1
|
Suzuki T, Nishi Y, Koyama T, Nakada M, Arimatsu R, Komiya Y, Ogawa A, Osaki R, Maeno T, Egusa AS, Nakamura M, Tatsumi R, Ojima K, Nishimura T. Reduced myogenic differentiation capacity of satellite cell-derived myoblasts in male ICR mice compared with male C57BL/6 and BALB/c mice. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01035-0. [PMID: 40387981 DOI: 10.1007/s11626-025-01035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 05/20/2025]
Abstract
Many strains of wild-type laboratory mice have been developed for studies in the life sciences, including skeletal muscle cell biology. Muscle regeneration capacity differs among wild-type mouse strains. However, few studies have focused on whether myogenic stem cells (satellite cells) are directly related to mouse strain-dependent myoregeneration gaps using in vitro culture models. In this study, we selected three major wild-type mouse strains, CD1 (outbred; Jcl:ICR [ICR]), C57BL/6NJcl (inbred; B6), and BALB/cAJcl (inbred; C), which are widely used in laboratory experiments. Initially, we compared myotube fusion capabilities using satellite cell-derived myoblasts. The results showed that cell cultures isolated from male ICR mice could not efficiently form myotubes owing to low expression levels of myogenic regulatory factors (e.g., MyoD, myogenin, myocyte enhancer factor [MEF] 2A, and MEF2C) compared with B6 and C mouse strains. Next, we compared the myofiber-type compositions of muscle tissues and cultured myotubes among male mice from each of the three strains. Although each muscle tissue used for satellite cell isolation similarly expressed fast-twitch myofiber markers in all mouse strains, male ICR-derived myoblasts formed abundant amounts of slow-type myotubes. By contrast, myotubes from male B6 and C mice expressed substantial levels of fast-twitch myofiber markers. We also performed a comparative experiment in female ICR, B6, and C mouse strains, similar to the male mouse experiments. The myogenic differentiation potencies of myoblasts and myofiber-type compositions of myotubes in female mouse strains were similar. Thus, male ICR-derived satellite cells (myoblasts) had low myogenic differentiation potential, which may be associated with the tendency slow-twitch myotube formation.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Yuriko Nishi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minori Nakada
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rio Arimatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Aoi Ogawa
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rika Osaki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Maeno
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ai Saiga Egusa
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Mako Nakamura
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, Naro, Tsukuba, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Maeno T, Arimatsu R, Ojima K, Yamaya Y, Imakyure H, Watanabe N, Komiya Y, Kobayashi K, Nakamura M, Nishimura T, Tatsumi R, Suzuki T. Netrin-4 synthesized in satellite cell-derived myoblasts stimulates autonomous fusion. Exp Cell Res 2023; 430:113698. [PMID: 37437770 DOI: 10.1016/j.yexcr.2023.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Satellite cells are indispensable for skeletal muscle regeneration and hypertrophy by forming nascent myofibers (myotubes). They synthesize multi-potent modulator netrins (secreted subtypes: netrin-1, -3, and -4), originally found as classical neural axon guidance molecules. While netrin-1 and -3 have key roles in myogenic differentiation, the physiological significance of netrin-4 is still unclear. This study examined whether netrin-4 regulates myofiber type commitment and myotube formation. Initially, the expression profiles indicated that satellite cells isolated from the extensor digitorum longus muscle (EDL muscle: fast-twitch myofiber-abundant) expressed slightly more netrin-4 than the soleus muscle (slow-type abundant) cells. As netrin-4 knockdown inhibited both slow- and fast-type myotube formation, netrin-4 may not directly regulate myofiber type commitment. However, netrin-4 knockdown in satellite cell-derived myoblasts reduced the myotube fusion index, while exogenous netrin-4 promoted myotube formation, even though netrin-4 expression level was maximum during the initiation stage of myogenic differentiation. Furthermore, netrin-4 knockdown also inhibited MyoD (a master transcriptional factor of myogenesis) and Myomixer (a myoblast fusogenic molecule) expression. These data suggest that satellite cells synthesize netrin-4 during myogenic differentiation initiation to promote their own fusion, stimulating the MyoD-Myomixer signaling axis.
Collapse
Affiliation(s)
- Takahiro Maeno
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Rio Arimatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Yuki Yamaya
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hikaru Imakyure
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Naruha Watanabe
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mako Nakamura
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ryuichi Tatsumi
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Laboratory of Muscle and Meat Science, Department of Animal and Marine Bioresource Sciences, Research Faculty of Agriculture, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
R-spondin3 is a myokine that differentiates myoblasts to type I fibres. Sci Rep 2022; 12:13020. [PMID: 35906363 PMCID: PMC9338073 DOI: 10.1038/s41598-022-16640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Muscle fibres are broadly categorised into types I and II; the fibre-type ratio determines the contractile and metabolic properties of skeletal muscle tissue. The maintenance of type I fibres is essential for the prevention of obesity and the treatment of muscle atrophy caused by type 2 diabetes or unloading. Some reports suggest that myokines are related to muscle fibre type determination. We thus explored whether a myokine determines whether satellite cells differentiate to type I fibres. By examining the fibre types separately, we identified R-spondin 3 (Rspo3) as a myokine of interest, a secreted protein known as an activator of Wnt signalling pathways. To examine whether Rspo3 induces type I fibres, primary myoblasts prepared from mouse soleus muscles were exposed to a differentiation medium containing the mouse recombinant Rspo3 protein. Expression of myosin heavy chain (MyHC) I, a marker of type I fibre, significantly increased in the differentiated myotubes compared with a control. The Wnt/β-catenin pathway was shown to be the dominant signalling pathway which induces Rspo3-induced MyHC I expression. These results revealed Rspo3 as a myokine that determines whether satellite cells differentiate to type I fibres.
Collapse
|
4
|
Daneshvar N, Anderson JE. Preliminary Study of S100B and Sema3A Expression Patterns in Regenerating Muscle Implicates P75-Expressing Terminal Schwann Cells and Muscle Satellite Cells in Neuromuscular Junction Restoration. Front Cell Dev Biol 2022; 10:874756. [PMID: 35923848 PMCID: PMC9340223 DOI: 10.3389/fcell.2022.874756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
Terminal Schwann cells (TSCs) help regulate the formation, maintenance, function, and repair of neuromuscular junctions (NMJs) and axon guidance after muscle injury. Premature activation of muscle satellite cells (SCs), induced by isosorbide dinitrate (ISDN) before injury, accelerates myogenic regeneration, disrupts NMJ remodeling and maturation, decreases Sema3A protein-induced neuro-repulsion, and is accompanied by time-dependent changes in S100B protein levels. Here, to study the effects of premature SC activation on TSCs and SCs, both expressing P75 nerve growth-factor receptor, in situ hybridization was used to identify transcripts of S100B and Sema3A, and the number, intensity, and diameter of expression sites were analyzed. The number of sites/fields expressing S100B and Sema3A increased with regeneration time (both p < 0.001). Expression-site intensity (S100B) and diameter (S100B and Sema3A) decreased during regeneration (p = 0.005; p < 0.05, p = 0.006, respectively). P75 protein colocalized with a subset of S100B and Sema3A expression sites. Principal component analyses of gene expression, protein levels, and histological variables (fiber diameter, vascular density) in control and ISDN-pretreated groups explained 83% and 64% of the dataset variance, respectively. A very strong loading coefficient for colocalization of P75 protein with S100B and Sema3A mRNAs (0.91) in control regenerating muscle dropped markedly during regeneration disrupted by premature SC activation (-0.10 in Factor 1 to 0.55 in Factor 3). These findings strongly implicate the triple-expression profile by TSCs and/or SCs as a strong correlate of the important synchrony of muscle and nerve regeneration after muscle tissue injury. The results have the potential to focus future research on the complex interplay of TSCs and SCs in neuromuscular tissue repair and help promote effective function after traumatic muscle injury.
Collapse
Affiliation(s)
| | - Judy E. Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Abundant Synthesis of Netrin-1 in Satellite Cell-Derived Myoblasts Isolated from EDL Rather Than Soleus Muscle Regulates Fast-Type Myotube Formation. Int J Mol Sci 2021; 22:ijms22094499. [PMID: 33925862 PMCID: PMC8123454 DOI: 10.3390/ijms22094499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 01/05/2023] Open
Abstract
Resident myogenic stem cells (satellite cells) are attracting attention for their novel roles in myofiber type regulation. In the myogenic differentiation phase, satellite cells from soleus muscle (slow fiber-abundant) synthesize and secrete higher levels of semaphorin 3A (Sema3A, a multifunctional modulator) than those derived from extensor digitorum longus (EDL; fast fiber-abundant), suggesting the role of Sema3A in forming slow-twitch myofibers. However, the regulatory mechanisms underlying fast-twitch myotube commitment remain unclear. Herein, we focused on netrin family members (netrin-1, -3, and -4) that compete with Sema3A in neurogenesis and osteogenesis. We examined whether netrins affect fast-twitch myotube generation by evaluating their expression in primary satellite cell cultures. Initially, netrins are upregulated during myogenic differentiation. Next, we compared the expression levels of netrins and their cell membrane receptors between soleus- and EDL-derived satellite cells; only netrin-1 showed higher expression in EDL-derived satellite cells than in soleus-derived satellite cells. We also performed netrin-1 knockdown experiments and additional experiments with recombinant netrin-1 in differentiated satellite cell-derived myoblasts. Netrin-1 knockdown in myoblasts substantially reduced fast-type myosin heavy chain (MyHC) expression; exogenous netrin-1 upregulated fast-type MyHC in satellite cells. Thus, netrin-1 synthesized in EDL-derived satellite cells may promote myofiber type commitment of fast muscles.
Collapse
|
6
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Seo K, Suzuki T, Kobayashi K, Nishimura T. Adipocytes suppress differentiation of muscle cells in a co-culture system. Anim Sci J 2018; 90:423-434. [PMID: 30585366 DOI: 10.1111/asj.13145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Abstract
The development of adipose tissue in skeletal muscle is important for improving meat quality. However, it is still unclear how adipocytes grow in the proximity of muscle fibers. We hypothesized that adipocytes would suppress muscle cell growth so as to grow dominantly within muscle. In this study, we investigated the effect of adipocytes on the differentiation of muscle cells in a co-culture system. The fusion index of C2C12 myoblasts co-cultured with 3T3-L1 adipocytes was significantly lower than that of the control. The expression of myogenin and myosin heavy chain in C2C12 muscle cells co-cultured with 3T3-L1 adipocytes was significantly lower than in the control. Furthermore, the expression of Atrogin-1 and MuRF-1 was higher in C2C12 muscle cells co-cultured with 3T3-L1 adipocytes than the control. These results suggest that 3T3-L1 adipocytes suppress the differentiation of C2C12 myoblasts. In addition, 3T3-L1 adipocytes induced the expression and secretion of IL-6 in C2C12 muscle cells. The fusion index and myotube diameter were higher in C2C12 muscle cells co-cultured with 3T3-L1 cells in medium containing IL-6-neutralizing antibody than the control. Taken together, there is a possibility that adipocyte-induced IL-6 expression in muscle cells could be involved in the inhibition of muscle cell differentiation via autocrine.
Collapse
Affiliation(s)
- Kangmin Seo
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Hei Yuan HS, Katyal S, Anderson JE. A mechanism for semaphorin-induced apoptosis: DNA damage of endothelial and myogenic cells in primary cultures from skeletal muscle. Oncotarget 2018; 9:22618-22630. [PMID: 29854302 PMCID: PMC5978252 DOI: 10.18632/oncotarget.25200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
One hallmark of cancer is its ability to recruit a vascular supply to support rapid growth. Suppression of angiogenesis holds potential as a second-line or adjuvant therapy to stunt cancer growth, progression, metastasis, and post-resection regeneration. To begin to test the hypothesis that semaphorin 3A and 3F together, will induce endothelial cell apoptosis by inducing DNA damage, mixed primary cultures isolated from normal adult mouse skeletal muscle were treated for 48 hr with Sema3A ± Sema3F (100ng/mL). Changes in surviving-cell density, DNA synthesis, DNA repair (gamma-Histone 2AX, γH2AX, an indirect measure for DNA damage), and apoptotic DNA fragmentation (TUNEL staining) were assayed in cultures of CD31+ endothelial and desmin+ muscle cells. Sema3F increased DNA damage-associated DNA repair in both cell types. Co-treatment with Sema3A+3F increased γH2AX staining ~25-fold over control levels, and further increased apoptosis compared to control and Sema3A alone. Results were negated by treatment with neutralizing anti-semaphorin antibodies and are interpreted as suggesting that Sema3A may sensitize endothelial but not muscle cells to Sema3F-induced DNA damage. These preliminary findings on a complex system of interacting cells may contribute to developing applications that could target angiogenic regulatory mechanisms for their therapeutic potential against cancer progression and metastasis.
Collapse
Affiliation(s)
- Haynes Shek Hei Yuan
- Department of Biological Sciences, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, CancerCare Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Sachin Katyal
- Department of Pharmacology and Therapeutics, CancerCare Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Judy E Anderson
- Department of Biological Sciences, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury. PLoS One 2016; 11:e0162494. [PMID: 27668864 PMCID: PMC5036792 DOI: 10.1371/journal.pone.0162494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background Rotator-cuff injury (RCI) is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known. Methods and Findings Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS) and control (ipsilateral deltoid) muscles biopsied from participants with RCI (N = 27). Biopsies were prepared for explant culture (to study satellite cell activity), immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ) subunit of acetylcholine receptor (γ-AchR). Principal component analysis (PCA) for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase) versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation) than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since “muscle” was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli. Conclusions Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs suggest indices including satellite cell responsiveness, atrogin-1, atrophy, and innervation may predict surgical outcome.
Collapse
|
11
|
Saller MM, Huettl RE, Hanuschick P, Amend AL, Alberton P, Aszodi A, Huber AB. The role of Sema3-Npn-1 signaling during diaphragm innervation and muscle development. J Cell Sci 2016; 129:3295-308. [PMID: 27466379 PMCID: PMC5047703 DOI: 10.1242/jcs.186015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/20/2016] [Indexed: 11/20/2022] Open
Abstract
Correct innervation of the main respiratory muscle in mammals, namely the thoracic diaphragm, is a crucial pre-requisite for the functionality of this muscle and the viability of the entire organism. Systemic impairment of Sema3A-Npn-1 (Npn-1 is also known as NRP1) signaling causes excessive branching of phrenic nerves in the diaphragm and into the central tendon region, where the majority of misguided axons innervate ectopic musculature. To elucidate whether these ectopic muscles are a result of misguidance of myoblast precursors due to the loss of Sema3A-Npn-1 signaling, we conditionally ablated Npn-1 in somatic motor neurons, which led to a similar phenotype of phrenic nerve defasciculation and, intriguingly, also formation of innervated ectopic muscles. We therefore hypothesize that ectopic myocyte fusion is caused by additional factors released by misprojecting growth cones. Slit2 and its Robo receptors are expressed by phrenic motor axons and migrating myoblasts, respectively, during innervation of the diaphragm. In vitro analyses revealed a chemoattractant effect of Slit2 on primary diaphragm myoblasts. Thus, we postulate that factors released by motor neuron growth cones have an influence on the migration properties of myoblasts during establishment of the diaphragm.
Collapse
Affiliation(s)
- Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Institute of Physiology, Department of Physiological Genomics, Ludwig-Maximilians-University (LMU), Schillerstraße 46, Munich 80336, Germany
| | - Philipp Hanuschick
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Anna-Lena Amend
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Attila Aszodi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Nußbaumstraße 20, Munich 80336, Germany
| | - Andrea B Huber
- Institute of Developmental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, Neuherberg 85764, Germany Bernstein Network for Computational Neuroscience, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
12
|
Mizunoya W, Okamoto S, Miyahara H, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Qahar M, Waga T, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats: Impact of the low-dose supplementation. Anim Sci J 2016; 88:489-499. [PMID: 27417667 DOI: 10.1111/asj.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/27/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
Abstract
Our previous studies demonstrated that an 8-week intake of 5% (w/w) apple polyphenol (APP) in the diet improves muscle endurance of young-adult rats. In order to identify a lower limit of the dietary contribution of APP to the effect, the experiments were designed for lower-dose supplementation (8-week feeding of 0.5% APP in AIN-93G diet) to 12-week-old male Sprague-Dawley rats. Results clearly showed that the 0.5% APP diet significantly up-regulates slower myosin-heavy-chain (MyHC) isoform ratios (IIx and IIa relative to total MyHC) and myoglobin expression in lower hind-limb muscles examined (P < 0.05). There was a trend to increased fatigue resistance detected from measurements of relative isometric plantar-flexion force torque generated by a stimulus train delivered to the tibial nerve (F(98, 1372) = 1.246, P = 0.0574). Importantly, there was no significant difference in the animal body-phenotypes or locomotor activity shown as total moving distance in light and dark periods. Therefore, the present study encourages the notion that even low APP-intake may increase the proportions of fatigue-resistant myofibers, and has promise as a strategy for modifying performance in human sports and improving function in age-related muscle atrophy.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mulan Qahar
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan.,Wakodo, Ltd., Chofu, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
13
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
14
|
Qahar M, Takuma Y, Mizunoya W, Tatsumi R, Ikeuchi Y, Nakamura M. Semaphorin 3A promotes activation of Pax7, Myf5, and MyoD through inhibition of emerin expression in activated satellite cells. FEBS Open Bio 2016; 6:529-39. [PMID: 27239431 PMCID: PMC4880721 DOI: 10.1002/2211-5463.12050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/11/2016] [Accepted: 02/20/2016] [Indexed: 01/07/2023] Open
Abstract
We previously showed that Semaphorin 3A (Sema3A) expression was induced when quiescent muscle satellite cells were stimulated by hepatocyte growth factor and became activated satellite cells (ASCs). However, how Sema3A regulates genes in the early phase of ASCs remains unclear. In this study, we investigated whether Sema3A signaling can regulate the early phase of ASCs, an important satellite cell stage for postnatal growth, repair, and maintenance of skeletal muscle. We showed that expression of the myogenic proliferation regulatory factors Pax7 and Myf5 was decreased in myoblasts transfected with Sema3A siRNA. These cells failed to activate expression MyoD, another myogenic proliferation regulatory factor, during differentiation. Interestingly, some of the Sema3A-depleted cells did not express Pax7 and MyoD and had enlarged nuclei and very large cytoplasmic areas. We also observed that Pax7 and Myf5 expression was increased in Myc-Sema3A overexpressing myoblasts. BrdU analysis indicated that Sema3A regulated proliferation of ASCs. These findings suggest that Sema3A signaling can modulate expression of Pax7, Myf5, and MyoD. Moreover, we found that expression of emerin, an inner nuclear membrane protein, was regulated by Sema3A signaling. Emerin was identified by positional cloning as the gene responsible for the X-linked form of Emery-Dreifuss muscular dystrophy (X-EDMD). In conclusion, our results support a role for Sema3A in maintaining ASCs through regulation, via emerin, of Pax7, Myf5, and MyoD expression.
Collapse
Affiliation(s)
- Mulan Qahar
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yuko Takuma
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences Graduate School of Agriculture Kyushu University Hakozaki Fukuoka Japan
| |
Collapse
|
15
|
Roh SG, Suzuki Y, Gotoh T, Tatsumi R, Katoh K. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1-15. [PMID: 26732322 PMCID: PMC4698675 DOI: 10.5713/ajas.16.0001r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.
Collapse
Affiliation(s)
- Sang-Gun Roh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Yutaka Suzuki
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kazuo Katoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| |
Collapse
|
16
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
18
|
Do MKQ, Shimizu N, Suzuki T, Ohtsubo H, Mizunoya W, Nakamura M, Sawano S, Furuse M, Ikeuchi Y, Anderson JE, Tatsumi R. Transmembrane proteoglycans syndecan-2, 4, receptor candidates for the impact of HGF and FGF2 on semaphorin 3A expression in early-differentiated myoblasts. Physiol Rep 2015; 3:e12553. [PMID: 26381016 PMCID: PMC4600393 DOI: 10.14814/phy2.12553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 12/03/2022] Open
Abstract
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed an unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) triggered its expression exclusively at the early differentiation phase. In order to advance this concept, the present study described that transmembrane heparan/chondroitin sulfate proteoglycans syndecan-2, 4 may be the plausible receptor candidates for HGF and FGF2 to signal Sema3A expression. Results showed that mRNA expression of syndecan-2, 4 was abundant (two magnitudes higher than syndecan-1, 3) in early-differentiated myoblasts and their in vitro knockdown diminished the HGF/FGF2-induced expression of Sema3A down to a baseline level. Pretreatment with heparitinase and chondroitinase ABC decreased the HGF and FGF2 responses, respectively, in non-knockdown cultures, supporting a possible model that HGF and FGF2 may bind to heparan and chondroitin sulfate chains of syndecan-2, 4 to signal Sema3A expression. The findings, therefore, extend our understanding that HGF/FGF2-syndecan-2, 4 association may stimulate a burst of Sema3A secretion by myoblasts recruited to the site of muscle injury; this would ensure a coordinated delay in the attachment of motoneuron terminals onto fibers early in muscle regeneration, and thus synchronize the recovery of muscle fiber integrity and the early resolution of inflammation after injury with reinnervation toward functional recovery.
Collapse
Affiliation(s)
- Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Naomi Shimizu
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Furuse
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Mizunoya W, Miyahara H, Okamoto S, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Lan M, Waga T, Iwata A, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats. PLoS One 2015. [PMID: 26222548 PMCID: PMC4519157 DOI: 10.1371/journal.pone.0134303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mai-Khoi Q. Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mu Lan
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan
| | - Akira Iwata
- Department of Physical Therapy, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Fukasawa, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
20
|
Gigliotti D, Leiter JRS, Macek B, Davidson MJ, MacDonald PB, Anderson JE. Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol 2015; 309:C383-91. [PMID: 26135801 DOI: 10.1152/ajpcell.00143.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
Abstract
The high frequency of poor outcome and chronic pain after surgical repair of shoulder rotator-cuff injury (RCI) prompted this study to explore the potential to amplify muscle regeneration using nitric oxide (NO)-based treatment. After preoperative magnetic resonance imaging (MRI), biopsies of supraspinatus and ipsilateral deltoid (as a control) were collected during reparative surgery for RCI. Muscle fiber diameter, the pattern of neuromuscular junctions observed with alpha-bungarotoxin staining, and the γ:ε subunit ratio of acetylcholine receptors in Western blots were examined in tandem with experiments to determine the in vitro responsiveness of muscle satellite cells to activation (indicated by uptake of bromodeoxyuridine, BrdU) by the NO-donor drug, isosorbide dinitrate (ISDN). Consistent with MRI findings of supraspinatus atrophy (reduced occupation ratio and tangent sign), fiber diameter was lower in supraspinatus than in deltoid. ISDN induced a significant increase over baseline (up to 1.8-fold), in the proportion of BrdU+ (activated) Pax7+ satellite cells in supraspinatus, but not in deltoid, after 40 h in culture. The novel application of denervation indices revealed a trend for supraspinatus muscle to have a higher γ:ε subunit ratio than deltoid (P = 0.13); this ratio inversely with both occupancy ratio (P < 0.05) and the proportion of clusters at neuromuscular junctions (P = 0.05). Results implicate possible supraspinatus denervation in RCI and suggest NO-donor treatment has potential to promote growth in atrophic supraspinatus muscle after RCI and improve functional outcome.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Bryce Macek
- College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael J Davidson
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter B MacDonald
- Section of Orthopedics, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;
| |
Collapse
|
21
|
Kanzleiter T, Jähnert M, Schulze G, Selbig J, Hallahan N, Schwenk RW, Schürmann A. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice. Am J Physiol Endocrinol Metab 2015; 308:E912-20. [PMID: 25805191 DOI: 10.1152/ajpendo.00289.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/16/2015] [Indexed: 01/18/2023]
Abstract
The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P < 0.05, meth diff >5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.
Collapse
Affiliation(s)
- Timo Kanzleiter
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Gunnar Schulze
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Joachim Selbig
- Institute of Biochemistry and Biology and Institute of Computer Science/Bioinformatics University of Potsdam, Potsdam, Germany
| | - Nicole Hallahan
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Robert Wolfgang Schwenk
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; and
| |
Collapse
|
22
|
Komiya Y, Anderson JE, Akahoshi M, Nakamura M, Tatsumi R, Ikeuchi Y, Mizunoya W. Protocol for rat single muscle fiber isolation and culture. Anal Biochem 2015; 482:22-4. [PMID: 25912416 DOI: 10.1016/j.ab.2015.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 11/19/2022]
Abstract
To attain a superior in vitro model of mature muscle fibers, we modified the established protocol for isolating single muscle fibers from rat skeletal muscle. Muscle fiber cultures with high viability were obtained using flexor digitorum brevis muscle and lasted for at least 7 days. We compared the expression levels of adult myosin heavy chain (MyHC) isoforms in these single muscle fibers with myotubes formed from myoblasts; isolated fibers contained markedly more abundant adult MyHC isoforms than myotubes. This muscle fiber model, therefore, will be useful for studying the various functions and cellular processes of mature muscles in vitro.
Collapse
Affiliation(s)
- Yusuke Komiya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mariko Akahoshi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Mako Nakamura
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ryuichi Tatsumi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshihide Ikeuchi
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Wataru Mizunoya
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
23
|
Ojima K, Oe M, Nakajima I, Shibata M, Chikuni K, Muroya S, Nishimura T. Proteomic analysis of secreted proteins from skeletal muscle cells during differentiation. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Sawano S, Suzuki T, Do MKQ, Ohtsubo H, Mizunoya W, Ikeuchi Y, Tatsumi R. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration. Anim Sci J 2014; 85:994-1000. [DOI: 10.1111/asj.12264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Shoko Sawano
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Mai-Khoi Q. Do
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences; Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
25
|
Sakaguchi S, Shono JI, Suzuki T, Sawano S, Anderson JE, Do MKQ, Ohtsubo H, Mizunoya W, Sato Y, Nakamura M, Furuse M, Yamada K, Ikeuchi Y, Tatsumi R. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int J Biochem Cell Biol 2014; 54:272-85. [PMID: 24886696 DOI: 10.1016/j.biocel.2014.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/06/2014] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed a heretofore unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) triggered its expression exclusively at the early-differentiation phase. In order to verify this concept, the present study was designed to clarify a paracrine source of HGF release. In vitro experiments demonstrated that activated anti-inflammatory macrophages (CD206-positive M2) produce HGF and thereby promote myoblast chemoattraction and Sema3A expression. Media from pro-inflammatory macrophage cultures (M1) did not show any significant effect. M2 also enhanced the expression of myoblast-differentiation markers in culture, and infiltrated predominantly at the early-differentiation phase (3-5 days post-injury); M2 were confirmed to produce HGF as monitored by in vivo/ex vivo immunocytochemistry of CD11b/CD206/HGF-positive cells and by HGF in situ hybridization of cardiotoxin- or crush-injured tibialis anterior muscle, respectively. These studies advance our understanding of the stage-specific activation of Sema3A expression signaling. Findings, therefore, encourage the idea that M2 contribute to spatiotemporal up-regulation of extracellular Sema3A concentrations by producing HGF that, in turn, stimulates a burst of Sema3A secretion by myoblasts that are recruited to site of injury. This model may ensure a coordinated delay in re-attachment of motoneuron terminals onto damaged fibers early in muscle regeneration, and thus synchronize the recovery of muscle-fiber integrity and the early resolution of inflammation after injury.
Collapse
Affiliation(s)
- Shohei Sakaguchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Jun-ichi Shono
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Yusuke Sato
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Mako Nakamura
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Mitsuhiro Furuse
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Koji Yamada
- Department of Food Science and Biotechnology, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 8128581, Japan.
| |
Collapse
|
26
|
Shono JI, Sakaguchi S, Suzuki T, Do MKQ, Mizunoya W, Nakamura M, Sato Y, Furuse M, Yamada K, Ikeuchi Y, Tatsumi R. Preliminary time-course study of antiinflammatory macrophage infiltration in crush-injured skeletal muscle. Anim Sci J 2013; 84:744-50. [PMID: 23980916 DOI: 10.1111/asj.12105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
Abstract
Muscle damage induces massive macrophage infiltration of the injury site, in which activated pro-inflammatory and anti-inflammatory phenotypes (currently classified as M1 and M2, respectively) have been documented as distinct functional populations predominant at different times after the conventional acute injury by intramuscular injection of snake venoms (cardiotoxin, notexin) or chemicals (bupivacaine hydrochloride, barium chloride). The present study employed a muscle-crush injury model that may better reflect the physiologic damage and repair processes initiated by contusing a gastrocnemius muscle in the lower hind-limb of adult mice with hemostat forceps, and examined the time-course invasion of M1 and M2 macrophages during muscle regeneration by immunocytochemistry of CD197 and CD206 marker proteins. CD197-positive M1 macrophages were observed exclusively at 1-4 days after crush followed by the alternative prevalence of CD206-positive M2 at 7 days of myogenic differentiation, characterized by increasing levels of myogenin messenger RNA expression. Preliminary PCR analysis showed that M2 may produce hepatocyte growth factor (HGF) in culture, providing additional benefit to understanding that M2 populations actively promote regenerative myogenesis (muscle fiber repair) and moto-neuritogenesis (re-attachment of motoneuron terminals onto damaged fibers) through their time-specific infiltration and release of growth factor at the injury site early in muscle regeneration.
Collapse
Affiliation(s)
- Jun-ichi Shono
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|