Collapse
|
18
|
Li Y. Inactivation of PDH can Reduce Anaplastic Thyroid Cancer Cells' Sensitivity to Artemisinin. Anticancer Agents Med Chem 2022; 22:1753-1760. [PMID: 34515013 DOI: 10.2174/1871520621666210910100803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Anaplastic Thyroid Cancer (ATC) is a rare subtype of thyroid tumors with a high mortality rate. Targeted therapies against ATC are ineffective and mostly transient. Artemisinin has shown excellent anti-tumor activity in several cancers, but its effects on ATC are still unknown. OBJECTIVE To evaluate the effects of artemisinin on ATC cells and assess the mechanism underlying drug resistance. METHODS The viability and proliferation rates of the artemisinin-treated CAL-62 and BHT-101 cells were analyzed by MTT and EdU incorporation assays. The protein expression levels were determined by Tandem Mass Tag (TMT) labeling quantitative proteomics and western blotting. RESULTS Artemisinin treatment significantly decreased the expression levels of COX2 and COX7A2 and increased that of COX14, YEM1l1, ALAS1, and OAT after 48h. In addition, FTL was upregulated in the CAL-62 cells and downregulated in BHT-101 cells. The CAL-62 cells showed transient and reversible resistance to artemisinin, which was correlated to time-dependent changes in HIF1α, PDK1, and PDHA levels. CONCLUSION Artemisinin targets the mitochondrial respiratory chain proteins in ATC cells. CAL-62 cells show transient resistance to artemisinin via PDH downregulation, indicating that PDH activation may enhance the cytotoxic effects of artemisinin on ATC cells.
Collapse
Affiliation(s)
- Yitian Li
- Research Department of Jining Medical University, Jining, Shandong, China
| |
Collapse
|
19
|
SETD5 Regulates Glycolysis in Breast Cancer Stem-Like Cells and Fuels Tumor Growth. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:712-721. [PMID: 35063407 DOI: 10.1016/j.ajpath.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Although glycolysis plays a pivotal role in breast cancer stem-like cell (BCSC) reprogramming, the molecular mechanisms that couple glycolysis to cancer stem-like cells remain unclear. SETD5 is a previously uncharacterized member of the histone lysine methyltransferase family. The goal of this study was to explore the mechanisms underlying the promotion of stem-like and glycolysis activation traits by SETD5. Previous studies have shown that overexpression of SETD5 in breast cancer tissues is associated positively with progression. The present study showed that SETD5 expression was enriched in BCSCs. Down-regulation of SETD5 significantly decreased BCSC properties and glycolysis in vitro and in vivo. Interestingly, SETD5 and glycolytic enzymes were accumulated in the central hypoxic regions of subcutaneous tumor tissues. Bioinformatic analysis predicted SETD5 binding to E1A binding protein p300 (EP300), and subsequently to hypoxia-inducible factor 1α (HIF-1α). The mechanistic study found that SETD5 is an upstream effector of EP300/HIF-1α. SETD5 knockdown reduced the expression of HIF-1α, hexokinase-2, and 6-phosphofructo-2-kinase in the nucleus after treatment with cobalt chloride, a chemical hypoxia mimetic agent that activates HIF-1α to accumulate in the nucleus. Therefore, SETD5 is required for glycolysis in BCSCs through binding to EP300/HIF-1α and could be a potential therapeutic target for breast cancer patients.
Collapse
|
20
|
The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep 2022; 12:3234. [PMID: 35217717 PMCID: PMC8881467 DOI: 10.1038/s41598-022-07281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.
Collapse
|
21
|
Allende-Vega N, Marco Brualla J, Falvo P, Alexia C, Constantinides M, Fayd'herbe de Maudave A, Coenon L, Gitenay D, Mitola G, Massa P, Orecchioni S, Bertolini F, Marzo I, Anel A, Villalba M. Metformin sensitizes leukemic cells to cytotoxic lymphocytes by increasing expression of intercellular adhesion molecule-1 (ICAM-1). Sci Rep 2022; 12:1341. [PMID: 35079096 PMCID: PMC8789909 DOI: 10.1038/s41598-022-05470-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The anti-diabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention, although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1), a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of anti-apoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels, which favors cytotoxic lymphocytes binding to tumor cells. Finally, metformin decreases the growth of human hematological tumor cells in xenograft models, mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.
Collapse
Affiliation(s)
| | - Joaquin Marco Brualla
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Campus San Francisco Sq., 50009, Zaragoza, Spain
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | | | - Lois Coenon
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | - Giulia Mitola
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Paul Massa
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Isabel Marzo
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Campus San Francisco Sq., 50009, Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Department of Biochemistry and Molecular and Cell Biology, Faculty of Sciences, University of Zaragoza and Aragón Health Research Institute (IIS Aragón), Campus San Francisco Sq., 50009, Zaragoza, Spain.
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France.
- CNRS, IRMB, INSERM, Univ Montpellier, CHU Montpellier, Montpellier, France.
- Institut Sainte Catherine, Avignon, France.
| |
Collapse
|
22
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
23
|
Seth A, Kar S. Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Subcell Biochem 2022; 100:581-616. [PMID: 36301507 DOI: 10.1007/978-3-031-07634-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The interaction between metabolic and epigenetic events shapes metabolic adaptations of cancer cells and also helps rewire the proliferation and activity of surrounding immune cells in the tumor microenvironment (TME). Recent studies indicate that the TME imposes metabolic constraints on immune cells, inducing them to attain a tolerogenic state, incompetent of mounting effective tumor eradication. Owing to extensive mutations acquired over repeated cell divisions, tumor cells selectively accumulate metabolites that regulate the activity of key epigenetic enzymes to mediate activation/suppression of genes associated with T-cell function and macrophage polarization. Further, multiple modulators connecting epigenetic and metabolic pathways help dictate the preferential induction of cytokines and expression of lineage-specifying genes associated with immunosuppressive T-cell differentiation.In this chapter, we attempt to discuss the mechanisms underpinning the metabolic and epigenetic interplay in immune cells of the TME and how modulating these events can boost the application of existing anticancer immunotherapy.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
24
|
Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms221910268. [PMID: 34638609 PMCID: PMC8508898 DOI: 10.3390/ijms221910268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 02/06/2023] Open
Abstract
Immune escape is one of the hallmarks of cancer. While metabolic reprogramming provides survival advantage to tumor cancer cells, accumulating data also suggest such metabolic rewiring directly affects the activation, differentiation and function of immune cells, particularly in the tumor microenvironment. Understanding how metabolic reprogramming affects both tumor and immune cells, as well as their interplay, is therefore critical to better modulate tumor immune microenvironment in the era of cancer immunotherapy. In this review, we discuss alterations in several essential metabolic pathways in both tumor and key immune cells, provide evidence on their dynamic interaction, and propose innovative strategies to improve cancer immunotherapy via the modulation of metabolic pathways.
Collapse
|
25
|
Marofi F, Abdul-Rasheed OF, Rahman HS, Budi HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Motavalli R, Chartrand MS, Ahmadi M, Cid-Arreguid A, Jarahian M. CAR-NK cell in cancer immunotherapy; A promising frontier. Cancer Sci 2021; 112:3427-3436. [PMID: 34050690 PMCID: PMC8409419 DOI: 10.1111/cas.14993] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/12/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Chimeric antigen receptors (CARs) have a unique facet of synthetic biology and offer a paradigm shift in personalized medicine as they can use and redirect the patient's immune cells to attack cancer cells. CAR‐natural killer (NK) cells combine the targeted specificity of antigens with the subsequent intracellular signaling ability of the receptors to increase their anti‐cancer functions. Importantly, CAR‐NK cells can be utilized as universal cell‐based therapy without requiring human leukocyte antigen (HLA) matching or earlier contact with tumor‐associated antigens (TAAs). Indeed, CAR‐NK cells can be adapted to recognize various antigens, hold higher proliferation capacity, and in vivo persistence, show improved infiltration into the tumors, and the ability to overcome the resistant tumor microenvironment leading to sustained cytotoxicity against tumors. Accumulating evidence from recent in vivo studies rendering CAR‐NK cell anti‐cancer competencies renewed the attention in the context of cancer immunotherapy, as these redirected effector cells can be used in the development of the “off‐the‐shelf” anti‐cancer immunotherapeutic products. In the current review, we focus on the therapeutic efficacy of CAR‐NK cell therapies for treating various human malignancies, including hematological malignancies and solid tumors, and will discuss the recent findings in this regard, with a special focus on animal studies.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omar F Abdul-Rasheed
- Department of Chemistry and Biochemistry, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Suleimanyah, Suleimanyah, Iraq
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Yazdanifar
- Department of Pediatrics, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Angel Cid-Arreguid
- Targeted Tumor Vaccines Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
26
|
Zhang H, Zhao W, Li X, He Y. Cholesterol Metabolism as a Potential Therapeutic Target and a Prognostic Biomarker for Cancer Immunotherapy. Onco Targets Ther 2021; 14:3803-3812. [PMID: 34188488 PMCID: PMC8232957 DOI: 10.2147/ott.s315998] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Checkpoint-based immunotherapies, such as programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors, have shown promising clinical outcomes in many types of cancers. Unfortunately, the response rate of immune checkpoint inhibitors is low. It is very important to discover novel therapeutic targets and prognostic biomarkers. Cholesterol metabolism has been demonstrated to be related to the occurrence and development of a variety of tumors and may provide a new breakthrough in the development of immunotherapy. First of all, cholesterol metabolism in the tumor microenvironment affects the function of tumor-infiltrating immune cells. In addition, intracellular cholesterol homeostasis is an important regulator of immune cell function. Furthermore, drugs that act on cholesterol metabolism affect the efficacy of immunotherapy. What is more, peripheral blood cholesterol level can be a biomarker to predict the efficacy of immunotherapy. In this review, we aimed to explore the potential role of cholesterol metabolism on immunotherapy. By summarizing the major findings of recent preclinical and clinical studies on cholesterol metabolism in immunotherapy, we suggested that cholesterol metabolism could be a potential therapeutic target and a prognostic biomarker for immunotherapy.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
27
|
Talib WH, Mahmod AI, Abuarab SF, Hasen E, Munaim AA, Haif SK, Ayyash AM, Khater S, AL-Yasari IH, Kury LTA. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products. Molecules 2021; 26:2179. [PMID: 33920079 PMCID: PMC8070467 DOI: 10.3390/molecules26082179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is considered the second leading cause of death worldwide and in 2018 it was responsible for approximately 9.6 million deaths. Globally, about one in six deaths are caused by cancer. A strong correlation was found between diabetes mellitus and carcinogenesis with the most evident correlation was with type 2 diabetes mellitus (T2DM). Research has proven that elevated blood glucose levels take part in cell proliferation and cancer cell progression. However, limited studies were conducted to evaluate the efficiency of conventional therapies in diabetic cancer patients. In this review, the correlation between cancer and diabetes will be discussed and the mechanisms by which the two diseases interact with each other, as well as the therapeutics challenges in treating patients with diabetes and cancer with possible solutions to overcome these challenges. Natural products targeting both diseases were discussed with detailed mechanisms of action. This review will provide a solid base for researchers and physicians to test natural products as adjuvant alternative therapies to treat cancer in diabetic patients.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Sara Feras. Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Eliza Hasen
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amer A. Munaim
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Shatha Khaled Haif
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Amani Marwan Ayyash
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (A.I.M.); (S.F.A.); (E.H.); (A.A.M.); (S.K.H.); (A.M.A.); (S.K.)
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 00964, Iraq;
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
28
|
Khoshghamat N, Jafari N, Moetamani-Ahmadi M, Khalili-Tanha G, Khajavi Rad MH, Sahebdel S, Khalili-Tanha N, Soleimanpour S, Khazaei M, Hassanian SM, Ferns GA, Avan A. Programmed cell death 1 as prognostic marker and therapeutic target in upper gastrointestinal cancers. Pathol Res Pract 2021; 220:153390. [PMID: 33640713 DOI: 10.1016/j.prp.2021.153390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022]
Abstract
Gastrointestinal (GIs) cancers are among the most common causes of cancer related death, and hence the importance for the identification of novel prognostic/predictive biomarkers for detection of patients at an early stage, and for using these to identify novel targeted therapies to improve the efficacy of existing chemotherapeutic regimens. Programmed cell death 1 has been reported as a potential target in several malignancies, and targeting agents are being developed, some already approved by FDA, such as: pembrolizumab, Atezolizumab, Nivolumab. Pembrolizumab that have been approved for the treatment of metastatic non-small cell lung cancer. Here we provide an overview of the mechanism of action PD-1/PD-L1, prognostic value and current progress in clinical trials using PD-1/PD-L1 inhibitors, and the resistant mechanisms at underlie the inhibitory effect of these agents in the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Negar Khoshghamat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran
| | - Niloufar Jafari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Khalili-Tanha
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeed Sahebdel
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Veterinary Medicine Student, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Iran
| | - Saman Soleimanpour
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Vo DN, Constantinides M, Allende-Vega N, Alexia C, Cartron G, Villalba M. Dissecting the NK Cell Population in Hematological Cancers Confirms the Presence of Tumor Cells and Their Impact on NK Population Function. Vaccines (Basel) 2020; 8:vaccines8040727. [PMID: 33276644 PMCID: PMC7761578 DOI: 10.3390/vaccines8040727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
The lymphocyte lineage natural killer (NK) cell is part of the innate immune system and protects against pathogens and tumor cells. NK cells are the main cell effectors of the monoclonal antibodies (mAbs) that mediates antibody-dependent cell cytotoxicity (ADCC). Hence, it is relevant to understand NK physiology and status to investigate the biological effect of mAbs in the clinic. NK cells are heterogeneous with multiple subsets that may have specific activity against different attacks. The presence of viral-sculpted NK cell populations has already been described, but the presence of cancer-sculpted NK cells remains unknown. Cancer induces a broad NK cell dysfunction, which has not been linked to a specific population. Here, we investigated the NK cell population by Uniform Manifold Approximation and Projection (UMAP) embed maps in Hodgkin lymphoma (HL) and acute myeloid leukemia (AML) patients at diagnosis and at least 30 days after treatment, which correlates with tumor cell clearance. We found that the NK lineage largely responded to the tumor by generating antitumor NK cells and renewing the population with a subset of immature NK cells. However, we failed to identify a specific "memory-like" subset with the NK cell markers used. Moreover, in patients in relapse, we found essentially the same NK populations as those found at diagnosis, suggesting that NK cells equally respond to the first or second tumor rise. Finally, we observed that previous cytomegalovirus (CMV) infection largely affects the tumor-associated changes in NK population, but the CMV-associated CD57+NKG2C+ NK cell population does not appear to play any role in tumor immunity.
Collapse
Affiliation(s)
- Dang-Nghiem Vo
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
| | - Michael Constantinides
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
- IRMB, CHU Montpellier, 34295 Montpellier, France
| | - Nerea Allende-Vega
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
| | - Catherine Alexia
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
| | - Guillaume Cartron
- Département d’Hématologie Clinique, CHU Montpellier, 34295 Montpellier, France;
| | - Martin Villalba
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France; (D.-N.V.); (M.C.); (N.A.-V.); (C.A.)
- IRMB, CHU Montpellier, 34295 Montpellier, France
- IRMB, University Montpellier, INSERM, CNRS, CHU Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-467-330465; Fax: +33-467-330113
| |
Collapse
|
30
|
Xu D, Wu Y, Wang X, Hu X, Qin W, Li Y, Wang Y, Zhang Z, Lu S, Sun T, Wu Z, Fu D, Fu B, Zhang J, Chen Q, Wei M, Zhao L, Wu H. Identification of functional circRNA/miRNA/mRNA regulatory network for exploring prospective therapy strategy of colorectal cancer. J Cell Biochem 2020; 121:4785-4797. [PMID: 32115780 DOI: 10.1002/jcb.29703] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Circular RNA (circRNA) has been reported to have great scientific significance and clinical value in multiple cancers including colorectal cancer (CRC). However, the biological function of most circRNAs in CRC is still in its infancy. Herein, we discovered the differential expressed circRNAs (DECs) between CRC tissues and matched adjacent using deep RNA sequencing and further confirmed the DECs expression by combining with another Gene Expression Omnibus dataset. Furthermore, we validated the expression of the top four upregulated circRNAs (hsa_circ_0030632, hsa_circ_0004887, hsa_circ_0001550, and hsa_circ_0001681) in both of paired CRC tissues and CRC cell lines. Then, a circRNA/microRNA/messenger RNA regulatory network was established and the Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed these four circRNAs participated in various biological processed including apoptotic process and multiple metabolic processes. Moreover, based on the regulatory network, three bioactive compounds (pergolide, pivampicillin, and methylergometrine) for the treatment of CRC were also found. In conclusion, this study improved our understanding of circRNAs and may also facilitate the finding of promising targets and biomarkers in CRC.
Collapse
Affiliation(s)
- Dongping Xu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Yutong Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiufang Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Zhen Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Dandan Fu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Sodero AO. 24S-hydroxycholesterol: Cellular effects and variations in brain diseases. J Neurochem 2020; 157:899-918. [PMID: 33118626 DOI: 10.1111/jnc.15228] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The adult brain exhibits a characteristic cholesterol homeostasis, with low synthesis rate and active catabolism. Brain cholesterol turnover is possible thanks to the action of the enzyme cytochrome P450 46A1 (CYP46A1) or 24-cholesterol hydroxylase, that transforms cholesterol into 24S-hydroxycholesterol (24S-HC). But before crossing the blood-brain barrier (BBB), this oxysterol, that is the most abundant in the brain, can act locally, affecting the functioning of neurons, astrocytes, oligodendrocytes, and vascular cells. The first part of this review addresses different aspects of 24S-HC production and elimination from the brain. The second part concentrates in the effects of 24S-HC at the cellular level, describing how this oxysterol affects cell viability, amyloid β production, neurotransmission, and transcriptional activity. Finally, the role of 24S-HC in Alzheimer, Huntington and Parkinson diseases, multiple sclerosis and amyotrophic lateral sclerosis, as well as the possibility of using this oxysterol as predictive and/or evolution biomarker in different brain disorders is discussed.
Collapse
Affiliation(s)
- Alejandro O Sodero
- Institute of Biomedical Research (BIOMED), Pontifical Catholic University of Argentina (UCA) and National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
32
|
Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020; 20:741-756. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.
Collapse
Affiliation(s)
- Sara Iranparast
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sanaz Tayebi
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol 2020; 42:1010428320965284. [PMID: 33028168 DOI: 10.1177/1010428320965284] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glucose, as the main consuming nutrient of the body, faces different destinies in cancer cells. Glycolysis, oxidative phosphorylation, and pentose phosphate pathways produce different glucose-derived metabolites and thus affect cells' bioenergetics differently. Tumor cells' dependency to aerobic glycolysis and other cancer-specific metabolism changes are known as the cancer hallmarks, distinct cancer cells from normal cells. Therefore, these tumor-specific characteristics receive the limelight as targets for cancer therapy. Glutamine, serine, and fatty acid oxidation together with 5-lipoxygenase are main pathways that have attracted lots of attention for cancer therapy. In this review, we not only discuss different tumor metabolism aspects but also discuss the metabolism roles in the promotion of cancer cells at different stages and their difference with normal cells. Besides, we dissect the inhibitors potential in blocking the main metabolic pathways to introduce the effective and non-effective inhibitors in the field.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Sadat Dokaneheifard
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
34
|
Mane MM, Cohen IJ, Ackerstaff E, Shalaby K, Ijoma JN, Ko M, Maeda M, Albeg AS, Vemuri K, Satagopan J, Moroz A, Zurita J, Shenker L, Shindo M, Nickles T, Nikolov E, Moroz MA, Koutcher JA, Serganova I, Ponomarev V, Blasberg RG. Lactate Dehydrogenase A Depletion Alters MyC-CaP Tumor Metabolism, Microenvironment, and CAR T Cell Therapy. Mol Ther Oncolytics 2020; 18:382-395. [PMID: 32913888 PMCID: PMC7452096 DOI: 10.1016/j.omto.2020.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.
Collapse
Affiliation(s)
- Mayuresh M. Mane
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ivan J. Cohen
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Khalid Shalaby
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jenny N. Ijoma
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Myat Ko
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Masatomo Maeda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Avi S. Albeg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kiranmayi Vemuri
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jaya Satagopan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Moroz
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Juan Zurita
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larissa Shenker
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Masahiro Shindo
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanner Nickles
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina Nikolov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxim A. Moroz
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Ponomarev
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald G. Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
35
|
Lin X, Wu JF, Wang DM, Zhang J, Zhang WJ, Xue G. The correlation and role analysis of KCNK2/4/5/15 in Human Papillary Thyroid Carcinoma microenvironment. J Cancer 2020; 11:5162-5176. [PMID: 32742463 PMCID: PMC7378911 DOI: 10.7150/jca.45604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background: KCNKs, potassium two pore domain channel family K members, can maintain the resting potential, regulate the amplitude and duration of the plateau of the action potential, and change the membrane potential and membrane excitability. Evidence from many studies indicates that KCNKs is abnormally expressed in many solid tumors and plays a regulatory role in the development and malignant progression of cancer. However, the expression pattern and prognostic value of KCNK factors in papillary thyroid carcinoma have not been reported. Methods: In this study, we used the data from databases such as ONCOMINE, GEPIA, Kaplan-Meier Plotter, and cBioPortal to perform bioinformatics analysis of KCNK factors in patients with thyroid cancer. Results: We found that the mRNA expression of KCNK1, KCNK5, KCNK6, KCNK7, and KCNK15 were significantly higher in thyroid cancer tissues than that in normal tissues, while KCNK2, KCNK4, KCNK9, KCNK16 and KCNK17 mRNA levels were decreased compared to normal tissues. And the expression levels of KCNK1/2/4/5/6/7/15 were correlated with the tumor stage. Survival analysis using the Kaplan-Meier Plotter database revealed that KCNK2/3/4/5/12/15 were associated with overall survival (OS) in patients with thyroid cancer. Conclusion: Finally, the results of ROC curves, immunohistochemical staining, immune cell infiltration and kinase / miRNA / transcription factor regulation showed that KCNK2, KCNK4, KCNK5 and KCNK15 levels could be used as biomarkers for PTC diagnosis. This study implied that KCNK2, KCNK4, KCNK5 and KCNK15 are potential targets of precision therapy for patients with thyroid cancer and these genes are new biomarkers for the therapeutic target for thyroid cancer.
Collapse
Affiliation(s)
- Xu Lin
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Dong-Mei Wang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Jing Zhang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Wen-Jing Zhang
- Department of Histology and Embryology, Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Department of Otorhinolaryngology Head and Neck Surgery, Hebei North University, Zhangjiakou, 075000, China
| |
Collapse
|
36
|
Li W, Xu M, Li Y, Huang Z, Zhou J, Zhao Q, Le K, Dong F, Wan C, Yi P. Comprehensive analysis of the association between tumor glycolysis and immune/inflammation function in breast cancer. J Transl Med 2020; 18:92. [PMID: 32070368 PMCID: PMC7029444 DOI: 10.1186/s12967-020-02267-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Metabolic reprogramming, immune evasion and tumor-promoting inflammation are three hallmarks of cancer that provide new perspectives for understanding the biology of cancer. We aimed to figure out the relationship of tumor glycolysis and immune/inflammation function in the context of breast cancer, which is significant for deeper understanding of the biology, treatment and prognosis of breast cancer. Methods Using mRNA transcriptome data, tumor-infiltrating lymphocytes (TILs) maps based on digitized H&E-stained images and clinical information of breast cancer from The Cancer Genome Atlas projects (TCGA), we explored the expression and prognostic implications of glycolysis-related genes, as well as the enrichment scores and dual role of different immune/inflammation cells in the tumor microenvironment. The relationship between glycolysis activity and immune/inflammation function was studied by using the differential genes expression analysis, gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analyses (GSEA) and correlation analysis. Results Most glycolysis-related genes had higher expression in breast cancer compared to normal tissue. Higher phosphoglycerate kinase 1 (PGK1) expression was associated with poor prognosis. High glycolysis group had upregulated immune/inflammation-related genes expression, upregulated immune/inflammation pathways especially IL-17 signaling pathway, higher enrichment of multiple immune/inflammation cells such as Th2 cells and macrophages. However, high glycolysis group was associated with lower infiltration of tumor-killing immune cells such as NKT cells and higher immune checkpoints expression such as PD-L1, CTLA4, FOXP3 and IDO1. Conclusions In conclusion, the enhanced glycolysis activity of breast cancer was associated with pro-tumor immunity. The interaction between tumor glycolysis and immune/inflammation function may be mediated through IL-17 signaling pathway.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Xu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ziwei Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiuyang Zhao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kehao Le
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pengfei Yi
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
37
|
Enhanced glucose metabolism mediated by CD147 contributes to immunosuppression in hepatocellular carcinoma. Cancer Immunol Immunother 2020; 69:535-548. [PMID: 31965268 DOI: 10.1007/s00262-019-02457-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
From a metabolic perspective, cancer may be considered as a metabolic disease characterized by reprogrammed glycolytic metabolism. The aim of the present study was to investigate CD147-mediated glucose metabolic regulation in hepatocellular carcinoma (HCC) and its contribution to altered immune responses in the tumor microenvironment. Several HCC cell lines and corresponding nude mice xenografts models differing in CD147 expressions were established to directly investigate the role of CD147 in the reprogramming of glucose metabolism, and to determine the underlying molecular mechanisms. Immunohistochemistry (IHC) analyses and flow cytometry were used to identify the relationship between reprogrammed glycolysis and immunosuppression in HCC. Upregulated CD147 expressions were found to be associated with enhanced expressions of GLUT1, MCT1 in HCC tumorous tissues. CD147 promoted the glycolytic metabolism in HCC cell lines in vitro via the PI3K/Akt/mTOR signaling pathway. A positive correlation existed between a profile of immunosuppressive lymphocytes infiltration and CD147 expression in HCC tissues. Accumulation of FOXP3-expressing regulatory T cells was induced under a stimulation with lactate in vitro. In conclusion, CD147 promoted glycolytic metabolism in HCC via the PI3K/Akt/mTOR signaling pathway, and was related to immunosuppression in HCC.
Collapse
|
38
|
Villalba M, Alexia C, Bellin-Robert A, Fayd'herbe de Maudave A, Gitenay D. Non-Genetically Improving the Natural Cytotoxicity of Natural Killer (NK) Cells. Front Immunol 2020; 10:3026. [PMID: 31998309 PMCID: PMC6970430 DOI: 10.3389/fimmu.2019.03026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
The innate lymphocyte lineage natural killer (NK) is now the target of multiple clinical applications, although none has received an agreement from any regulatory agency yet. Transplant of naïve NK cells has not proven efficient enough in the vast majority of clinical trials. Hence, new protocols wish to improve their medical use by producing them from stem cells and/or modifying them by genetic engineering. These techniques have given interesting results but these improvements often hide that natural killers are mainly that: natural. We discuss here different ways to take advantage of NK physiology to improve their clinical activity without the need of additional modifications except for in vitro activation and expansion and allograft in patients. Some of these tactics include combination with monoclonal antibodies (mAb), drugs that change metabolism and engraftment of specific NK subsets with particular activity. Finally, we propose to use specific NK cell subsets found in certain patients that show increase activity against a specific disease, including the use of NK cells derived from patients.
Collapse
Affiliation(s)
- Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France.,IRMB, CHU Montpellier, Montpellier, France
| | - Catherine Alexia
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | | - Delphine Gitenay
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
39
|
Alexia C, Cren M, Louis-Plence P, Vo DN, El Ahmadi Y, Dufourcq-Lopez E, Lu ZY, Hernandez J, Shamilov F, Chernysheva O, Vasilieva M, Vorotnikov I, Vishnevskay Y, Tupitsyn N, Rossi JF, Villalba M. Polyoxidonium ® Activates Cytotoxic Lymphocyte Responses Through Dendritic Cell Maturation: Clinical Effects in Breast Cancer. Front Immunol 2019; 10:2693. [PMID: 31849934 PMCID: PMC6892947 DOI: 10.3389/fimmu.2019.02693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy, which is seen as a major tool for cancer treatment, requires, in some cases, the presence of several agents to maximize its effects. Adjuvants can enhance the effect of other agents. However, despite their long-time use, only a few adjuvants are licensed today, and their use in cancer treatment is rare. Azoximer bromide, marketed under the trade name Polyoxidonium® (PO), is a copolymer of N-oxidized 1,4-ethylenepiperazine and (N-carboxyethyl)-1,4-ethylene piperazinium bromide. It has been described as an immune adjuvant and immunomodulator that is clinically used with excellent tolerance. PO is used in the treatment and prophylaxis of diseases connected with damage to the immune system, and there is interest in testing it in antitumor therapy. We show here that PO treatment for 1 week induced positive pathological changes in 6 out of 20 patients with breast cancer, including complete response in a triple-negative patient. This correlated with an increased tumor CD4+ T-lymphocyte infiltration. The immune effects of PO are associated with myeloid cell activation, and little is known about the action of PO on lymphocyte lineages, such as natural killer (NK) and T cells. We reveal that PO increases T-cell proliferation in vitro without negative effects on any activation marker. PO does not affect dendritic cell (DC) viability and increases the expansion of immature DC (iDC) and mature DC (mDC) at 100 μg/ml, and it stimulates expression of several DC co-stimulatory molecules, inducing the proliferation of allogeneic T cells. In contrast, PO decreases DC viability when added at day 5 post-expansion. PO is not toxic for NK cells at doses up to 100 μM and does not affect their activation, maturation, and cytotoxicity but tends to increase degranulation. This could be beneficial against target cells that show low sensitivity to NK cells, e.g., solid tumor cells. Finally, we have found great variability in PO response between donors. In summary, our in vitro results show that PO increases the number of costimulatory molecules on DC that prime T cells, favoring the production of effector T cells. This may support the future clinical development of PO in cancer treatment.
Collapse
Affiliation(s)
| | - Mailys Cren
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | - Dang-Nghiem Vo
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | | | - Zhao-Yang Lu
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | | | - Farkhad Shamilov
- Federal State Budgetary Institute "N.N. Blokhin National Oncology Research Center" of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Olga Chernysheva
- Federal State Budgetary Institute "N.N. Blokhin National Oncology Research Center" of the Ministry of Health of Russian Federation, Moscow, Russia
| | - M Vasilieva
- Voronezh Oncology Dispansery, Vronezh, Russia
| | - I Vorotnikov
- Federal State Budgetary Institute "N.N. Blokhin National Oncology Research Center" of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Yana Vishnevskay
- Federal State Budgetary Institute "N.N. Blokhin National Oncology Research Center" of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Nikolay Tupitsyn
- Federal State Budgetary Institute "N.N. Blokhin National Oncology Research Center" of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Jean-François Rossi
- Institut Sainte Catherine, Avignon, France.,Université de Montpellier I, UFR Médecine, Montpellier, France
| | - Martin Villalba
- IRMB, University of Montpellier, INSERM, Montpellier, France.,CHU Montpellier, Montpellier, France.,IRMB, University of Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France
| |
Collapse
|
40
|
Zhou ML, Chen FS, Mao H. Clinical significance and role of up-regulation of SERPINA3 expression in endometrial cancer. World J Clin Cases 2019; 7:1996-2002. [PMID: 31423431 PMCID: PMC6695533 DOI: 10.12998/wjcc.v7.i15.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Serpin peptidase inhibitor, clade A member 3 (SERPINA3) belongs to the serpin family with an inhibitory activity against proteases. Its aberrant expression has been observed in a wide range of tumor cells. However, its clinical significance and biological function in endometrial cancer have been rarely studied. We designed a study to determine the levels of SERPINA3 and its significance in patients with endometrial cancer.
AIM To investigate the clinical significance and role of SERPINA3 expression in endometrial cancer cells.
METHODS Eighty endometrial tissue samples collected from patients with endometrial cancer were included in an observation group and 80 paraffin-embedded tissues samples collected from patients with normal endometrial tissues undergoing myomectomy were employed as a control group between January 2014 and December 2018. The expression of SERPINA3 mRNA was detected by quantitative polymerase chain reaction (PCR) for all endometrial tissues included in the study.
RESULTS The positive expression rate of SERPINA3 protein in endometrial cancer cells was 71.25% in the observation group, which was significantly higher than that in the control group (31.25%; P < 0.05). There was no correlation between SERPINA3 protein in endometrial cancer cells and the age range at which women experienced menopause (P > 0.05). However, it was associated with pathological grade, clinical stage, vascular invasion, and lymph node metastasis (P < 0.05). Pathological grade, clinical stage, vascular invasion, and lymph node metastasis were independent prognostic factors for endometrial cancer.
CONCLUSION The follow-up study of SERPINA3 can be used as a prognostic biomarker for endometrial cancer and as one of the targets for bio-targeted therapy for endometrial cancer.
Collapse
Affiliation(s)
- Mian-Li Zhou
- Department of Gynecology and Obstetrics, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Fang-Shan Chen
- Department of Gynecology and Obstetrics, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hui Mao
- Department of Oncology, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
41
|
Marco-Brualla J, Al-Wasaby S, Soler R, Romanos E, Conde B, Justo-Méndez R, Enríquez JA, Fernández-Silva P, Martínez-Lostao L, Villalba M, Moreno-Loshuertos R, Anel A. Mutations in the ND2 Subunit of Mitochondrial Complex I Are Sufficient to Confer Increased Tumorigenic and Metastatic Potential to Cancer Cells. Cancers (Basel) 2019; 11:E1027. [PMID: 31330915 PMCID: PMC6678765 DOI: 10.3390/cancers11071027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 11/17/2022] Open
Abstract
Multiprotein complexes of the mitochondrial electron transport chain form associations to generate supercomplexes. The relationship between tumor cell ability to assemble mitochondrial supercomplexes, tumorigenesis and metastasis has not been studied thoroughly. The mitochondrial and metabolic differences between L929dt cells, which lost matrix attachment and MHC-I expression, and their parental cell line L929, were analyzed. L929dt cells have lower capacity to generate energy through OXPHOS and lower respiratory capacity than parental L929 cells. Most importantly, L929dt cells show defects in mitochondrial supercomplex assembly, especially in those that contain complex I. These defects correlate with mtDNA mutations in L929dt cells at the ND2 subunit of complex I and are accompanied by a glycolytic shift. In addition, L929dt cells show higher in vivo tumorigenic and metastatic potential than the parental cell line. Cybrids with L929dt mitochondria in L929 nuclear background reproduce all L929dt properties, demonstrating that mitochondrial mutations are responsible for the aggressive tumor phenotype. In spite of their higher tumorigenic potential, L929dt or mitochondrial L929dt cybrid cells are sensitive both in vitro and in vivo to the PDK1 inhibitor dichloroacetate, which favors OXPHOS, suggesting benefits for the use of metabolic inhibitors in the treatment of especially aggressive tumors.
Collapse
Affiliation(s)
- Joaquín Marco-Brualla
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Sameer Al-Wasaby
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Ruth Soler
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Eduardo Romanos
- Aragón Health Research Institute (IIS Aragón), Center for Research in Biomedicine, E-50009 Zaragoza, Spain
| | - Blanca Conde
- Department of Human Anatomy and Histology, Faculty of Medicine, Campus San Francisco Square, University of Zaragoza, E-50009 Zaragoza, Spain
| | | | - José A Enríquez
- Carlos III National Center for Cardiovascular Research, 28029 Madrid, Spain
| | - Patricio Fernández-Silva
- GENOXPHOS Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Biocomputation and Complex Systems Physics Institute (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain
| | | | - Martín Villalba
- The National Institute of Biomedical Research (INSERM), Centre Hospitalier Universitaire de Montpellier, The University of Montpellier, The Institute for Regenerative Medicine and Biotherapy, 34090 Montpellier, France
- IRMB, CHU Montpellier, 34090 Montpellier, France
| | - Raquel Moreno-Loshuertos
- GENOXPHOS Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Biocomputation and Complex Systems Physics Institute (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain.
| | - Alberto Anel
- Immunity, Cancer & Stem Cells Group, Department Biochemistry and Molecular and Cell Biology, Faculty of Sciences, Campus San Francisco Square, Aragón Health Research Institute (IIS Aragón), University of Zaragoza, E-50009 Zaragoza, Spain.
| |
Collapse
|
42
|
Han Q, Zhao H, Jiang Y, Yin C, Zhang J. HCC-Derived Exosomes: Critical Player and Target for Cancer Immune Escape. Cells 2019; 8:cells8060558. [PMID: 31181729 PMCID: PMC6627799 DOI: 10.3390/cells8060558] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver, and currently the second most common cause of cancer-related deaths worldwide with increasing incidence and poor prognosis. Exosomes are now considered as important mediators of host anti-tumor immune response as well as tumor cell immune escape. HCC-derived exosomes have been shown to attenuate the cytotoxicity of T-cells and NK cells, and promote the immuno-suppressive M2 macrophages, N2 neutrophils, and Bregs. These exosomes harbor several immune-related non-coding RNAs and proteins that drive immune-escape and tumor progression, and thus may serve as potential diagnostic biomarkers and therapeutic targets for HCC. In a previous study, we identified miR146a as an exosomal factor that promotes M2-polarization and suppresses the anti-HCC function of T-cells. In this review, we summarized the role of tumor-derived exosomes and their key components in mediating tumor immune escape during HCC development.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | - Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | - Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| |
Collapse
|
43
|
Zhao Y, Wang B, Liu J, Sun P, Liu H. An overview on the methods of determining the activity of Indoleamine 2, 3-Dioxygenase 1. J Drug Target 2018; 27:724-731. [DOI: 10.1080/1061186x.2018.1523416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuandi Zhao
- Collaborative Innovation Center of New Drug Research and Safety, Henan Province, PR China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, Henan Province, PR China
- Key Laboratory of Henan Province for Drug Quality and Evaluation Zhengzhou University, Zhengzhou, Henan Province, PR China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Bo Wang
- Collaborative Innovation Center of New Drug Research and Safety, Henan Province, PR China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, Henan Province, PR China
- Key Laboratory of Henan Province for Drug Quality and Evaluation Zhengzhou University, Zhengzhou, Henan Province, PR China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jinzhi Liu
- Collaborative Innovation Center of New Drug Research and Safety, Henan Province, PR China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, Henan Province, PR China
- Key Laboratory of Henan Province for Drug Quality and Evaluation Zhengzhou University, Zhengzhou, Henan Province, PR China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Pei Sun
- Collaborative Innovation Center of New Drug Research and Safety, Henan Province, PR China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, Henan Province, PR China
- Key Laboratory of Henan Province for Drug Quality and Evaluation Zhengzhou University, Zhengzhou, Henan Province, PR China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Hongmin Liu
- Collaborative Innovation Center of New Drug Research and Safety, Henan Province, PR China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou, Henan Province, PR China
- Key Laboratory of Henan Province for Drug Quality and Evaluation Zhengzhou University, Zhengzhou, Henan Province, PR China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
44
|
Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, Guo C, Xiang B, Zhou M, Ma J, Huang X, Wu X, Li Y, Li GY, Zeng ZY, Xiong W. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer 2018; 17:168. [PMID: 30477520 PMCID: PMC6260778 DOI: 10.1186/s12943-018-0913-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that on one hand, tumors need to obtain a sufficient energy supply, and on the other hand they must evade the body’s immune surveillance. Because of their metabolic reprogramming characteristics, tumors can modify the physicochemical properties of the microenvironment, which in turn affects the biological characteristics of the cells infiltrating them. Regulatory T cells (Tregs) are a subset of T cells that regulate immune responses in the body. They exist in large quantities in the tumor microenvironment and exert immunosuppressive effects. The main effect of tumor microenvironment on Tregs is to promote their differentiation, proliferation, secretion of immunosuppressive factors, and chemotactic recruitment to play a role in immunosuppression in tumor tissues. This review focuses on cell metabolism reprogramming and the most significant features of the tumor microenvironment relative to the functional effects on Tregs, highlighting our understanding of the mechanisms of tumor immune evasion and providing new directions for tumor immunotherapy.
Collapse
Affiliation(s)
- Yi-An Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yong-Zhen Mo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Chun-Mei Fan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xi Huang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Xu Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Chemistry, University of North Dakota, Grand Forks, North Dakota, 58202, USA
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gui-Yuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Zhao-Yang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
45
|
Sanchez-Martinez D, Allende-Vega N, Orecchioni S, Talarico G, Cornillon A, Vo DN, Rene C, Lu ZY, Krzywinska E, Anel A, Galvez EM, Pardo J, Robert B, Martineau P, Hicheri Y, Bertolini F, Cartron G, Villalba M. Expansion of allogeneic NK cells with efficient antibody-dependent cell cytotoxicity against multiple tumors. Theranostics 2018; 8:3856-3869. [PMID: 30083264 PMCID: PMC6071536 DOI: 10.7150/thno.25149] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) have significantly improved the treatment of certain cancers. However, in general mAbs alone have limited therapeutic activity. One of their main mechanisms of action is to induce antibody-dependent cell-mediated cytotoxicity (ADCC), which is mediated by natural killer (NK) cells. Unfortunately, most cancer patients have severe immune dysfunctions affecting NK activity. This can be circumvented by the injection of allogeneic, expanded NK cells, which is safe. Nevertheless, despite their strong cytolytic potential against different tumors, clinical results have been poor. Methods: We combined allogeneic NK cells and mAbs to improve cancer treatment. We generated expanded NK cells (e-NK) with strong in vitro and in vivo ADCC responses against different tumors and using different therapeutic mAbs, namely rituximab, obinutuzumab, daratumumab, cetuximab and trastuzumab. Results: Remarkably, e-NK cells can be stored frozen and, after thawing, armed with mAbs. They mediate ADCC through degranulation-dependent and -independent mechanisms. Furthermore, they overcome certain anti-apoptotic mechanisms found in leukemic cells. Conclusion: We have established a new protocol for activation/expansion of NK cells with high ADCC activity. The use of mAbs in combination with e-NK cells could potentially improve cancer treatment.
Collapse
|
46
|
Mitochondrial Complex I activity signals antioxidant response through ERK5. Sci Rep 2018; 8:7420. [PMID: 29743487 PMCID: PMC5943249 DOI: 10.1038/s41598-018-23884-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.
Collapse
|
47
|
p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res 2018; 131:75-86. [DOI: 10.1016/j.phrs.2018.03.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
|
48
|
Antigen-adjuvant effects of icariin in enhancing tumor-specific immunity in mastocytoma-bearing DBA/2J mice. Biomed Pharmacother 2018; 99:810-816. [PMID: 29710479 DOI: 10.1016/j.biopha.2018.01.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/04/2018] [Accepted: 01/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has attracted much attention in recent years because of the ability of immune system to identify tumor cells and limit their growth. Icariin (ICA) is a natural flavonoid glucoside isolated from Epimedium plants and has shown a variety of pharmacological activities such as anti-inflammatory effects, immunological regulation and anticancer potency. Furthermore, it has immunoadjuvant effects on enhancing Th1-immune response, suggesting that ICA may serve as an adjuvant for cancer immunotherapy. In this study, we used P815 mouse mastocytoma tumor model and immunized them with P815AB peptide and/or ICA. Our results demonstrated that ICA could increase the cytotoxic T lymphocytes (CTL) response for P815AB peptide on the tumor-bearing DBA/2J mice. In addition, the percentage of CD4+CD8+/CD3+CD69+/CD69+NKG2D+ positive cells in splenocytes of the tumor-bearing mice all significantly increased after combined immunization with ICA and P815AB peptide. This illustrated that ICA could enhance the immunogenicity of P815AB and improve the ability of T cells and CTLs in recognizing the tumor cells. Moreover, ICA improved the function of peritoneal macrophages with effects of inhibition on tumor growth. Besides, we discussed the possible mechanism of ICA to enhance body immunity by detecting the expression level of MHC-I and related genes in B16-F10 and RMA/S cells. The results suggested that ICA has the potential to up-regulate LMP/TAP related molecules and induce the expression of MHC-I, which increase the immune surveillance and keep cancer in remission. In conclusion, ICA showed an anti-tumor effect both in vitro and in vivo and may be an effective antigen adjuvant for cancer treatment by enhancing tumor-specific immunity.
Collapse
|
49
|
Vo DN, Alexia C, Allende-Vega N, Morschhauser F, Houot R, Menard C, Tarte K, Cartron G, Villalba M. NK cell activation and recovery of NK cell subsets in lymphoma patients after obinutuzumab and lenalidomide treatment. Oncoimmunology 2017; 7:e1409322. [PMID: 29632722 DOI: 10.1080/2162402x.2017.1409322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023] Open
Abstract
Obinutuzumab (OBZ) shows stronger antibody-dependent cell cytotoxicity (ADCC) compared to rituximab and improved clinical activity for treating certain CD20+ neoplasia. However, the efficacy of monoclonal antibody (mAb) as a monotherapy is limited. Natural Killer (NK) cells are mediators of ADCC. Hematological cancer patients possess antitumor NK cells that are unable to control disease, possibly because they are dysfunctional. The immunomodulatory drug lenalidomide (LEN) could be a treatment to restore exhausted NK cell cytotoxic functions. The clinical trial GALEN is a Phase Ib/II study of OBZ combined with LEN for the treatment of relapsed/refractory follicular and aggressive (DLBCL and MCL) B-cell Lymphoma. During treatment, we analyzed specific aspects of NK cell biology. Treatment reversed the immature NK phenotype of patients and increased expression of NK activating receptors. Inhibitory receptors were either unchanged or decreased. There was a strong NK response at the end of the 1st cycle: NK number and intracellular granzyme B (GrzB) expression decreased, degranulation increased and NK responded better to allogeneic target challenge. Moreover, the interaction of NK cells with B cell targets, measured by trogocytosis, decreased during treatment. At the end of treatment, when target cells had been wiped out, the proportion of reactive NK cells (CD69+, CD45RARO+, CD107a+, CD19+) strongly decreased. Because all patients received LEN and OBZ, it was uncertain which drug was responsible of our observations, or even if a combination of both products was necessary for the described effects on this lymphocyte lineage.
Collapse
Affiliation(s)
- Dang-Nghiem Vo
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France.,Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - Catherine Alexia
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France
| | - Nerea Allende-Vega
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France.,Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - Franck Morschhauser
- Univ. Lille, CHU Lille, EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Roch Houot
- Department of Clinical Hematology, University Hospital Rennes, Rennes, France.,UMR U1236, INSERM Université Rennes 1, Etablissement Français du Sang, Rennes, France
| | - Cedric Menard
- UMR U1236, INSERM Université Rennes 1, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU de Rennes, Rennes, France
| | - Karin Tarte
- UMR U1236, INSERM Université Rennes 1, Etablissement Français du Sang, Rennes, France.,SITI, Pôle de Biologie, CHU de Rennes, Rennes, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, 80 avenue Augustin Fliche, Montpellier, France.,CNRS UMR5235, Université de Montpellier, Montpellier, France
| | - Martin Villalba
- INSERM U1183, Université de Montpellier 1, UFR Médecine, Montpellier, France.,Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| |
Collapse
|
50
|
Belkahla S, Haq Khan AU, Gitenay D, Alexia C, Gondeau C, Vo DN, Orecchioni S, Talarico G, Bertolini F, Cartron G, Hernandez J, Daujat-Chavanieu M, Allende-Vega N, Gonzalez MV. Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status. Oncotarget 2017; 9:1114-1129. [PMID: 29416681 PMCID: PMC5787424 DOI: 10.18632/oncotarget.23305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Changes in metabolism require the efflux and influx of a diverse variety of metabolites. The ABC superfamily of transporters regulates the exchange of hundreds of substrates through the impermeable cell membrane. We show here that a metabolic switch to oxidative phosphorylation (OXPHOS), either by treating cells with dichloroacetate (DCA) or by changing the available substrates, reduced expression of ABCB1, ABCC1, ABCC5 and ABCG2 in wild-type p53-expressing cells. This metabolic change reduced histone changes associated to active promoters. Notably, DCA also inhibited expression of these genes in two animal models in vivo. In contrast, OXPHOS increased the expression of the same transporters in mutated (mut) or null p53-expressing cells. ABC transporters control the export of drugs from cancer cells and render tumors resistant to chemotherapy, playing an important role in multiple drug resistance (MDR). Wtp53 cells forced to perform OXPHOS showed impaired drug clearance. In contrast mutp53 cells increased drug clearance when performing OXPHOS. ABC transporter promoters contain binding sites for the transcription factors MEF2, NRF1 and NRF2 that are targets of the MAPK ERK5. OXPHOS induced expression of the MAPK ERK5. Decreasing ERK5 levels in wtp53 cells increased ABC expression whereas it inhibited expression in mutp53 cells. Our results showed that the ERK5/MEF2 pathway controlled ABC expression depending on p53 status.
Collapse
Affiliation(s)
- Sana Belkahla
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France
| | - Abrar Ul Haq Khan
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Delphine Gitenay
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Catherine Alexia
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Claire Gondeau
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France.,Département d'Hépato-gastroentérologie A, Hôpital Saint Eloi, CHU Montpellier, Montpellier, France
| | - Dang-Nghiem Vo
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France
| | - Stefania Orecchioni
- Department of Oncology and Hemato-Oncology, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Department of Oncology and Hemato-Oncology, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Department of Oncology and Hemato-Oncology, European Institute of Oncology, Milan, Italy
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, Montpellier, France
| | - Javier Hernandez
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France
| | - Martine Daujat-Chavanieu
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Nerea Allende-Vega
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France.,These two authors share senior authorship
| | - Martin Villalba Gonzalez
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France.,These two authors share senior authorship
| |
Collapse
|