1
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Liu TT, Sun HF, Han YX, Zhan Y, Jiang JD. The role of inflammation in silicosis. Front Pharmacol 2024; 15:1362509. [PMID: 38515835 PMCID: PMC10955140 DOI: 10.3389/fphar.2024.1362509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Silicosis is a chronic illness marked by diffuse fibrosis in lung tissue resulting from continuous exposure to SiO2-rich dust in the workplace. The onset and progression of silicosis is a complicated and poorly understood pathological process involving numerous cells and molecules. However, silicosis poses a severe threat to public health in developing countries, where it is the most prevalent occupational disease. There is convincing evidence supporting that innate and adaptive immune cells, as well as their cytokines, play a significant role in the development of silicosis. In this review, we describe the roles of immune cells and cytokines in silicosis, and summarize current knowledge on several important inflammatory signaling pathways associated with the disease, aiming to provide novel targets and strategies for the treatment of silicosis-related inflammation.
Collapse
Affiliation(s)
| | | | | | - Yun Zhan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
3
|
Jiang D, Guo R, Dai R, Knoedler S, Tao J, Machens HG, Rinkevich Y. The Multifaceted Functions of TRPV4 and Calcium Oscillations in Tissue Repair. Int J Mol Sci 2024; 25:1179. [PMID: 38256251 PMCID: PMC10816018 DOI: 10.3390/ijms25021179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs. This review focuses on how TRPV4 senses environmental cues and thereby initiates and maintains calcium oscillations, critical for responses to organ injury, tissue repair, and fibrosis. We provide a summary of TRPV4-induced calcium oscillations in distinct organ systems, along with the upstream and downstream signaling pathways involved. In addition, we delineate current animal and disease models supporting TRPV4 research and shed light on potential therapeutic targets for modulating TRPV4-induced calcium oscillation to promote tissue repair while reducing tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Ruiji Guo
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02152, USA
| | - Jin Tao
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China;
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| |
Collapse
|
4
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Chung CC, Lin YK, Chen YC, Kao YH, Yeh YH, Trang NN, Chen YJ. Empagliflozin suppressed cardiac fibrogenesis through sodium-hydrogen exchanger inhibition and modulation of the calcium homeostasis. Cardiovasc Diabetol 2023; 22:27. [PMID: 36747205 PMCID: PMC9903522 DOI: 10.1186/s12933-023-01756-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The novel sodium-glucose co-transporter 2 inhibitor (SGLT2i) potentially ameliorates heart failure and reduces cardiac arrhythmia. Cardiac fibrosis plays a pivotal role in the pathophysiology of HF and atrial myopathy, but the effect of SGLT2i on fibrogenesis remains to be elucidated. This study investigated whether SGLT2i directly modulates fibroblast activities and its underlying mechanisms. METHODS AND RESULTS Migration, proliferation analyses, intracellular pH assay, intracellular inositol triphosphate (IP3) assay, Ca2+ fluorescence imaging, and Western blotting were applied to human atrial fibroblasts. Empagliflozin (an SGLT2i, 1, or 5 μmol/L) reduced migration capability and collagen type I, and III production. Compared with control cells, empagliflozin (1 μmol/L)- treated atrial fibroblasts exhibited lower endoplasmic reticulum (ER) Ca2+ leakage, Ca2+ entry, inositol trisphosphate (IP3), lower expression of phosphorylated phospholipase C (PLC), and lower intracellular pH. In the presence of cariporide (an Na+-H+ exchanger (NHE) inhibitor, 10 μmol/L), control and empagliflozin (1 μmol/L)-treated atrial fibroblasts revealed similar intracellular pH, ER Ca2+ leakage, Ca2+ entry, phosphorylated PLC, pro-collagen type I, type III protein expression, and migration capability. Moreover, empagliflozin (10 mg/kg/day orally for 28 consecutive days) significantly increased left ventricle systolic function, ß-hydroxybutyrate and decreased atrial fibrosis, in isoproterenol (100 mg/kg, subcutaneous injection)-induced HF rats. CONCLUSIONS By inhibiting NHE, empagliflozin decreases the expression of phosphorylated PLC and IP3 production, thereby reducing ER Ca2+ release, extracellular Ca2+ entry and the profibrotic activities of atrial fibroblasts.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- grid.412896.00000 0000 9337 0481Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- grid.260565.20000 0004 0634 0356Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yung-Hsin Yeh
- grid.413801.f0000 0001 0711 0593Division of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Nguyen Ngoc Trang
- grid.414163.50000 0004 4691 4377Radiology Center, Bach Mai Hospital, Hanoi, Vietnam
| | - Yi-Jen Chen
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing Street, 11031, Taipei, Taiwan.
| |
Collapse
|
6
|
Artlett CM. The Mechanism and Regulation of the NLRP3 Inflammasome during Fibrosis. Biomolecules 2022; 12:biom12050634. [PMID: 35625564 PMCID: PMC9138796 DOI: 10.3390/biom12050634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Fibrosis is often the end result of chronic inflammation. It is characterized by the excessive deposition of extracellular matrix. This leads to structural alterations in the tissue, causing permanent damage and organ dysfunction. Depending on the organ it effects, fibrosis can be a serious threat to human life. The molecular mechanism of fibrosis is still not fully understood, but the NLRP3 (NOD-, LRR- and pyrin–domain–containing protein 3) inflammasome appears to play a significant role in the pathogenesis of fibrotic disease. The NLRP3 inflammasome has been the most extensively studied inflammatory pathway to date. It is a crucial component of the innate immune system, and its activation mediates the secretion of interleukin (IL)-1β and IL-18. NLRP3 activation has been strongly linked with fibrosis and drives the differentiation of fibroblasts into myofibroblasts by the chronic upregulation of IL-1β and IL-18 and subsequent autocrine signaling that maintains an activated inflammasome. Both IL-1β and IL-18 are profibrotic, however IL-1β can have antifibrotic capabilities. NLRP3 responds to a plethora of different signals that have a common but unidentified unifying trigger. Even after 20 years of extensive investigation, regulation of the NLRP3 inflammasome is still not completely understood. However, what is known about NLRP3 is that its regulation and activation is complex and not only driven by various activators but controlled by numerous post-translational modifications. More recently, there has been an intensive attempt to discover NLRP3 inhibitors to treat chronic diseases. This review addresses the role of the NLRP3 inflammasome in fibrotic disorders across many different tissues. It discusses the relationships of various NLRP3 activators to fibrosis and covers different therapeutics that have been developed, or are currently in development, that directly target NLRP3 or its downstream products as treatments for fibrotic disorders.
Collapse
Affiliation(s)
- Carol M Artlett
- Department of Microbiology & Immunology, College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| |
Collapse
|
7
|
Li S, Zhao F, Ye J, Li K, Wang Q, Du Z, Yue Q, Wang S, Wu Q, Chen H. Cellular metabolic basis of altered immunity in the lungs of patients with COVID-19. Med Microbiol Immunol 2022; 211:49-69. [PMID: 35022857 PMCID: PMC8755516 DOI: 10.1007/s00430-021-00727-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
Metabolic pathways drive cellular behavior. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes lung tissue damage directly by targeting cells or indirectly by producing inflammatory cytokines. However, whether functional alterations are related to metabolic changes in lung cells after SARS-CoV-2 infection remains unknown. Here, we analyzed the lung single-nucleus RNA-sequencing (snRNA-seq) data of several deceased COVID-19 patients and focused on changes in transcripts associated with cellular metabolism. We observed upregulated glycolysis and oxidative phosphorylation in alveolar type 2 progenitor cells, which may block alveolar epithelial differentiation and surfactant secretion. Elevated inositol phosphate metabolism in airway progenitor cells may promote neutrophil infiltration and damage the lung barrier. Further, multiple metabolic alterations in the airway goblet cells are associated with impaired muco-ciliary clearance. Increased glycolysis, oxidative phosphorylation, and inositol phosphate metabolism not only enhance macrophage activation but also contribute to SARS-CoV-2 induced lung injury. The cytotoxicity of natural killer cells and CD8+ T cells may be enhanced by glycerolipid and inositol phosphate metabolism. Glycolytic activation in fibroblasts is related to myofibroblast differentiation and fibrogenesis. Glycolysis, oxidative phosphorylation, and glutathione metabolism may also boost the aging, apoptosis and proliferation of vascular smooth muscle cells, resulting in pulmonary arterial hypertension. In conclusion, this preliminary study revealed a possible cellular metabolic basis for the altered innate immunity, adaptive immunity, and niche cell function in the lung after SARS-CoV-2 infection. Therefore, patients with COVID-19 may benefit from therapeutic strategies targeting cellular metabolism in future.
Collapse
Affiliation(s)
- Shuangyan Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Jing Ye
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China
| | - Qi Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China
| | - Zhongchao Du
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Sisi Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, 890 Jingu Road, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, 890 Jingu Road, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, 890 Jingu Road, Tianjin, 300350, China.
| |
Collapse
|
8
|
Regional Diversities in Fibrogenesis Weighed as a Key Determinant for Atrial Arrhythmogenesis. Biomedicines 2021; 9:biomedicines9121900. [PMID: 34944715 PMCID: PMC8698388 DOI: 10.3390/biomedicines9121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.
Collapse
|
9
|
Elkomy MH, Khallaf RA, Mahmoud MO, Hussein RRS, El-Kalaawy AM, Abdel-Razik ARH, Aboud HM. Intratracheally Inhalable Nifedipine-Loaded Chitosan-PLGA Nanocomposites as a Promising Nanoplatform for Lung Targeting: Snowballed Protection via Regulation of TGF-β/β-Catenin Pathway in Bleomycin-Induced Pulmonary Fibrosis. Pharmaceuticals (Basel) 2021; 14:1225. [PMID: 34959627 PMCID: PMC8707652 DOI: 10.3390/ph14121225] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a serious ailment that may progress to lung remodeling and demolition, where the key participants in its incidence are fibroblasts responding to growth factors and cellular calcium swinging. Calcium channel blockers, like nifedipine (NFD), may represent auspicious agents in pulmonary fibrosis treatment. Unfortunately, NFD bears complicated pharmacodynamics and a diminished systemic bioavailability. Thus, the current study aimed to develop a novel, non-invasive nanoplatform for NFD for direct/effective pulmonary targeting via intratracheal instillation. A modified solvent emulsification-evaporation method was adopted for the fabrication of NFD-nanocomposites, integrating poly(D,L-lactide-co-glycolide) (PLGA), chitosan (CTS), and polyvinyl alcohol, and optimized for different physiochemical properties according to the 32 full factorial design. Additionally, the aerodynamic behavior of the nanocomposites was scrutinized through cascade impaction. Moreover, the pharmacokinetic investigations were conducted in rats. Furthermore, the optimum formulation was tested in bleomycin-induced pulmonary fibrosis in rats, wherein fibrotic and oxidative stress parameters were measured. The optimum nanocomposites disclosed a nanosized spherical morphology (226.46 nm), a high entrapment efficiency (61.81%) and a sustained release profile over 24 h (50.4%). As well, it displayed a boosted in vitro lung deposition performance with a mass median aerodynamic diameter of 1.12 µm. Pharmacokinetic studies manifested snowballed bioavailability of the optimal nanocomposites by 3.68- and 2.36-fold compared to both the oral and intratracheal suspensions, respectively. The intratracheal nanocomposites revealed a significant reduction in lung fibrotic and oxidative stress markers notably analogous to normal control besides repairing abnormality in TGF-β/β-catenin pathway. Our results conferred a compelling proof-of-principle that NFD-CTS-PLGA nanocomposites can function as a promising nanoparadigm for pulmonary fibrosis management.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| | - Mohamed O. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Raghda R. S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 12055, Egypt
| | - Asmaa M. El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | | | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| |
Collapse
|
10
|
Calcium Regulation on the Atrial Regional Difference of Collagen Production Activity in Atrial Fibrogenesis. Biomedicines 2021; 9:biomedicines9060686. [PMID: 34204537 PMCID: PMC8233809 DOI: 10.3390/biomedicines9060686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Atrial fibrosis plays an important role in the genesis of heart failure and atrial fibrillation. The left atrium (LA) exhibits a higher level of fibrosis than the right atrium (RA) in heart failure and atrial arrhythmia. However, the mechanism for the high fibrogenic potential of the LA fibroblasts remains unclear. Calcium (Ca2+) signaling contributes to the pro-fibrotic activities of fibroblasts. This study investigated whether differences in Ca2+ homeostasis contribute to differential fibrogenesis in LA and RA fibroblasts. Methods: Ca2+ imaging, a patch clamp assay and Western blotting were performed in isolated rat LA and RA fibroblasts. Results: The LA fibroblasts exhibited a higher Ca2+ entry and gadolinium-sensitive current compared with the RA fibroblasts. The LA fibroblasts exhibited greater pro-collagen type I, type III, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII), phosphorylated phospholipase C (PLC), stromal interaction molecule 1 (STIM1) and transient receptor potential canonical (TRPC) 3 protein expression compared with RA fibroblasts. In the presence of 1 mmol/L ethylene glycol tetra-acetic acid (EGTA, Ca2+ chelator), the LA fibroblasts had similar pro-collagen type I, type III and phosphorylated CaMKII expression compared with RA fibroblasts. Moreover, in the presence of KN93 (a CaMKII inhibitor, 10 μmol/L), the LA fibroblasts had similar pro-collagen type I and type III compared with RA fibroblasts. Conclusion: The discrepancy of phosphorylated PLC signaling and gadolinium-sensitive Ca2+ channels in LA and RA fibroblasts induces different levels of Ca2+ influx, phosphorylated CaMKII expression and collagen production.
Collapse
|
11
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
12
|
Chung CC, Lin YK, Kao YH, Lin SH, Chen YJ. Physiological testosterone attenuates profibrotic activities of rat cardiac fibroblasts through modulation of nitric oxide and calcium homeostasis. Endocr J 2021; 68:307-315. [PMID: 33115984 DOI: 10.1507/endocrj.ej20-0344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Testosterone deficiency is associated with poor prognosis among patients with chronic heart failure (HF). Physiological testosterone improves the exercise capacity of patients with HF. In this study, we evaluated whether treatment with physiological testosterone contributes to anti-fibrogenesis by modifying calcium homeostasis in cardiac fibroblasts and we studied the underlying mechanisms. Nitric oxide (NO) analyses, calcium (Ca2+) fluorescence, and Western blotting were performed in primary isolated rat cardiac fibroblasts with or without (control cells) testosterone (10, 100, 1,000 nmol/L) treatment for 48 hours. Physiological testosterone (10 nmol/L) increased NO production and phosphorylation at the inhibitory site of the inositol trisphosphate (IP3) receptor, thereby reducing Ca2+ entry, phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression, type I and type III pro-collagen production. Non-physiological testosterone-treated fibroblasts exhibited similar NO and collagen production capabilities as compared to control (testosterone deficient) fibroblasts. These effects were blocked by co-treatment with NO inhibitor (L-NG-nitro arginine methyl ester [L-NAME], 100 μmol/L). In the presence of the IP3 receptor inhibitor (2-aminoethyl diphenylborinate [2-APB], 50 μmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar phosphorylated CaMKII expression. When treated with 2-APB or CaMKII inhibitor (KN93, 10 μmol/L), testosterone-deficient and physiological testosterone-treated fibroblasts exhibited similar type I, and type III collagen production. In conclusion, physiological testosterone activates NO production, and attenuates the IP3 receptor/Ca2+ entry/CaMKII signaling pathway, thereby inhibiting the collagen production capability of cardiac fibroblasts.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
14
|
Roach KM, Bradding P. Ca 2+ signalling in fibroblasts and the therapeutic potential of K Ca3.1 channel blockers in fibrotic diseases. Br J Pharmacol 2020; 177:1003-1024. [PMID: 31758702 DOI: 10.1111/bph.14939] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ signalling in fibroblasts is of great interest in fibrosis-related diseases. Intracellular free Ca2+ ([Ca2+ ]i ) is a ubiquitous secondary messenger, regulating a number of cellular functions such as secretion, metabolism, differentiation, proliferation and contraction. The intermediate conductance Ca2+ -activated K+ channel KCa 3.1 is pivotal in Ca2+ signalling and plays a central role in fibroblast processes including cell activation, migration and proliferation through the regulation of cell membrane potential. Evidence from a number of approaches demonstrates that KCa 3.1 plays an important role in the development of many fibrotic diseases, including idiopathic pulmonary, renal tubulointerstitial fibrosis and cardiovascular disease. The KCa 3.1 selective blocker senicapoc was well tolerated in clinical trials for sickle cell disease, raising the possibility of rapid translation to the clinic for people suffering from pathological fibrosis. This review after analysing all the data, concludes that targeting KCa 3.1 should be a high priority for human fibrotic disease.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Chung CC, Lin YK, Chen YC, Kao YH, Lee TI, Chen YJ. Vascular endothelial growth factor enhances profibrotic activities through modulation of calcium homeostasis in human atrial fibroblasts. J Transl Med 2020; 100:285-296. [PMID: 31748680 DOI: 10.1038/s41374-019-0341-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/14/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a pivotal activator of angiogenesis and calcium (Ca2+) signaling in endothelial cells, was shown to increase collagen production in atrial fibroblasts. In this study, we evaluated whether VEGF may regulate Ca2+ homeostasis in atrial fibroblasts and contribute to its profibrogenesis. Migration, and proliferation analyses, patch-clamp assay, Ca2+ fluorescence imaging, and western blotting were performed using VEGF-treated (300 pg/mL or 1000 pg/mL) human atrial fibroblasts with or without coadministration of Ethylene glycol tetra-acetic acid (EGTA, 1 mmol/L), or KN93 (a Ca2+/calmodulin-dependent protein kinase II [CaMKII] inhibitor, 10 μmol/L). VEGF (1000 pg/mL) increased migration, myofibroblast differentiation, pro-collagen type I, pro-collagen type III production, and phosphorylated VEGF receptor 1 expression of fibroblasts. VEGF (1000 pg/mL) increased the nonselective cation current (INSC) of transient receptor potential (TRP) channels and potassium current of intermediate-conductance Ca2+-activated K+ (KCa3.1) channels thereby upregulating Ca2+ entry. VEGF upregulated phosphorylated ERK expression. An ERK inhibitor (PD98059, 50 μmol/L) attenuated VEGF-activated INSC of TRP channels. The presence of EGTA attenuated the profibrotic effects of VEGF on pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and migratory capabilities of fibroblasts. VEGF upregulated the expression of phosphorylated CaMKII in fibroblasts, which was attenuated by EGTA. In addition, KN93 reduced VEGF-increased pro-collagen type I, pro-collagen type III production, myofibroblast differentiation, and the migratory capabilities of fibroblasts. In conclusion, we found that VEGF increases atrial fibroblast activity through CaMKII signaling by enhancing Ca2+ entry. Our findings provide benchside evidence leading to a potential novel strategy targeting atrial myopathy and arrhythmofibrosis.
Collapse
Affiliation(s)
- Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ting-I Lee
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
A Matricryptic Conformation of the Integrin-Binding Domain of Fibronectin Regulates Platelet-Derived Growth Factor-Induced Intracellular Calcium Release. Cells 2019; 8:cells8111351. [PMID: 31671632 PMCID: PMC6912537 DOI: 10.3390/cells8111351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Platelet-derived growth factor (PDGF) signaling is dysregulated in a wide variety of diseases, making PDGF an attractive therapeutic target. However, PDGF also affects numerous signaling cascades essential for tissue homeostasis, limiting the development of PDGF-based therapies that lack adverse side-effects. Recent studies showed that fibroblast-mediated assembly of extracellular matrix (ECM) fibronectin fibrils attenuates PDGF-induced intracellular calcium release by selectively inhibiting phosphoinositol 3-kinase (PI3K) activation while leaving other PDGF-mediated signaling cascades intact. In the present study, a series of recombinant fibronectin-derived fusion proteins were used to localize the sequences in fibronectin that are responsible for this inhibition. Results demonstrate that attenuation of PDGF-induced intracellular calcium release by the fibronectin matrix mimetic, FNIII1H,8-10 requires α5β1 integrin ligation, but is not dependent upon the matricryptic, heparin-binding site of FNIII1. Intact cell-binding fibronectin fragments were also unable to attenuate PDGF-induced intracellular calcium release. In contrast, a novel integrin-binding fragment that adopts an extended and aligned conformational state, inhibited both PI3K activation and intracellular calcium release in response to PDGF. Taken together, these studies provide evidence that attenuation of PDGF-induced intracellular calcium release by fibronectin is mediated by a novel conformation of the α5β1 integrin-binding, FNIII9-10 modules, that is expressed by fibrillar fibronectin.
Collapse
|
17
|
Rahman M, Sun R, Mukherjee S, Nilius B, Janssen LJ. TRPV4 Stimulation Releases ATP via Pannexin Channels in Human Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2019; 59:87-95. [PMID: 29393654 DOI: 10.1165/rcmb.2017-0413oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We previously described several ionic conductances in human pulmonary fibroblasts, including one activated by two structurally distinct TRPV4 (transient receptor potential, vanilloid-type, subtype 4)-channel agonists: 4αPDD (4α-phorbol-12,13-didecanoate) and GSK1016790A. However, the TRPV4-activated current exhibited peculiar properties: it developed slowly over many minutes, exhibited reversal potentials that could vary by tens of millivolts even within a given cell, and was not easily reversed by subsequent addition of two distinct TRPV4-selective blockers (RN-1734 and HC-067047). In this study, we characterized that conductance more carefully. We found that 4αPDD stimulated a delayed release of ATP into the extracellular space, which was reduced by genetic silencing of pannexin expression, and that the 4αPDD-evoked current could be blocked by apyrase (which rapidly degrades ATP) or by the P2Y purinergic receptor/channel blocker pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), and could be mimicked by exogenous addition of ATP. In addition, we found that the 4αPDD-evoked current was blocked by pretreatment with RN-1734 or HC-067047, by Gd3+ or La3+, or by two distinct blockers of pannexin channels (carbenoxolone and probenecid), but not by a blocker of connexin hemichannels (flufenamic acid). We also found expression of TRPV4- and pannexin-channel proteins. 4αPDD markedly increased calcium flashing in our cells. The latter was abrogated by the P2Y channel blocker PPADS, and the 4αPDD-evoked current was eliminated by loading the cytosol with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid or by inhibiting Ca2+/calmodulin-sensitive kinase II using KN93. Altogether, we interpret these findings as suggesting that 4αPDD triggers the release of ATP via pannexin channels, which in turn acts in an autocrine and/or paracrine fashion to stimulate PPADS-sensitive purinergic receptors on human pulmonary fibroblasts.
Collapse
Affiliation(s)
- Mozibur Rahman
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Rui Sun
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Subhendu Mukherjee
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Bernd Nilius
- 3 Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Luke J Janssen
- 1 Firestone Institute for Respiratory Health, St. Joseph's Hospital, and.,2 Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
18
|
Mukherjee S, Sheng W, Michkov A, Sriarm K, Sun R, Dvorkin-Gheva A, Insel PA, Janssen LJ. Prostaglandin E 2 inhibits profibrotic function of human pulmonary fibroblasts by disrupting Ca 2+ signaling. Am J Physiol Lung Cell Mol Physiol 2019; 316:L810-L821. [PMID: 30758990 DOI: 10.1152/ajplung.00403.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have shown that calcium (Ca2+) oscillations in human pulmonary fibroblasts (HPFs) contribute to profibrotic effects of transforming growth factor-β (TGF-β) and that disruption of these oscillations blunts features of pulmonary fibrosis. Prostaglandin E2 (PGE2) exerts antifibrotic effects in the lung, but the mechanisms for this action are not well defined. We thus sought to explore interactions between PGE2 and the profibrotic agent TGF-β in pulmonary fibroblasts (PFs) isolated from patients with or without idiopathic pulmonary fibrosis (IPF). PGE2 inhibited TGF-β-promoted [Ca2+] oscillations and prevented the activation of Akt and Ca2+/calmodulin-dependent protein kinase-II (CaMK-II) but did not prevent activation of Smad-2 or ERK. PGE2 also eliminated TGF-β-stimulated expression of collagen A1, fibronectin, and α-smooth muscle actin and reduced stress fiber formation in the HPFs. RNA sequencing revealed that HPFs preferentially express EP2 receptors relative to other prostanoid receptor subtypes: EP2 expression is ~10-fold higher than that of EP4 receptors; EP1 and EP3 receptors are barely detectable; and EP2-receptor expression is ~3.5-fold lower in PFs from IPF patients than in normal HPFs. The inhibitory effects of PGE2 on synthetic function and stress fiber formation were blocked by selective EP2 or EP4 antagonists and mimicked by selective EP2 or EP4 agonists, the phosphodiesterase inhibitor isobutylmethylxanthine and forskolin, all of which elevate cellular cAMP concentrations. We conclude that PGE2, likely predominantly via EP2 receptors, interferes with Ca2+ signaling, CaMK-II activation, and Akt activation in IPF-HPFs and HPFs treated with TGF-β. Moreover, a decreased expression of EP2 receptors in pulmonary fibroblasts from IPF patients may contribute to the pathophysiology of this disease.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Wei Sheng
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Alexander Michkov
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Krishna Sriarm
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Rui Sun
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
19
|
Farrar CS, Hocking DC. Assembly of fibronectin fibrils selectively attenuates platelet-derived growth factor-induced intracellular calcium release in fibroblasts. J Biol Chem 2018; 293:18655-18666. [PMID: 30323067 PMCID: PMC6290149 DOI: 10.1074/jbc.ra118.004020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Cellular responses to platelet-derived growth factor (PDGF) are altered in a variety of pathological conditions, including cancers, fibroses, and vascular diseases, making PDGF-induced signaling pathways important therapeutic targets. The limited success of therapies designed to impact PDGF pathways may be overcome with a clearer understanding of how cells integrate signals from PDGF and the extracellular matrix (ECM). Here, we assessed the effects of fibronectin matrix assembly on the responsiveness of mesenchymal cells to PDGF. Our results indicate that fibroblast-mediated assembly of fibronectin fibrils attenuates intracellular calcium release in response to PDGF. The dose-dependent inhibition of PDGF-induced intracellular calcium release was specific to the ECM form of fibronectin. Further, a recombinant protein engineered to mimic ECM fibronectin similarly attenuated intracellular calcium release in response to PDGF. Of note, fibronectin attenuated the PDGF-calcium signaling axis at the level of phosphoinositide 3-kinase (PI3K) activation. Interestingly, ECM fibronectin did not alter other intracellular signals activated by PDGF, including activation of PDGF receptor β, AKT Ser/Thr kinase, phospholipase Cγ1, and extracellular signal-regulated kinase 1/2 (ERK1/2). Rather, fibronectin inhibited activation of the p55 regulatory subunit of PI3K in response to a variety of stimuli, indicating that ECM fibronectin selectively attenuates the intracellular calcium release cascade while leaving intact other PDGF signaling pathways. Selective regulation of calcium signaling by ECM fibronectin via the p55 regulatory subunit of PI3K represents a mechanism by which cells tune their response to PDGF and may therefore serve as a target to selectively regulate one branch of PDGF signaling.
Collapse
Affiliation(s)
| | - Denise C Hocking
- From the Department of Biomedical Engineering and
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
20
|
Vazquez-de-Lara LG, Tlatelpa-Romero B, Romero Y, Fernández-Tamayo N, Vazquez-de-Lara F, M Justo-Janeiro J, Garcia-Carrasco M, de-la-Rosa Paredes R, Cisneros-Lira JG, Mendoza-Milla C, Moccia F, Berra-Romani R. Phosphatidylethanolamine Induces an Antifibrotic Phenotype in Normal Human Lung Fibroblasts and Ameliorates Bleomycin-Induced Lung Fibrosis in Mice. Int J Mol Sci 2018; 19:ijms19092758. [PMID: 30223424 PMCID: PMC6164566 DOI: 10.3390/ijms19092758] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Lung surfactant is a complex mixture of phospholipids and specific proteins but its role in the pathogenesis of interstitial lung diseases is not established. Herein, we analyzed the effects of three representative phospholipid components, that is, dipalmitoilphosphatidylcoline (DPPC), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), on collagen expression, apoptosis and Ca2+ signaling in normal human lung fibroblasts (NHLF) and probed their effect in an experimental model of lung fibrosis. Collagen expression was measured with RT-PCR, apoptosis was measured by using either the APOPercentage assay kit (Biocolor Ltd., Northern Ireland, UK) or the Caspase-Glo 3/7 assay (Promega, Madison, WI, USA) and Ca2+ signaling by conventional epifluorescence imaging. The effect in vivo was tested in bleomycin-induced lung fibrosis in mice. DPPC and PG did not affect collagen expression, which was downregulated by PE. Furthermore, PE promoted apoptosis and induced a dose-dependent Ca2+ signal. PE-induced Ca2+ signal and apoptosis were both blocked by phospholipase C, endoplasmic reticulum pump and store-operated Ca2+ entry inhibition. PE-induced decrease in collagen expression was attenuated by blocking phospholipase C. Finally, surfactant enriched with PE and PE itself attenuated bleomycin-induced lung fibrosis and decreased the soluble collagen concentration in mice lungs. This study demonstrates that PE strongly contributes to the surfactant-induced inhibition of collagen expression in NHLF through a Ca2+ signal and that early administration of Beractant enriched with PE diminishes lung fibrosis in vivo.
Collapse
Affiliation(s)
| | | | - Yair Romero
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| | - Nora Fernández-Tamayo
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| | | | | | - Mario Garcia-Carrasco
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| | | | - José G Cisneros-Lira
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico.
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ''Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| | - Roberto Berra-Romani
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico.
| |
Collapse
|
21
|
Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ, Fang J, Yu CH. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep 2017; 16:7879-7889. [PMID: 28983598 PMCID: PMC5779870 DOI: 10.3892/mmr.2017.7641] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
The platelet‑derived growth factor (PDFG) signaling pathway exerts persistent activation in response to a variety of stimuli and facilitates the progression of hepatic fibrosis. Since this pathway modulates a broad spectrum of cellular processes, including cell growth, differentiation, inflammation and carcinogenesis, it has emerged as a therapeutic target for hepatic fibrosis and liver‑associated disorders. The present review exhibits the current knowledge of the role of the PDGF signaling pathway and its pathological profiles in hepatic fibrosis, and assesses the potential of inhibitors which have been investigated in the experimental hepatic fibrosis model, in addition to the clinical challenges associated with these inhibitors.
Collapse
Affiliation(s)
- Hua-Zhong Ying
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Qin Chen
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wen-You Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Yue Ma
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Song-Zhao Zhang
- Department of Clinical Laboratory Medicine, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
22
|
Mukherjee S, Sheng W, Sun R, Janssen LJ. Ca2+/calmodulin-dependent protein kinase IIβ and IIδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol 2017; 312:L510-L519. [DOI: 10.1152/ajplung.00084.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
It is now clear that in addition to activating several complex kinase pathways (Smad, MAP kinase, PI3 kinase), TGFβ also acts by elevating cytosolic Ca2+ concentration within human pulmonary fibroblasts. Ca2+/calmodulin-dependent protein kinase II (CamK II) is also known to regulate gene expression in fibroblasts. In this study, we examined the interactions between calcium signaling, activation of CamK and other kinases, and extracellular matrix (ECM) gene expression. Human pulmonary fibroblasts were cultured and stimulated with artificially generated Ca2+ pulses in the absence of TGFβ, or with TGFβ (1 nM) or vehicle in the presence of various blockers of Ca2+ signaling. PCR and Western blotting were used to measure gene expression and protein levels, respectively. We found that Ca2+ pulses in the absence of TGFβ increased ECM gene expression in a pulse frequency-dependent manner, and that blocking Ca2+ signaling and the CamK II pathway significantly reduced TGFβ-mediated ECM gene expression, without having any effects on other kinase pathways (Smad, PI3 kinase, or MAP kinase). We also found that TGFβ elevated the expression of CamK IIβ and CamK IIδ, while siRNA silencing of those two subtypes significantly reduced TGFβ-mediated expression of collagen A1 and fibronectin 1. Our data suggest that TGFβ induces the expression of CamK IIβ and CamK IIδ, which in turn are activated by TGFβ-evoked Ca2+ waves in a frequency-dependent manner, leading to increased expression of ECM proteins.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph’s Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Wei Sheng
- Firestone Institute for Respiratory Health, St. Joseph’s Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rui Sun
- Firestone Institute for Respiratory Health, St. Joseph’s Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Luke J. Janssen
- Firestone Institute for Respiratory Health, St. Joseph’s Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Rahman M, Mukherjee S, Sheng W, Nilius B, Janssen LJ. Electrophysiological characterization of voltage-dependent calcium currents and TRPV4 currents in human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol 2016; 310:L603-14. [PMID: 26851262 DOI: 10.1152/ajplung.00426.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
We have presented indirect evidence of a key role for voltage-dependent Ca(2+) currents in TGFβ-induced synthetic function in human pulmonary fibroblast (HPF), as well as in bleomycin-induced pulmonary fibrosis in mice. Others, however, have provided indirect evidence for transient receptor potential vanilloid 4 (TRPV4) channels in both of those effects. Unfortunately, definitive electrophysiological descriptions of both currents in HPFs have been entirely lacking. In this study, we provide the first direct electrophysiological and pharmacological evidence of the currents in HPFs at rest and during overnight stimulation with TGFβ. These currents include a Ca(2+)-dependent K(+) current, a TRPV4 current, a chloride current, and an L-type voltage-dependent Ca(2+) current. Evidence for the TRPV4 current include activation of a large-conductance change by two putatively TRPV4-selective agonists (4α-phorbol-12,13-didecanoate; GSK1016790A), with a reversal potential near 0 mV, partial sensitivity to two different TRPV4-selective blockers (RN1734; HC067047), and partial reduction following removal of external Na(+) Substantial reduction of the evoked current was seen following the coapplication of RN1734, DIDS, and niflumic acid, suggesting that a chloride current is also involved. The voltage-dependent Ca(2+) current is found to be "L-type" in nature, as indicated by the voltage and time dependence of its activation, deactivation, and inactivation properties, and by its pharmacology (sensitivity to replacement with barium and inhibition by nifedipine, verapamil, or mibefradil). We also found that overnight treatment with TGFβ evoked a periodic current (inward at negative holding potentials, with reversal potential near 0 mV), which is sufficient to trigger the voltage-dependent Ca(2+) currents and, thereby, account for the rhythmic Ca(2+) oscillations, which we have described previously in these cells.
Collapse
Affiliation(s)
- Mozibur Rahman
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Wei Sheng
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - Bernd Nilius
- University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| |
Collapse
|
25
|
Mukherjee S, Ayaub EA, Murphy J, Lu C, Kolb M, Ask K, Janssen LJ. Disruption of Calcium Signaling in Fibroblasts and Attenuation of Bleomycin-Induced Fibrosis by Nifedipine. Am J Respir Cell Mol Biol 2015; 53:450-8. [PMID: 25664495 DOI: 10.1165/rcmb.2015-0009oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fibrotic lung disease afflicts millions of people; the central problem is progressive lung destruction and remodeling. We have shown that external growth factors regulate fibroblast function not only through canonical signaling pathways but also through propagation of periodic oscillations in Ca(2+). In this study, we characterized the pharmacological sensitivity of the Ca(2+)oscillations and determined whether a blocker of those oscillations can prevent the progression of fibrosis in vivo. We found Ca(2+) oscillations evoked by exogenously applied transforming growth factor β in normal human fibroblasts were substantially reduced by 1 μM nifedipine or 1 μM verapamil (both L-type blockers), by 2.7 μM mibefradil (a mixed L-/T-type blocker), by 40 μM NiCl2 (selective at this concentration against T-type current), by 30 mM KCl (which partially depolarizes the membrane and thereby fully inactivates T-type current but leaves L-type current intact), or by 1 mM NiCl2 (blocks both L- and T-type currents). In our in vivo study in mice, nifedipine prevented bleomycin-induced fibrotic changes (increased lung stiffness, overexpression of smooth muscle actin, increased extracellular matrix deposition, and increased soluble collagen and hydroxyproline content). Nifedipine had little or no effect on lung inflammation, suggesting its protective effect on lung fibrosis was not due to an antiinflammatory effect but rather was due to altering the profibrotic response to bleomycin. Collectively, these data show that nifedipine disrupts Ca(2+) oscillations in fibroblasts and prevents the impairment of lung function in the bleomycin model of pulmonary fibrosis. Our results provide compelling proof-of-principle that interfering with Ca(2+) signaling may be beneficial against pulmonary fibrosis.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ehab A Ayaub
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James Murphy
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Chao Lu
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Janssen LJ, Mukherjee S, Ask K. Calcium Homeostasis and Ionic Mechanisms in Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2015; 53:135-48. [PMID: 25785898 DOI: 10.1165/rcmb.2014-0269tr] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibroblasts are key cellular mediators of many chronic interstitial lung diseases, including idiopathic pulmonary fibrosis, scleroderma, sarcoidosis, drug-induced interstitial lung disease, and interstitial lung disease in connective tissue disease. A great deal of effort has been expended to understand the signaling mechanisms underlying the various cellular functions of fibroblasts. Recently, it has been shown that Ca(2+) oscillations play a central role in the regulation of gene expression in human pulmonary fibroblasts. However, the mechanisms whereby cytosolic [Ca(2+)] are regulated and [Ca(2+)] oscillations transduced are both poorly understood. In this review, we present the general concepts of [Ca(2+)] homeostasis, of ionic mechanisms responsible for various Ca(2+) fluxes, and of regulation of gene expression by [Ca(2+)]. In each case, we then also summarize the original findings that pertain specifically to pulmonary fibroblasts. From these data, we propose an overall signaling cascade by which excitation of the fibroblasts triggers pulsatile release of internally sequestered Ca(2+), which, in turn, activates membrane conductances, including voltage-dependent Ca(2+) influx pathways. Collectively, these events produce recurring Ca(2+) oscillations, the frequency of which is transduced by Ca(2+)-dependent transcription factors, which, in turn, orchestrate a variety of cellular events, including proliferation, synthesis/secretion of extracellular matrix proteins, autoactivation (production of transforming growth factor-β), and transformation into myofibroblasts. That unifying hypothesis, in turn, allows us to highlight several specific cellular targets and therapeutic intervention strategies aimed at controlling unwanted pulmonary fibrosis. The relationships between Ca(2+) signaling events and the unfolded protein response and apoptosis are also explored.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Guzmán-Silva A, Vázquez de Lara LG, Torres-Jácome J, Vargaz-Guadarrama A, Flores-Flores M, Pezzat Said E, Lagunas-Martínez A, Mendoza-Milla C, Tanzi F, Moccia F, Berra-Romani R. Lung Beractant Increases Free Cytosolic Levels of Ca2+ in Human Lung Fibroblasts. PLoS One 2015; 10:e0134564. [PMID: 26230503 PMCID: PMC4521834 DOI: 10.1371/journal.pone.0134564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/11/2015] [Indexed: 12/12/2022] Open
Abstract
Beractant, a natural surfactant, induces an antifibrogenic phenotype and apoptosis in normal human lung fibroblasts (NHLF). As intracellular Ca2+ signalling has been related to programmed cell death, we aimed to assess the effect of beractant on intracellular Ca2+ concentration ([Ca2+]i) in NHLF in vitro. Cultured NHLF were loaded with Fura-2 AM (3 μM) and Ca2+ signals were recorded by microfluorimetric techniques. Beractant causes a concentration-dependent increase in [Ca2+]i with a EC50 of 0.82 μg/ml. The application of beractant, at a concentration of 500 μg/ml, which has been shown to exert an apoptotic effect in human fibroblasts, elicited different patterns of Ca2+ signals in NHLF: a) a single Ca2+ spike which could be followed by b) Ca2+ oscillations, c) a sustained Ca2+ plateau or d) a sustained plateau overlapped by Ca2+ oscillations. The amplitude and pattern of Ca2+ transients evoked by beractant were dependent on the resting [Ca2+]i. Pharmacological manipulation revealed that beractant activates a Ca2+ signal through Ca2+ release from intracellular stores mediated by phospholipase Cβ (PLCβ), Ca2+ release from inositol 1,4,5-trisphosphate receptors (IP3Rs) and Ca2+ influx via a store-operated pathway. Moreover, beractant-induced Ca2+ release was abolished by preventing membrane depolarization upon removal of extracellular Na+ and Ca2+. Finally, the inhibition of store-operated channels prevented beractant-induced NHLF apoptosis and downregulation of α1(I) procollagen expression. Therefore, beractant utilizes SOCE to exert its pro-apoptotic and antifibrinogenic effect on NHLF.
Collapse
Affiliation(s)
- Alejandro Guzmán-Silva
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Luis G. Vázquez de Lara
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Julián Torres-Jácome
- Physiology Institute, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Marycruz Flores-Flores
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Elias Pezzat Said
- Experimental Medicine Laboratory, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| | - Alfredo Lagunas-Martínez
- Instituto Nacional de Salud Pública, Centro de Investigación sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Criselda Mendoza-Milla
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, México
| | - Franco Tanzi
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology ‘‘Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Puebla, México
| |
Collapse
|
28
|
Jang YY, Lee HS, Jeong JE, Lee EJ, Hong SJ, Park HJ, Lee KH, Kim W, Chung HL. Clinical significance of increased vascular endothelial growth factor, transforming growth factor-beta1, and YKL-40 in the serum of children with asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2015. [DOI: 10.4168/aard.2015.3.6.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoon Young Jang
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hyun Seok Lee
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Ji Eun Jeong
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Suk Jin Hong
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hye Jin Park
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kye Hyang Lee
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Wootaek Kim
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hai Lee Chung
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
29
|
Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231:273-89. [PMID: 24006178 DOI: 10.1002/path.4253] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Fibrosis and scar formation results from chronic progressive injury in virtually every tissue and affects a growing number of people around the world. Myofibroblasts drive fibrosis, and recent work has demonstrated that mesenchymal cells, including pericytes and perivascular fibroblasts, are their main progenitors. Understanding the cellular mechanisms of pericyte/fibroblast-to-myofibroblast transition, myofibroblast proliferation and the key signalling pathways that regulate these processes is essential to develop novel targeted therapeutics for the growing patient population suffering from solid organ fibrosis. In this review, we summarize the current knowledge about different progenitor cells of myofibroblasts, discuss major pathways that regulate their transdifferentiation and discuss the current status of novel targeted anti-fibrotic therapeutics in development.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | |
Collapse
|
30
|
Rahman A, Davis B, Lövdahl C, Hanumaiah VT, Feil R, Brakebusch C, Arner A. The small GTPase Rac1 is required for smooth muscle contraction. J Physiol 2013; 592:915-26. [PMID: 24297853 DOI: 10.1113/jphysiol.2013.262998] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of the small GTP-binding protein Rac1 in smooth muscle contraction was examined using small molecule inhibitors (EHT1864, NSC23766) and a novel smooth muscle-specific, conditional, Rac1 knockout mouse strain. EHT1864, which affects nucleotide binding and inhibits Rac1 activity, concentration-dependently inhibited the contractile responses induced by several different modes of activation (high-K+, phenylephrine, carbachol and protein kinase C activation by phorbol-12,13-dibutyrate) in several different visceral (urinary bladder, ileum) and vascular (mesenteric artery, saphenous artery, aorta) smooth muscle tissues. This contractile inhibition was associated with inhibition of the Ca2+ transient. Knockout of Rac1 (with a 50% loss of Rac1 protein) lowered active stress in the urinary bladder and the saphenous artery consistent with a role of Rac1 in facilitating smooth muscle contraction. NSC23766, which blocks interaction between Rac1 and some guanine nucleotide exchange factors, specifically inhibited the α1 receptor responses (phenylephrine) in vascular tissues and potentiated prostaglandin F2α and thromboxane (U46619) receptor responses. The latter potentiating effect occurred at lowered intracellular [Ca2+]. These results show that Rac1 activity is required for active contraction in smooth muscle, probably via enabling an adequate Ca2+ transient. At the same time, specific agonists recruit Rac1 signalling via upstream modulators, resulting in either a potentiation of contraction via Ca2+ mobilization (α1 receptor stimulation) or an attenuated contraction via inhibition of Ca2+ sensitization (prostaglandin and thromboxane receptors).
Collapse
Affiliation(s)
- Awahan Rahman
- Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, SE 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|