1
|
Wang ZC, Hu YY, Shen XZ, Tan WQ. Absence of Langerhans cells resulted in over-influx of neutrophils and increased bacterial burden in skin wounds. Cell Death Dis 2024; 15:760. [PMID: 39424788 PMCID: PMC11489468 DOI: 10.1038/s41419-024-07143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Langerhans cells (LCs) are resident dendritic cells in the epidermis and their roles in presenting antigens derived from microorganisms present in the skin has been well appreciated. However, it is generally thought that incoming neutrophils are mainly responsible for eradicating invading pathogens in the early stage of wounds and a role of LCs in innate immunity is elusive. In the current study, we showed that wounds absent of LCs had a delayed closure. Mechanistically, LCs were the primary cells in warding off bacteria invasion at the early stage of wound healing. Without LCs, commensal bacteria quickly invaded and propagated in the wounded area. keratinocytes surrounding the wounds responded to the excessive bacteria by elevated production of CXCL5, resulting in an over-influx of neutrophils. The over-presence of activated neutrophils, possibly together with the aggravated invasion of bacteria, was detrimental to epidermal progenitor cell propagation and re-epithelialization. These observations underscore an indispensable role of LCs as effective guardians that preclude both bacteria invasion and damages inflicted by secondary inflammation.
Collapse
Affiliation(s)
- Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Jiang X, Shi R, Ma R, Tang X, Gong Y, Yu Z, Shi Y. The role of microRNA in psoriasis: A review. Exp Dermatol 2023; 32:1598-1612. [PMID: 37382420 DOI: 10.1111/exd.14871] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rongcan Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Xinyi Tang
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yu Gong
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Zengyang Yu
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Abstract
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France.
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
4
|
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, Zhong X, Shi F. miR-223: An Immune Regulator in Infectious Disorders. Front Immunol 2021; 12:781815. [PMID: 34956210 PMCID: PMC8702553 DOI: 10.3389/fimmu.2021.781815] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are diminutive noncoding RNAs that can influence disease development and progression by post-transcriptionally regulating gene expression. The anti-inflammatory miRNA, miR-223, was first identified as a regulator of myelopoietic differentiation in 2003. This miR-223 exhibits multiple regulatory functions in the immune response, and abnormal expression of miR-223 is shown to be associated with multiple infectious diseases, including viral hepatitis, human immunodeficiency virus type 1 (HIV-1), and tuberculosis (TB) by influencing neutrophil infiltration, macrophage function, dendritic cell (DC) maturation and inflammasome activation. This review summarizes the current understanding of miR-223 physiopathology and highlights the molecular mechanism by which miR-223 regulates immune responses to infectious diseases and how it may be targeted for diagnosis and treatment.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Lecoeur H, Prina E, Gutiérrez-Sanchez M, Späth GF. Going ballistic: Leishmania nuclear subversion of host cell plasticity. Trends Parasitol 2021; 38:205-216. [PMID: 34666937 DOI: 10.1016/j.pt.2021.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Intracellular parasites have evolved intricate strategies to subvert host cell functions for their own survival. These strategies are particularly damaging to the host if the infection involves immune cells, as illustrated by protozoan parasites of the genus Leishmania that thrive inside mononuclear phagocytic cells, causing devastating immunopathologies. While the impact of Leishmania infection on host cell phenotype and functions has been well documented, the regulatory mechanisms underlying host cell subversion were only recently investigated. Here we summarize the current knowledge on how Leishmania infection affects host nuclear activities and propose thought-provoking new concepts on the reciprocal relationship between epigenetic and transcriptional regulation in host cell phenotypic plasticity, its potential subversion by the intracellular parasite, and its relevance for host-directed therapy.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Maria Gutiérrez-Sanchez
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
6
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Abdul-Maksoud RS, Rashad NM, Elsayed WSH, Ali MA, Kamal NM, Zidan HE. Circulating miR-181a and miR-223 expression with the potential value of biomarkers for the diagnosis of systemic lupus erythematosus and predicting lupus nephritis. J Gene Med 2021; 23:e3326. [PMID: 33617143 DOI: 10.1002/jgm.3326] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) contribute to the development and progression of systemic lupus erythematosus (SLE) by affecting a wide range of targeted genes and facilitating the development of lupus nephritis (LN). The present study aimed to analyze the serum expression of miR-181a and miR-223 in SLE patients and to assess whether they could serve as novel biomarkers for SLE diagnosis and to distinguish LN. METHODS The study included 70 control subjects and 116 patients with SLE (67 non-LN and 49 LN groups). Circulating miR-181a and miR-223 expression levels were analyzed among the Egyptian population using a real-time polymerase chain reaction. RESULTS Up-regulation of miR-181a was detected among SLE patients compared to healthy controls and higher values were reported among the LN group compared to the non-LN group. Down-regulation of miR-223 was reported among SLE patients compared to controls and lower values were reported among the LN group compared to the non-LN group. The higher miR-181a expression and the lower miR-223 expression were associated with higher stages of LN. SLE disease activity index, proteinuria and serum creatinine were independently correlated with miR-181a and miR-223 among SLE patients by linear regression analysis. Receiver-operating characteristic curve analysis revealed that combined miR-181a and miR-223 expression increased the sensitivity and specificity for the diagnosis of SLE and further distinguished LN from non-LN patients. CONCLUSIONS miR-181a and miR-223 could play a role in evaluating SLE disease progression and prognosis. Combined miR-181a and miR-223 expression analysis could serve as novel serum-based biomarkers in the diagnosis of SLE and predicting LN among Egyptians.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nearmeen M Rashad
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walid S H Elsayed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal A Ali
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nafesa M Kamal
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Haidy E Zidan
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Huang L, Li GH, Yu Q, Xu Y, Cvetkovski S, Wang X, Parajuli N, Udo-Inyang I, Kaplan D, Zhou L, Yao Z, Mi QS. Smad2/4 Signaling Pathway Is Critical for Epidermal Langerhans Cell Repopulation Under Inflammatory Condition but Not Required for Their Homeostasis at Steady State. Front Immunol 2020; 11:912. [PMID: 32457763 PMCID: PMC7221176 DOI: 10.3389/fimmu.2020.00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/20/2020] [Indexed: 01/17/2023] Open
Abstract
Epidermal Langerhans cells (LCs) are skin-resident dendritic cells that are essential for the induction of skin immunity and tolerance. Transforming growth factor-β 1 (TGFβ1) is a crucial factor for LC maintenance and function. However, the underlying TGFβ1 signaling pathways remain unclear. Our previous research has shown that the TGFβ1/Smad3 signaling pathway does not impact LC homeostasis and maturation. In this study, we generated mice with conditional deletions of either individual Smad2, Smad4, or both Smad2 and Smad4 in the LC lineage or myeloid lineage, to further explore the impact of TGFβ1/Smad signaling pathways on LCs. We found that interruption of Smad2 or Smad4 individually or simultaneously in the LC lineage did not significantly impact the maintenance, maturation, antigen uptake, and migration of LCs in vivo or in vitro during steady state. However, the interruption of both Smad2 and Smad4 pathways in the myeloid lineage led to a dramatic inhibition of bone marrow-derived LCs in the inflammatory state. Overall, our data suggest that canonical TGFβ1/Smad2/4 signaling pathways are dispensable for epidermal LC homeostasis and maturation at steady state, but are critical for the long-term LC repopulation directly originating from the bone marrow in the inflammatory state.
Collapse
Affiliation(s)
- Linting Huang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gui-Hua Li
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Qian Yu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Yingping Xu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Steven Cvetkovski
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xuan Wang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Nirmal Parajuli
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Imo Udo-Inyang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Daniel Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Dermatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
9
|
Moein S, Vaghari-Tabari M, Qujeq D, Majidinia M, Nabavi SM, Yousefi B. MiRNAs and inflammatory bowel disease: An interesting new story. J Cell Physiol 2018; 234:3277-3293. [PMID: 30417350 DOI: 10.1002/jcp.27173] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic. In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mostafa Vaghari-Tabari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Irantab.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Bros M, Youns M, Kollek V, Buchmüller D, Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H, Efferth T, Reske-Kunz AB. Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficient to Imprint a Protolerogenic State. Front Pharmacol 2018; 9:915. [PMID: 30174602 PMCID: PMC6108336 DOI: 10.3389/fphar.2018.00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Verena Kollek
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Diana Buchmüller
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ean-Jeong Seo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Svetlana Usanova
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Zhang Y, Shao L. Decreased microRNA-140-5p contributes to respiratory syncytial virus disease through targeting Toll-like receptor 4. Exp Ther Med 2018; 16:993-999. [PMID: 30116350 DOI: 10.3892/etm.2018.6272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/28/2017] [Indexed: 12/24/2022] Open
Abstract
The abnormal expression of miRNAs (miRs) has previously been reported in respiratory syncytial virus (RSV) disease. However, to the best of our knowledge, the expression of miR-140-5p in patients with an RSV infection has never been explored. Reverse transcription-quantitative polymerase chain reaction was performed to analyze the level of miR-140-5p in the blood and nasopharyngeal airway samples. ELISAs were performed to determine the levels of tumor necrosis factor α, interleukin (IL)-1β, IL-6 and IL-8. A dual luciferase reporter assay was also performed to investigate the possible target gene of miR-140-5p. The results demonstrated that the levels of miR-140-5p were significantly decreased in the nasal mucosal and peripheral blood samples of patients with RSV infection. It was also revealed that overexpression of miR-140-5p decreased the inflammatory responses, while inhibition of miR-140-5p enhanced the inflammatory responses. Additionally, three binding sites of miR-140-5p in the 3untranslated region (UTR) of Toll-like receptor (TLR)4 were identified and a dual luciferase reporter assay demonstrated that miR-140-5p significantly suppressed the relative luciferase activity of pmirGLO-TLR4-3UTR. Furthermore, the level of miR-140-5p was shown to be increased following interferon (IFN)α incubation. Notably, inhibition of miR-140-5p markedly attenuated IFNα-mediated downregulation of tumor necrosis factor α, and interleukin-1β, -6 and -8 in BEAS-2B cells. In summary, decreased miR-140-5p levels are involved in RSV-infection diseases primarily through targeting TLR4.
Collapse
Affiliation(s)
- Yun Zhang
- Infectious Disease Department, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Lingyun Shao
- Infectious Disease Department, Shanghai Huashan Hospital, Shanghai 200040, P.R. China
| |
Collapse
|
12
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Zhang X, Liu Q, Wang J, Li G, Weiland M, Yu FS, Mi QS, Gu J, Zhou L. TIM-4 is differentially expressed in the distinct subsets of dendritic cells in skin and skin-draining lymph nodes and controls skin Langerhans cell homeostasis. Oncotarget 2018; 7:37498-37512. [PMID: 27224924 PMCID: PMC5122327 DOI: 10.18632/oncotarget.9546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
T cell immunoglobulin and mucin-4 (TIM-4), mainly expressed on dendritic cells (DC) and macrophages, plays an essential role in regulating immune responses. Langerhans cells (LC), which are the sole DC subpopulation residing at the epidermis, are potent mediators of immune surveillance and tolerance. However, the significance of TIM-4 on epidermal LCs, along with other cutaneous DCs, remains totally unexplored. For the first time, we discovered that epidermal LCs expressed TIM-4 and displayed an increased level of TIM-4 expression upon migration. We also found that dermal CD207+ DCs and lymph node (LN) resident CD207−CD4+ DCs highly expressed TIM-4, while dermal CD207− DCs and LN CD207−CD4− DCs had limited TIM-4 expressions. Using TIM-4-deficient mice, we further demonstrated that loss of TIM-4 significantly upregulated the frequencies of epidermal LCs and LN resident CD207−CD4+ DCs. In spite of this, the epidermal LCs of TIM-4-deficient mice displayed normal phagocytic and migratory abilities, comparable maturation status upon the stimulation as well as normal repopulation under the inflamed state. Moreover, lack of TIM-4 did not affect dinitrofluorobenzene-induced contact hypersensitivity response. In conclusion, our results indicated that TIM-4 was differentially expressed in the distinct subsets of DCs in skin and skin-draining LNs, and specifically regulated epidermal LC and LN CD207−CD4+ DC homeostasis.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China.,Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Queping Liu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Guihua Li
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Matthew Weiland
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America
| | - Fu-Shin Yu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| | - Jun Gu
- Department of Dermatology, Second Military Medical University Changhai Hospital, Shanghai, China
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States of America.,Department of Dermatology, Henry Ford Health System, Detroit, MI, United States of America.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, United States of America
| |
Collapse
|
14
|
Kumar Kingsley SM, Vishnu Bhat B. Role of MicroRNAs in the development and function of innate immune cells. Int Rev Immunol 2017; 36:154-175. [DOI: 10.1080/08830185.2017.1284212] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. Manoj Kumar Kingsley
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| | - B. Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
15
|
Rosales-Mendoza S, Salazar-González JA. Do microRNAs play a role in the activity of plant-based vaccines? Expert Rev Vaccines 2017; 16:529-533. [PMID: 28447884 DOI: 10.1080/14760584.2017.1323636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION An important trend in vaccinology is the development of oral vaccines based on genetically modified plants. Areas covered: Several studies have suggested that dietary microRNAs from plants and other organisms are bioavailable upon oral ingestion exerting biological events in the host such as the modulation of gene expression in several cell types. Since oral plant-based vaccines rely on whole cells as vaccine delivery vehicles, miRNAs could play a role in the immunogenic activity of this type of vaccine. In the present report, this hypothesis is discussed under the light of recent evidence on the immunomodulatory activity exerted by miRNAs using in vitro and in vivo evaluations. Expert commentary: The ways to generate new knowledge and exploit the potential of miRNAs in the development of oral vaccines are discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, SLP, 78210 , México
| | - Jorge A Salazar-González
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , Av. Dr. Manuel Nava 6, SLP, 78210 , México
| |
Collapse
|
16
|
Liu Q, Wu DH, Han L, Deng JW, Zhou L, He R, Lu CJ, Mi QS. Roles of microRNAs in psoriasis: Immunological functions and potential biomarkers. Exp Dermatol 2017; 26:359-367. [PMID: 27783430 PMCID: PMC5837862 DOI: 10.1111/exd.13249] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2016] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules, which function in RNA silencing and post-transcriptional regulation of gene expression. Psoriasis is an inflammatory skin disease characterized by the dysfunction of keratinocytes, with the immune dysregulation. We reviewed the recent studies on the roles of miRNAs in psoriasis and showed that miRNAs play key roles in psoriasis, including the regulation of hyperproliferation, cytokine and chemokine production in keratinocyte, as well as mediating immune dysfunction in psoriasis. Furthermore, miRNAs, particularly, circulating miRNAs may serve as novel biomarkers for diagnosis, monitoring therapy response and reflecting the disease severity. Thus, targeting specific miRNAs may be used to develop new therapeutic methods for psoriasis.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Immunology, School of medicine, Fudan University, Shanghai, China
| | - Ding-Hong Wu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Ling Han
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Jing-Wen Deng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Rui He
- Department of Immunology, School of medicine, Fudan University, Shanghai, China
| | - Chuan-Jian Lu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
17
|
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell 2017; 8:501-513. [PMID: 28364278 PMCID: PMC5498339 DOI: 10.1007/s13238-017-0398-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are important immune cells linking innate and adaptive immune responses. DCs encounter various self and non-self antigens present in the environment and induce different types of antigen specific adaptive immune responses. DCs can be classified into lymphoid tissue-resident DCs, migratory DCs, non-lymphoid resident DCs, and monocyte derived DCs (moDCs). Recent work has also established that DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. The development of different DC subsets has been found to be regulated by a network of different cytokines and transcriptional factors. Moreover, the response of DC is tightly regulated to maintain the homeostasis of immune system. MicroRNAs (miRNAs) are an important class of cellular regulators that modulate gene expression and thereby influence cell fate and function. In the immune system, miRNAs act at checkpoints during hematopoietic development and cell subset differentiation, they modulate effector cell function, and are implicated in the maintenance of homeostasis. DCs are also regulated by miRNAs. In the past decade, much progress has been made to understand the role of miRNAs in regulating the development and function of DCs. In this review, we summarize the origin and distribution of different mouse DC subsets in both lymphoid and non-lymphoid tissues. The DC subsets identified in human are also described. Recent progress on the function of miRNAs in the development and activation of DCs and their functional relevance to autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Haibo Zhou
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Zhang X, Gu J, Yu FS, Zhou L, Mi QS. TGF-β1-induced transcription factor networks in Langerhans cell development and maintenance. Allergy 2016; 71:758-64. [PMID: 26948524 DOI: 10.1111/all.12871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Langerhans cells (LC) represent a specialized subset of evolutionarily conserved dendritic cells (DC) that populate stratified epithelial tissues, which are essential for the induction of skin and mucosal immunity and tolerance, including allergy. Transforming growth factor-β1 (TGF-β1) has been confirmed to be a predominant factor involved in LC development. Despite great advances in the understanding of LC ontogeny and diverse replenishment patterns, the underlying molecular mechanisms remain elusive. This review focuses on the recent discoveries in TGF-β1-mediated LC development and maintenance, with special attention to the involved transcription factors and related regulators.
Collapse
Affiliation(s)
- X. Zhang
- Henry Ford Immunology Program; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Second Military Medical University Changhai Hospital; Shanghai China
| | - J. Gu
- Department of Dermatology; Second Military Medical University Changhai Hospital; Shanghai China
| | - F.-S. Yu
- Department of Ophthalmology; Wayne State University School of Medicine; Detroit MI USA
- Department of Anatomy and Cell Biology; Wayne State University School of Medicine; Detroit MI USA
| | - L. Zhou
- Henry Ford Immunology Program; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Henry Ford Health System; Detroit MI USA
- Department of Internal Medicine; Henry Ford Health System; Detroit MI USA
- Department of Immunology and Microbiology; Wayne State University School of Medicine; Detroit MI USA
| | - Q.-S. Mi
- Henry Ford Immunology Program; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Henry Ford Health System; Detroit MI USA
- Department of Internal Medicine; Henry Ford Health System; Detroit MI USA
- Department of Immunology and Microbiology; Wayne State University School of Medicine; Detroit MI USA
| |
Collapse
|
19
|
Endogenous and tumour-derived microRNAs regulate cross-presentation in dendritic cells and consequently cytotoxic T cell function. Cytotechnology 2016; 68:2223-2233. [PMID: 27193424 DOI: 10.1007/s10616-016-9975-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/20/2016] [Indexed: 01/25/2023] Open
Abstract
Dendritic cells (DCs) are potent antigen presenting cells (APCs). They are also specialized in the induction of cytotoxic T lymphocyte mediated responses against extracellular antigens, including tumour-specific antigens, by presenting peptide-Major Histocompatibility Complex (MHC) I complexes to naïve CD8+ T cells in lymphoid tissues, a process called cross-presentation. Emerging evidence suggests that the efficiency of cross-presentation can be influenced by a unique set of microRNAs (miRNAs). Some are differentially expressed in the course of morphological and functional development of DCs while tumorigenic miRNAs (onco-miRs) can be delivered to and inserted into DCs via exosomes. The latter reprogram the miRNA repertoire of DCs, transforming them from effective APCs to negative modulators of immunity, ultimately aiding cancers to evade host immunity. On the other hand, endogenous microRNAs can influence cross-presentation either positively or negatively. In this review, we discuss the possible mechanisms by which specific miRNAs influence cross-presentation as well as the viability of manipulating the expression of miRNAs that regulate DC cross-presentation as a potential cancer immunotherapy intervention.
Collapse
|
20
|
Xu XM, Zhang HJ. miRNAs as new molecular insights into inflammatory bowel disease: Crucial regulators in autoimmunity and inflammation. World J Gastroenterol 2016; 22:2206-2218. [PMID: 26900285 PMCID: PMC4734997 DOI: 10.3748/wjg.v22.i7.2206] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/28/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammatory disorders of the gastrointestinal tract, and includes two major phenotypes: ulcerative colitis and Crohn’s disease. The pathogenesis of IBD is not fully understood as of yet. It is believed that IBD results from complicated interactions between environmental factors, genetic predisposition, and immune disorders. miRNAs are a class of small non-coding RNAs that can regulate gene expression by targeting the 3′-untranslated region of specific mRNAs for degradation or translational inhibition. miRNAs are considered to play crucial regulatory roles in many biologic processes, such as immune cellular differentiation, proliferation, and apoptosis, and maintenance of immune homeostasis. Recently, aberrant expression of miRNAs was revealed to play an important role in autoimmune diseases, including IBD. In this review, we discuss the current understanding of how miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various immune cells. In particular, we focus on describing specific miRNA expression profiles in tissues and peripheral blood that may be associated with the pathogenesis of IBD. In addition, we summarize the opportunities for utilizing miRNAs as new biomarkers and as potential therapeutic targets in IBD.
Collapse
|
21
|
Smyth LA, Boardman DA, Tung SL, Lechler R, Lombardi G. MicroRNAs affect dendritic cell function and phenotype. Immunology 2015; 144:197-205. [PMID: 25244106 DOI: 10.1111/imm.12390] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function.
Collapse
Affiliation(s)
- Lesley A Smyth
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | | | | | | | |
Collapse
|
22
|
Inchley CS, Sonerud T, Fjærli HO, Nakstad B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect Dis 2015; 15:150. [PMID: 25884957 PMCID: PMC4387708 DOI: 10.1186/s12879-015-0878-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/10/2015] [Indexed: 01/22/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) infection is a common cause of pediatric hospitalization. microRNA, key regulators of the immune system, have not previously been investigated in respiratory specimens during viral infection. We investigated microRNA expression in the nasal mucosa of 42 RSV-positive infants, also comparing microRNA expression between disease severity subgroups. Methods Nasal mucosa cytology specimens were collected from RSV-positive infants and healthy controls. 32 microRNA were selected by microarray for qPCR verification in 19 control, 16 mild, 7 moderate and 19 severe disease samples. Results Compared to healthy controls, RSV-positive infants downregulated miR-34b, miR-34c, miR-125b, miR-29c, mir125a, miR-429 and miR-27b and upregulated miR-155, miR-31, miR-203a, miR-16 and let-7d. On disease subgroups analysis, miR-125a and miR-429 were downregulated in mild disease (p = 0.03 and 0.02, respectively), but not in severe disease (p = 0.3 and 0.3). Conclusion microRNA expression in nasal epithelium cytology brushings of RSV-positive infants shows a distinct profile of immune-associated miRNA. miR-125a has important functions within NF-κB signaling and macrophage function. The lack of downregulation of miR-125a and miR-429 in severe disease may help explain differences in disease manifestations on infection with RSV.
Collapse
Affiliation(s)
- Christopher S Inchley
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.
| | - Tonje Sonerud
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478, Lørenskog, Norway. .,Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Akershus University Hospital, 1478, Lørenskog, Norway.
| | - Hans O Fjærli
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478, Lørenskog, Norway.
| | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, 1478, Lørenskog, Norway. .,Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
23
|
Altered MicroRNA Expression in Folliculotropic and Transformed Mycosis Fungoides. Pathol Oncol Res 2015; 21:821-5. [DOI: 10.1007/s12253-015-9897-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
|
24
|
Abstract
During an immune response, CD8(+)T cells can differentiate into multiple types of effector and memory cells that are important components of immune surveillance. However, their dysregulation has been implicated in infection with viruses or intracellular bacteria and tumorigenesis. miRNAs have been identified as crucial regulators of gene expression, and they perform this function by repressing specific target genes at the post-transcriptional level. Most miRNAs expressed in a given cell type serve the function to impede broadly cell-type-inappropriate gene expression and potently deepen a pre-existing differentiation program. It is increasingly recognized that miRNAs directly modulate the concentration of many regulatory proteins that are required for the development of immune cells in the thymus and their responses in the periphery. This review outlines our current understanding of the function of miRNAs in CD8(+)T cell biology as it impacts expression of protein-coding genes in the context of proper development, infection, as well as oncogenesis. In addition, we conclude with a perspective on future challenges and the clinical relevance of miRNA biology.
Collapse
Affiliation(s)
- Yan Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
25
|
Johanson TM, Skinner JPJ, Kumar A, Zhan Y, Lew AM, Chong MMW. The role of microRNAs in lymphopoiesis. Int J Hematol 2014; 100:246-53. [DOI: 10.1007/s12185-014-1606-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023]
|
26
|
microRNA miR-17-92 cluster is highly expressed in epidermal Langerhans cells but not required for its development. Genes Immun 2013; 15:57-61. [DOI: 10.1038/gene.2013.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/08/2022]
|
27
|
van de Ven R, Lindenberg JJ, Oosterhoff D, de Gruijl TD. Dendritic Cell Plasticity in Tumor-Conditioned Skin: CD14(+) Cells at the Cross-Roads of Immune Activation and Suppression. Front Immunol 2013; 4:403. [PMID: 24324467 PMCID: PMC3839226 DOI: 10.3389/fimmu.2013.00403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
Tumors abuse myeloid plasticity to re-direct dendritic cell (DC) differentiation from T cell stimulatory subsets to immune-suppressive subsets that can interfere with anti-tumor immunity. Lined by a dense network of easily accessible DC the skin is a preferred site for the delivery of DC-targeted vaccines. Various groups have recently been focusing on functional aspects of DC subsets in the skin and how these may be affected by tumor-derived suppressive factors. IL-6, Prostaglandin-E2, and IL-10 were identified as factors in cultures of primary human tumors responsible for the inhibited development and activation of skin DC as well as monocyte-derived DC. IL-10 was found to be uniquely able to convert fully developed DC to immature macrophage-like cells with functional M2 characteristics in a physiologically highly relevant skin explant model in which the phenotypic and functional traits of “crawl-out” DC were studied. Mostly from mouse studies, the JAK2/STAT3 signaling pathway has emerged as a “master switch” of tumor-induced immune suppression. Our lab has additionally identified p38-MAPK as an important signaling element in human DC suppression, and recently validated it as such in ex vivo cultures of single-cell suspensions from melanoma metastases. Through the identification of molecular mechanisms and signaling events that drive myeloid immune suppression in human tumors, more effective DC-targeted cancer vaccines may be designed.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands ; Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center , Portland, OR , USA
| | | | | | | |
Collapse
|
28
|
Xu YP, Qi RQ, Chen W, Shi Y, Cui ZZ, Gao XH, Chen HD, Zhou L, Mi QS. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile. Aging (Albany NY) 2013. [PMID: 23178507 PMCID: PMC3560442 DOI: 10.18632/aging.100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from < 6 month old mice. The migration of LCs to draining lymph nodes was comparable between aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.
Collapse
Affiliation(s)
- Ying-Ping Xu
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|