1
|
Koide R, Abe T, Harimoto T, Kamada AJ, Saito Y, Guerrini M, Fujii A, Parrish E, Horie M, Kiyonari H, Yamamoto K, Tomonaga K, Parrish NF. Interferon and TLR genes, but not endogenous bornavirus-like elements, limit BoDV1 replication after intracerebral infection. PLoS Pathog 2025; 21:e1013165. [PMID: 40344162 DOI: 10.1371/journal.ppat.1013165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Borna disease virus 1 (BoDV1) is a disease-causing agent in some livestock and, as has recently been shown, humans. What constitutes a protective immune response to BoDV1 is unclear. Previous studies found that endogenous bornavirus-like nucleoprotein elements (EBLNs) present in mammalian genomes produce piRNAs antisense to BoDV1 nucleoprotein mRNAs. As a known function of piRNAs is to restrict transposons via RNA interference, it has been hypothesized that EBLN-derived piRNAs may restrict BoDV1. Here we used EBLN knockout (KO) and other KO mice to test genetic factors potentially involved in antiviral immunity to BoDV1. In previous reports, BoDV1 replication was higher in mice deficient in interferon gamma, and we confirmed a role for this cytokine in BoDV1 restriction at 12 weeks post infection using mice lacking its receptor. We show that BoDV1 replicates to higher levels in the brain of mice without Toll-like receptor 7 (TLR7), suggesting a role for this innate immune receptor in BoDV1 immunity. In contrast, mice lacking piRNA-producing EBLNs were no more susceptible to BoDV1 infection than wildtype under the infection conditions used here. We thus expand the genetic evidence implicating specific conventional immune pathways in BoDV1 control and conclude that EBLN-derived piRNA-guided antiviral silencing, if it occurs, is relatively less impactful in intracerebral infection of neonates.
Collapse
Affiliation(s)
- Rie Koide
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Taichi Harimoto
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Yuka Saito
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Matteo Guerrini
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Asami Fujii
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Erica Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research and RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
2
|
Garcia BCB, Mukai Y, Tomonaga K, Horie M. The hidden diversity of ancient bornaviral sequences from X and P genes in vertebrate genomes. Virus Evol 2023; 9:vead038. [PMID: 37360682 PMCID: PMC10288550 DOI: 10.1093/ve/vead038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Endogenous bornavirus-like elements (EBLs) are heritable sequences derived from bornaviruses in vertebrate genomes that originate from transcripts of ancient bornaviruses. EBLs have been detected using sequence similarity searches such as tBLASTn, whose technical limitations may hinder the detection of EBLs derived from small and/or rapidly evolving viral X and P genes. Indeed, no EBLs derived from the X and P genes of orthobornaviruses have been detected to date in vertebrate genomes. Here, we aimed to develop a novel strategy to detect such 'hidden' EBLs. To this aim, we focused on the 1.9-kb read-through transcript of orthobornaviruses, which encodes a well-conserved N gene and small and rapidly evolving X and P genes. We show a series of evidence supporting the existence of EBLs derived from orthobornaviral X and P genes (EBLX/Ps) in mammalian genomes. Furthermore, we found that an EBLX/P is expressed as a fusion transcript with the cellular gene, ZNF451, which potentially encodes the ZNF451/EBLP fusion protein in miniopterid bat cells. This study contributes to a deeper understanding of ancient bornaviruses and co-evolution between bornaviruses and their hosts. Furthermore, our data suggest that endogenous viral elements are more abundant than those previously appreciated using BLAST searches alone, and further studies are required to understand ancient viruses more accurately.
Collapse
Affiliation(s)
- Bea Clarise B Garcia
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Yahiro Mukai
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogo-in, Sakyo, Kyoto 606-8507, Japan
| | | |
Collapse
|
3
|
Kanda T, Tomonaga K. Reverse Genetics and Artificial Replication Systems of Borna Disease Virus 1. Viruses 2022; 14:v14102236. [PMID: 36298790 PMCID: PMC9612284 DOI: 10.3390/v14102236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus belonging to the family Bornaviridae within the order Mononegavirales. Whereas BoDV-1 causes neurological and behavioral disorders, called Borna disease (BD), in a wide range of mammals, its virulence in humans has been debated for several decades. However, a series of case reports in recent years have established the nature of BoDV-1 as a zoonotic pathogen that causes fatal encephalitis in humans. Although many virological properties of BoDV-1 have been revealed to date, the mechanism by which it causes fatal encephalitis in humans remains unclear. In addition, there are no effective vaccines or antiviral drugs that can be used in clinical practice. A reverse genetics approach to generating replication-competent recombinant viruses from full-length cDNA clones is a powerful tool that can be used to not only understand viral properties but also to develop vaccines and antiviral drugs. The rescue of recombinant BoDV-1 (rBoDV-1) was first reported in 2005. However, due to the slow nature of the replication of this virus, the rescue of high-titer rBoDV-1 required several months, limiting the use of this system. This review summarizes the history of the reverse genetics and artificial replication systems for orthobornaviruses and explores the recent progress in efforts to rescue rBoDV-1.
Collapse
Affiliation(s)
- Takehiro Kanda
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Laboratory of RNA Viruses, Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Correspondence:
| |
Collapse
|
4
|
Li Y, Wei S, Zhang K, Fang Y, Liu H, Jin Z, Guo Q, He J, Song W, Zhang F. The inflammation and reactive oxygen species regulated by Nrf2 and NF-κB signaling pathways in 630-nm light-emitting diode irradiation treated THP-1 monocytes/macrophages. Lasers Med Sci 2020; 36:1411-1419. [PMID: 33128166 DOI: 10.1007/s10103-020-03172-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Because of a large number of macrophages and its secreted pro-inflammatory factors in the synovial fluid of patients with rheumatoid arthritis, the present study aimed to investigate the effect and mechanism of 630-nm LED exposure on monocytes/macrophages and its anti-inflammatory effect. The THP-1 monocytes and PMA-induced THP-1 macrophages (THP-1 macrophages) were employed and irradiated by 630-nm LED for different time and times, and then measure the pro-inflammatory cytokines production by RT-qPCR and Milliplex MAP Multiplex assay, the proteins involved in inflammation pathway and reactive oxygen species (ROS) levels in the cells were detected by Western blot and DCFH-DA method. The exposure dose of red LED (15.3 J/cm2, 30.6 J/cm2) were determined as no-influence on the cell proliferation, the pro-inflammatory factors TNF-α and IL-1β mRNAs, and secretions in supernatant of THP-1 macrophages were significantly decreased after LED exposure. The ROS production was blocked in THP-1 monocytes and THP-1 macrophages after treatment of LED. Finally, the phosphorylated NF-κB proteins which involved in inflammation pathway significantly decreased, and its inhibitors Nrf2 were slightly upregulated. The effects of LED anti-inflammation response are dependent on the mechanism of inhibiting ROS level and regulating NF-κB signaling pathways by increasing Nrf2 expression in the cells. It is suggested that 630-nm LED could decrease pro-inflammation in immune cells, and it may be a beneficial adjunct therapy in relieving inflammation of patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Yujun Li
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Shuang Wei
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China
| | - Kaibo Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China
| | - Yong Fang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Zhanfeng Jin
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China
| | - Qingxia Guo
- Beijing Truwin Optoelectronic Medical Co., Ltd, Beijing, China
| | - Jun He
- Beijing Truwin Optoelectronic Medical Co., Ltd, Beijing, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, 150086, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, China.
| |
Collapse
|
5
|
Li X, Xia Q, Meng C, Wu H, Huang H, Qian J, Li A, Zhai A, Kao W, Song W, Zhang F. Downregulation of SOCS gene expression can inhibit the formation of acute and persistent BDV infections. Scand J Immunol 2020; 93:e12974. [PMID: 32910495 DOI: 10.1111/sji.12974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/30/2020] [Indexed: 01/18/2023]
Abstract
High expression of suppressors of cytokine signalling (SOCS) has been detected during various viral infections. As a negative feedback regulator, SOCS participates in the regulation of multiple signalling pathways. In this study, to study the related mechanism between SOCS and BDV and to explore the effect of SOCS on IFN pathways in nerve cells, downregulated of SOCS1/3 in oligodendroglial (OL) cells and OL cells persistently infected with BDV (OL/BDV) were constructed with RNA interference technology. An interferon inducer (poly I:C, PIC) and an IFN-α/β R1 antibody were used as stimulation in the SOCS1/3 low-expression cell models, qRT-PCR was used to detect type I IFN and BDV nucleic acid expression, Western blot was used to detect the expression of BDV P40 protein. After BDV acute infection with OL cells which with downregulated SOCS expression, the virus accounting was not detected, and the viral protein expression was lower than that of OL/BDV cells; the OL/BDV cells with downregulated SOCS expression had lower virus nucleic acid and protein expression than OL/BDV cells. Stimulated by IFN-α/β R1 antibody, the expression of type I interferon in OL/BDV cells decreased, and the content of BDV nucleic acid and protein increased, which was higher than that of OL/BDV cells. From the results, it was concluded that downregulating SOCS1/3 can inhibit the formation of acute BDV infection and virus replication in persistent BDV infection by promoting the expression of IFN-α/β and that SOCS can be used as a new target for antiviral therapy.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China.,Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Qing Xia
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Caiyun Meng
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - He Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Qian
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Aimei Li
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Aixia Zhai
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Wenping Kao
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Zhang F, Xue Y, Zhang F, Wei X, Zhou Z, Ma Z, Wang X, Shen H, Li Y, Cui X, Liu L. Identification of a Novel CCM1 Frameshift Mutation in a Chinese Han Family With Multiple Cerebral Cavernous Malformations. Front Neurosci 2020; 14:525986. [PMID: 33071727 PMCID: PMC7538688 DOI: 10.3389/fnins.2020.525986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly occur in the brain. CCMs can be sporadic or hereditary in an autosomal dominant manner. The genes harboring variants of familial CCMs (FCCMs) include CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. In this study, we identified a novel CCM1/KRIT1 mutation in a Chinese family with FCCMs. This family consists of 20 members, and 6 of them had been diagnosed with CCMs. The proband patient is a 17-year-old female who has suffered from CCM-related intracranial hemorrhage four times. Magnetic resonance imaging (MRI) revealed four lesions in the different brain regions and one lesion has progressively enlarged. The pathological histology confirmed CCMs. Whole exome sequencing revealed a novel deletion mutation (c.1635delA) within exon 15 of CCM1/KRIT1 gene in the proband patient, her mother, and her uncle who had CCMs. This frameshift mutation led to a premature termination codon (PTC) at nucleotides 1652-1654. We also detected that the CCM1 mRNA levels in the blood lymphocytes of the family members with CCMs were reduced by 46.4% compared to that in healthy controls. Collectively, our results suggested that the CCM1 mutation could potentially be a causative factor for FCCMs in the Chinese family and the reduction of CCM1 mRNA expression in the blood lymphocytes of the patients might be a potential biomarker for the diagnosis and prognosis of CCMs. Our findings expanded the spectrum of CCM mutations and helped to guide genetic counseling and early genetic diagnosis for at-risk family members.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiteng Xue
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoming Wei
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhisong Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoru Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaosong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujun Li
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Lai JH, Luo SF, Ho LJ. Operation of mitochondrial machinery in viral infection-induced immune responses. Biochem Pharmacol 2018; 156:348-356. [PMID: 30172712 PMCID: PMC7092938 DOI: 10.1016/j.bcp.2018.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 01/05/2023]
Abstract
Mitochondria have been recognized as ancient bacteria that contain evolutionary endosymbionts. Metabolic pathways and inflammatory signals interact within mitochondria in response to different stresses, such as viral infections. In this commentary, we address several interesting questions, including (1) how do mitochondrial machineries participate in immune responses; (2) how do mitochondria mediate antiviral immunity; (3) what mechanisms involved in mitochondrial machinery, including the downregulation of mitochondrial DNA (mtDNA), disturbances of mitochondrial dynamics, and the induction of mitophagy and regulation of apoptosis, have been adopted by viruses to evade antiviral immunity; (4) what mechanisms involve the regulation of mitochondrial machineries in antiviral therapeutics; and (5) what are the potential challenges and perspectives in developing mitochondria-targeting antiviral treatments? This commentary provides a comprehensive review of the roles and mechanisms of mitochondrial machineries in immunity, viral infections and related antiviral therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
8
|
Dong W, Lv H, Li C, Liu Y, Wang C, Lin J, Wang Y, Qian G, Guo K, Zhang Y. MAVS induces a host cell defense to inhibit CSFV infection. Arch Virol 2018; 163:1805-1821. [DOI: 10.1007/s00705-018-3804-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/13/2018] [Indexed: 01/09/2023]
|
9
|
Ferré CA, Davezac N, Thouard A, Peyrin JM, Belenguer P, Miquel MC, Gonzalez-Dunia D, Szelechowski M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. FASEB J 2015; 30:1523-33. [PMID: 26700735 DOI: 10.1096/fj.15-279620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023]
Abstract
To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.
Collapse
Affiliation(s)
- Cécile A Ferré
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Noélie Davezac
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Anne Thouard
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Jean-Michel Peyrin
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Pascale Belenguer
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Marie-Christine Miquel
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Daniel Gonzalez-Dunia
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Marion Szelechowski
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| |
Collapse
|
10
|
Luckhart S, Pakpour N, Giulivi C. Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol 2015. [PMID: 26210301 DOI: 10.1016/j.coi.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria parasite-host interactions are complex and have confounded available drugs and the development of vaccines. Further, we now appreciate that interventions for malaria elimination and eradication must include therapeutics with intrinsic transmission blocking activity to treat the patient and prevent disease spread. Studies over the past 15 years have revealed significant conservation in the response to infection in mosquito and human hosts. More recently, we have recognized that conserved cell signaling cascades in mosquitoes and humans dictate infection outcome through the regulation of mitochondrial function and biogenesis, which feed back to host immunity, basic intermediary metabolism, and stress responses. These responses - reflected clearly in the primeval insect host - provide fertile ground for innovative strategies for both treatment and transmission blocking.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, and Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis CA 95616, United States
| |
Collapse
|
11
|
Makino A, Fujino K, Parrish NF, Honda T, Tomonaga K. Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene. Sci Rep 2015; 5:8696. [PMID: 25733193 PMCID: PMC4649702 DOI: 10.1038/srep08696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Borna disease virus (BDV) has a non-segmented, negative-stranded RNA genome and causes persistent infection in many animal species. Previous study has shown that the activation of the IκB kinase (IKK)/NF-κB pathway is reduced by BDV infection even in cells expressing constitutively active mutant IKK. This result suggests that BDV directly interferes with the IKK/NF-κB pathway. To elucidate the mechanism for the inhibition of NF-κB activation by BDV infection, we evaluated the cross-talk between BDV infection and the NF-κB pathway. Using Multiple EM for Motif Elicitation analysis, we found that the nucleoproteins of BDV (BDV-N) and NF-κB1 share a common ankyrin-like motif. When THP1-CD14 cells were pre-treated with the identified peptide, NF-κB activation by Toll-like receptor ligands was suppressed. The 20S proteasome assay showed that BDV-N and BDV-N-derived peptide inhibited the processing of NF-κB1 p105 into p50. Furthermore, immunoprecipitation assays showed that BDV-N interacted with NF-κB1 but not with NF-κB2, which shares no common motif with BDV-N. These results suggest BDV-N inhibits NF-κB1 processing by the 20S proteasome through its ankyrin-like peptide sequence, resulting in the suppression of IKK/NF-κB pathway activation. This inhibitory effect of BDV on the induction of the host innate immunity might provide benefits against persistent BDV infection.
Collapse
Affiliation(s)
- Akiko Makino
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Kan Fujino
- Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan
| | | | - Tomoyuki Honda
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Keizo Tomonaga
- 1] Department of Viral Oncology, Kyoto University, Kyoto 606-8507, Japan [2] Department of Tumor Viruses, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan [3] Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
12
|
A viral peptide that targets mitochondria protects against neuronal degeneration in models of Parkinson’s disease. Nat Commun 2014; 5:5181. [DOI: 10.1038/ncomms6181] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022] Open
|
13
|
MAVS-MKK7-JNK2 defines a novel apoptotic signaling pathway during viral infection. PLoS Pathog 2014; 10:e1004020. [PMID: 24651600 PMCID: PMC3961361 DOI: 10.1371/journal.ppat.1004020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/06/2014] [Indexed: 12/27/2022] Open
Abstract
Viral infection induces innate immunity and apoptosis. Apoptosis is an effective means to sacrifice virus-infected host cells and therefore restrict the spread of pathogens. However, the underlying mechanisms of this process are still poorly understood. Here, we show that the mitochondrial antiviral signaling protein (MAVS/VISA/Cardif/IPS-1) is critical for SeV (Sendai virus)-induced apoptosis. MAVS specifically activates c-Jun N-terminal kinase 2 (JNK2) but not other MAP kinases. Jnk2−/− cells, but not Jnk1−/− cells, are unable to initiate virus-induced apoptosis and SeV further fails to trigger apoptosis in MAPK kinase 7 (MKK7) knockout (Mkk7−/−) cells. Mechanistically, MAVS recruits MKK7 onto mitochondria via its 3D domain, which subsequently phosphorylates JNK2 and thus activates the apoptosis pathway. Consistently, Jnk2−/− mice, but not Jnk1−/− mice, display marked inflammatory injury in lung and liver after viral challenge. Collectively, we have identified a novel signaling pathway, involving MAVS-MKK7-JNK2, which mediates virus-induced apoptosis and highlights the indispensable role of mitochondrial outer membrane in host defenses. The mitochondrial antiviral signaling protein (MAVS/VISA/Cardif/IPS-1) is critical for the innate immune response during viral infection, and its function has been well documented in mediating type I interferon production. In this study, we revealed the essential role of MAVS in virus-induced apoptosis, independent of Retinoic acid-Inducible Gene I (RIG-I) signaling. Upon viral infection, MAVS recruits MKK7 onto mitochondria, followed by MKK7 induced activation of JNK2, which subsequently initiates apoptosis. Importantly, we have clearly differentiated the roles of JNK2 versus JNK1, and MKK7 versus MKK4 in virus-induced apoptosis. Thus, we define a novel apoptotic signaling pathway, involving MAVS-MKK7-JNK2, which sheds a new perspective on the crosstalk between the antiviral and apoptotic signaling pathways in innate immunity.
Collapse
|
14
|
Borna disease virus infection in cats. Vet J 2013; 201:142-9. [PMID: 24480411 DOI: 10.1016/j.tvjl.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/05/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023]
Abstract
Bornaviruses are known to cause neurological disorders in a number of animal species. Avian Bornavirus (ABV) causes proventricular dilatation disease (PDD) in birds and Borna disease virus (BDV) causes Borna disease in horses and sheep. BDV also causes staggering disease in cats, characterised by ataxia, behavioural changes and loss of postural reactions. BDV-infection markers in cats have been reported throughout the world. This review summarizes the current knowledge of Borna disease viruses in cats, including etiological agent, clinical signs, pathogenesis, epidemiology and diagnostics, with comparisons to Bornavirus infections in other species.
Collapse
|