1
|
Kurgan KW, Martin FJO, Dawson WM, Brunnock T, Orr-Ewing AJ, Woolfson DN. Exchange, promiscuity, and orthogonality in de novo designed coiled-coil peptide assemblies. Chem Sci 2025; 16:1826-1836. [PMID: 39720134 PMCID: PMC11664599 DOI: 10.1039/d4sc06329e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
De novo protein design is delivering new peptide and protein structures at a rapid pace. Many of these synthetic polypeptides form well-defined and hyperthermal-stable structures. Generally, however, less is known about the dynamic properties of the de novo designed structures. Here, we explore one aspect of dynamics in a series of de novo coiled-coil peptide assemblies: namely, peptide exchange within and between different oligomers from dimers through to heptamers. First, we develop a fluorescence-based reporter assay for peptide exchange that is straightforward to implement, and, thus, would be useful to others examining similar systems. We apply this assay to explore both homotypic exchange within single species, and heterotypic exchange between coiled coils of different oligomeric states. For the former, we provide a detailed study for a dimeric coiled coil, CC-Di, finding a half-life for exchange of 4.2 ± 0.3 minutes at a peptide concentration of 200 μM. Interestingly, more broadly when assessing exchange across all of the oligomeric states, we find that some of the designs are faithful and only undergo homotypic strand exchange, whereas others are promiscuous and exchange to form unexpected hetero-oligomers. Finally, we develop two design strategies to improve the orthogonality of the different oligomers: (i) using alternate positioning of salt bridge interactions; and (ii) incorporating non-canonical repeats into the designed sequences. In so doing, we reconcile the promiscuity and deliver a set of faithful homo-oligomeric de novo coiled-coil peptides. Our findings have implications for the application of these and other coiled coils as modules in chemical and synthetic biology.
Collapse
Affiliation(s)
- Kathleen W Kurgan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Freddie J O Martin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - William M Dawson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Thomas Brunnock
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, University Walk Medical Sciences Building Bristol BS8 1TD UK
- Bristol BioDesign Institute, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Tucker RP, Adams JC. Molecular evolution of the Thrombospondin superfamily. Semin Cell Dev Biol 2024; 155:12-21. [PMID: 37202276 DOI: 10.1016/j.semcdb.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Thrombospondins (TSPs) are multidomain, calcium-binding glycoproteins that have wide-ranging roles in vertebrates in cell interactions, extracellular matrix (ECM) organisation, angiogenesis, tissue remodelling, synaptogenesis, and also in musculoskeletal and cardiovascular functions. Land animals encode five TSPs, which assembly co-translationally either as trimers (subgroup A) or pentamers (subgroup B). The vast majority of research has focused on this canonical TSP family, which evolved through the whole-genome duplications that took place early in the vertebrate lineage. With benefit of the growth in genome- and transcriptome-predicted proteomes of a much wider range of animal species, examination of TSPs throughout metazoan phyla has revealed extensive conservation of subgroup B-type TSPs in invertebrates. In addition, these searches established that canonical TSPs are, in fact, one branch within a TSP superfamily that includes other clades designated mega-TSPs, sushi-TSPs and poriferan-TSPs. Despite the apparent simplicity of poriferans and cnidarians as organisms, these phyla encode a greater diversity of TSP superfamily members than vertebrates. We discuss here the molecular characteristics of the TSP superfamily members, current knowledge of their expression profiles and functions in invertebrates, and models for the evolution of this complex ECM superfamily.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, 95616 USA
| | | |
Collapse
|
4
|
Pandey G, Phatale V, Khairnar P, Kolipaka T, Shah S, Famta P, Jain N, Srinivasarao DA, Rajinikanth PS, Raghuvanshi RS, Srivastava S. Supramolecular self-assembled peptide-engineered nanofibers: A propitious proposition for cancer therapy. Int J Biol Macromol 2024; 256:128452. [PMID: 38042321 DOI: 10.1016/j.ijbiomac.2023.128452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity. Therefore, there is a paradigm shift in cancer management wherein nanomedicine-based novel therapeutic interventions are being explored to overcome the aforementioned disadvantages. Supramolecular self-assembled peptide nanofibers are emerging drug delivery vehicles that have gained much attention in cancer management owing to their biocompatibility, biodegradability, biomimetic property, stimuli-responsiveness, transformability, and inherent therapeutic property. Supramolecules form well-organized structures via non-covalent linkages, the intricate molecular arrangement helps to improve tissue permeation, pharmacokinetic profile and chemical stability of therapeutic agents while enabling targeted delivery and allowing efficient tumor imaging. In this review, we present fundamental aspects of peptide-based self-assembled nanofiber fabrication their applications in monotherapy/combinatorial chemo- and/or immuno-therapy to overcome multi-drug resistance. The role of self-assembled structures in targeted/stimuli-responsive (pH, enzyme and photo-responsive) drug delivery has been discussed along with the case studies. Further, recent advancements in peptide nanofibers in cancer diagnosis, imaging, gene therapy, and immune therapy along with regulatory obstacles towards clinical translation have been deliberated.
Collapse
Affiliation(s)
- Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajeev Singh Raghuvanshi
- Central Drugs Standard Control Organization (CDSCO), Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
5
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
6
|
Caporale A, Adorinni S, Lamba D, Saviano M. Peptide-Protein Interactions: From Drug Design to Supramolecular Biomaterials. Molecules 2021; 26:1219. [PMID: 33668767 PMCID: PMC7956380 DOI: 10.3390/molecules26051219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The self-recognition and self-assembly of biomolecules are spontaneous processes that occur in Nature and allow the formation of ordered structures, at the nanoscale or even at the macroscale, under thermodynamic and kinetic equilibrium as a consequence of specific and local interactions. In particular, peptides and peptidomimetics play an elected role, as they may allow a rational approach to elucidate biological mechanisms to develop new drugs, biomaterials, catalysts, or semiconductors. The forces that rule self-recognition and self-assembly processes are weak interactions, such as hydrogen bonding, electrostatic attractions, and van der Waals forces, and they underlie the formation of the secondary structure (e.g., α-helix, β-sheet, polyproline II helix), which plays a key role in all biological processes. Here, we present recent and significant examples whereby design was successfully applied to attain the desired structural motifs toward function. These studies are important to understand the main interactions ruling the biological processes and the onset of many pathologies. The types of secondary structure adopted by peptides during self-assembly have a fundamental importance not only on the type of nano- or macro-structure formed but also on the properties of biomaterials, such as the types of interaction, encapsulation, non-covalent interaction, or covalent interaction, which are ultimately useful for applications in drug delivery.
Collapse
Affiliation(s)
- Andrea Caporale
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
| | - Simone Adorinni
- Dipartimento di Scienze Chimiche e Farmaceutiche di Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| | - Doriano Lamba
- IC-CNR, c/o Area Science Park, S.S. 14 Km 163.5 Basovizza, 34149 Trieste, Italy;
- Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, Viale delle Medaglie d’Oro 305, I-00136 Roma, Italy
| | - Michele Saviano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (IC-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
Shoemark DK, Ziegler B, Watanabe H, Strompen J, Tucker RP, Özbek S, Adams JC. Emergence of a Thrombospondin Superfamily at the Origin of Metazoans. Mol Biol Evol 2019; 36:1220-1238. [PMID: 30863851 PMCID: PMC6526912 DOI: 10.1093/molbev/msz060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) is considered central to the evolution of metazoan multicellularity; however, the repertoire of ECM proteins in nonbilaterians remains unclear. Thrombospondins (TSPs) are known to be well conserved from cnidarians to vertebrates, yet to date have been considered a unique family, principally studied for matricellular functions in vertebrates. Through searches utilizing the highly conserved C-terminal region of TSPs, we identify undisclosed new families of TSP-related proteins in metazoans, designated mega-TSP, sushi-TSP, and poriferan-TSP, each with a distinctive phylogenetic distribution. These proteins share the TSP C-terminal region domain architecture, as determined by domain composition and analysis of molecular models against known structures. Mega-TSPs, the only form identified in ctenophores, are typically >2,700 aa and are also characterized by N-terminal leucine-rich repeats and central cadherin/immunoglobulin domains. In cnidarians, which have a well-defined ECM, Mega-TSP was expressed throughout embryogenesis in Nematostella vectensis, with dynamic endodermal expression in larvae and primary polyps and widespread ectodermal expression in adult Nematostella vectensis and Hydra magnipapillata polyps. Hydra Mega-TSP was also expressed during regeneration and siRNA-silencing of Mega-TSP in Hydra caused specific blockade of head regeneration. Molecular phylogenetic analyses based on the conserved TSP C-terminal region identified each of the TSP-related groups to form clades distinct from the canonical TSPs. We discuss models for the evolution of the newly defined TSP superfamily by gene duplications, radiation, and gene losses from a debut in the last metazoan common ancestor. Together, the data provide new insight into the evolution of ECM and tissue organization in metazoans.
Collapse
Affiliation(s)
| | - Berenice Ziegler
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jennifer Strompen
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, University of Heidelberg, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Lommel M, Strompen J, Hellewell AL, Balasubramanian GP, Christofidou ED, Thomson AR, Boyle AL, Woolfson DN, Puglisi K, Hartl M, Holstein TW, Adams JC, Özbek S. Hydra Mesoglea Proteome Identifies Thrombospondin as a Conserved Component Active in Head Organizer Restriction. Sci Rep 2018; 8:11753. [PMID: 30082916 PMCID: PMC6079037 DOI: 10.1038/s41598-018-30035-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Thrombospondins (TSPs) are multidomain glycoproteins with complex matricellular functions in tissue homeostasis and remodeling. We describe a novel role of TSP as a Wnt signaling target in the basal eumetazoan Hydra. Proteome analysis identified Hydra magnipapillata TSP (HmTSP) as a major component of the cnidarian mesoglea. In general, the domain organization of cnidarian TSPs is related to the pentameric TSPs of bilaterians, and in phylogenetic analyses cnidarian TSPs formed a separate clade of high sequence diversity. HmTSP expression in polyps was restricted to the hypostomal tip and tentacle bases that harbor Wnt-regulated organizer tissues. In the hypostome, HmTSP- and Wnt3-expressing cells were identical or in close vicinity to each other, and regions of ectopic tentacle formation induced by pharmacological β-Catenin activation (Alsterpaullone) corresponded to foci of HmTSP expression. Chromatin immunoprecipitation (ChIP) confirmed binding of Hydra TCF to conserved elements in the HmTSP promotor region. Accordingly, β-Catenin knockdown by siRNAs reduced normal HmTSP expression at the head organizer. In contrast, knockdown of HmTSP expression led to increased numbers of ectopic organizers in Alsterpaullone-treated animals, indicating a negative regulatory function. Our data suggest an unexpected role for HmTSP as a feedback inhibitor of Wnt signaling during Hydra body axis patterning and maintenance.
Collapse
Affiliation(s)
- Mark Lommel
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Strompen
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Andrew L Hellewell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Gnana Prakash Balasubramanian
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.,G200 Division of Applied Bioinformatics, German Cancer Research Institute (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Im Neuenheimer Feld 580, D-69120, Heidelberg, Germany
| | - Elena D Christofidou
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew R Thomson
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, Scotland
| | - Aimee L Boyle
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK.,Leiden Institute of Chemistry, Leiden University, POB 9502, NL-2300, RA Leiden, Netherlands
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.,School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Thomas W Holstein
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Suat Özbek
- University of Heidelberg, Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Haider MJ, Zhang HV, Sinha N, Fagan JA, Kiick KL, Saven JG, Pochan DJ. Self-assembly and soluble aggregate behavior of computationally designed coiled-coil peptide bundles. SOFT MATTER 2018; 14:5488-5496. [PMID: 29923575 PMCID: PMC6355460 DOI: 10.1039/c8sm00435h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Coiled-coil peptides have proven useful in a range of materials applications ranging from the formation of well-defined fibrils to responsive hydrogels. The ability to design from first principles their oligomerization and subsequent higher order assembly offers their expanded use in producing new materials. Toward these ends, homo-tetrameric, antiparallel, coiled-coil, peptide bundles have been designed computationally, synthesized via solid-phase methods, and their solution behavior characterized. Two different bundle-forming peptides were designed and examined. Within the targeted coiled coil structure, both bundles contained the same hydrophobic core residues. However, different exterior residues on the two different designs yielded sequences with different distributions of charged residues and two different expected isoelectric points of pI 4.4 and pI 10.5. Both coiled-coil bundles were extremely stable with respect to temperature (Tm > 80 C) and remained soluble in solution even at high (millimolar) peptide concentrations. The coiled-coil tetramer was confirmed to be the dominant species in solution by analytical sedimentation studies and by small-angle neutron scattering, where the scattering form factor is well represented by a cylinder model with the dimensions of the targeted coiled coil. At high concentrations (5-15 mM), evidence of interbundle structure was observed via neutron scattering. At these concentrations, the synthetic bundles form soluble aggregates, and interbundle distances can be determined via a structure factor fit to scattering data. The data support the successful design of robust coiled-coil bundles. Despite their different sequences, each sequence forms loosely associated but soluble aggregates of the bundles, suggesting similar dissociated states for each. The behavior of the dispersed bundles is similar to that observed for natural proteins.
Collapse
Affiliation(s)
- Michael J. Haider
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| | - Huixi Violet Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Nairiti Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA. ,
| |
Collapse
|
10
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
11
|
Li C, Ching Han Chang C, Nagel J, Porebski BT, Hayashida M, Akutsu T, Song J, Buckle AM. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins. Brief Bioinform 2016; 17:270-82. [PMID: 26177815 PMCID: PMC6078162 DOI: 10.1093/bib/bbv047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/29/2015] [Indexed: 12/19/2022] Open
Abstract
Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction.
Collapse
|
12
|
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2015; 44:D279-85. [PMID: 26673716 PMCID: PMC4702930 DOI: 10.1093/nar/gkv1344] [Citation(s) in RCA: 3820] [Impact Index Per Article: 382.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/17/2015] [Indexed: 11/24/2022] Open
Abstract
In the last two years the Pfam database (http://pfam.xfam.org) has undergone a substantial reorganisation to reduce the effort involved in making a release, thereby permitting more frequent releases. Arguably the most significant of these changes is that Pfam is now primarily based on the UniProtKB reference proteomes, with the counts of matched sequences and species reported on the website restricted to this smaller set. Building families on reference proteomes sequences brings greater stability, which decreases the amount of manual curation required to maintain them. It also reduces the number of sequences displayed on the website, whilst still providing access to many important model organisms. Matches to the full UniProtKB database are, however, still available and Pfam annotations for individual UniProtKB sequences can still be retrieved. Some Pfam entries (1.6%) which have no matches to reference proteomes remain; we are working with UniProt to see if sequences from them can be incorporated into reference proteomes. Pfam-B, the automatically-generated supplement to Pfam, has been removed. The current release (Pfam 29.0) includes 16 295 entries and 559 clans. The facility to view the relationship between families within a clan has been improved by the introduction of a new tool.
Collapse
Affiliation(s)
- Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Penelope Coggill
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ruth Y Eberhardt
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sean R Eddy
- Department of Molecular & Cellular Biology, Harvard University, Biological Laboratories 1008, 16 Divinity Avenue, Cambridge, MA 02138, USA John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jaina Mistry
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Alex L Mitchell
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Simon C Potter
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Marco Punta
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Sorbonne Universités, UPMC-Univ P6, CNRS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Matloob Qureshi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Amaia Sangrador-Vegas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Gustavo A Salazar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John Tate
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|
13
|
Rad-Malekshahi M, Lempsink L, Amidi M, Hennink WE, Mastrobattista E. Biomedical Applications of Self-Assembling Peptides. Bioconjug Chem 2015; 27:3-18. [DOI: 10.1021/acs.bioconjchem.5b00487] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mazda Rad-Malekshahi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Ludwijn Lempsink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Maryam Amidi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| |
Collapse
|
14
|
Abstract
Tenascins are extracellular matrix glycoproteins that act both as integrin ligands and as modifiers of fibronectin-integrin interactions to regulate cell adhesion, migration, proliferation and differentiation. In tetrapods, both tenascins and fibronectin bind to integrins via RGD and LDV-type tripeptide motifs found in exposed loops in their fibronectin-type III domains. We previously showed that tenascins appeared early in the chordate lineage and are represented by single genes in extant cephalochordates and tunicates. Here we have examined the genomes of the coelacanth Latimeria chalumnae, the elephant shark Callorhinchus milii as well as the lampreys Petromyzon marinus and Lethenteron japonicum to learn more about the evolution of the tenascin gene family as well as the timing of the appearance of fibronectin during chordate evolution. The coelacanth has 4 tenascins that are more similar to tetrapod tenascins than are tenascins from ray-finned fishes. In contrast, only 2 tenascins were identified in the elephant shark and the Japanese lamprey L. japonicum. An RGD motif exposed to integrin binding is observed in tenascins from many, but not all, classes of chordates. Tetrapods that lack this RGD motif in tenascin-C have a similar motif in the paralog tenascin-W, suggesting the potential for some overlapping function. A predicted fibronectin with the same domain organization as the fibronectin from tetrapods is found in the sea lamprey P. marinus but not in tunicates, leading us to infer that fibronectin first appeared in vertebrates. The motifs that recognize LDV-type integrin receptors are conserved in fibronectins from a broad spectrum of vertebrates, but the RGD integrin-binding motif may have evolved in gnathostomes.
Collapse
|
15
|
Li C, Wang XF, Chen Z, Zhang Z, Song J. Computational characterization of parallel dimeric and trimeric coiled-coils using effective amino acid indices. MOLECULAR BIOSYSTEMS 2015; 11:354-60. [DOI: 10.1039/c4mb00569d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
RFCoil is a novel predictor for parallel coiled-coil dimer and trimer.
Collapse
Affiliation(s)
- Chen Li
- Department of Biochemistry and Molecular Biology
- Faculty of Medicine
- Monash University
- Melbourne
- Australia
| | - Xiao-Feng Wang
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Zhen Chen
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology
- College of Biological Sciences
- China Agricultural University
- Beijing 100193
- China
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology
- Faculty of Medicine
- Monash University
- Melbourne
- Australia
| |
Collapse
|
16
|
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
Collapse
Affiliation(s)
- Janna K Mouw
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco
| | - Guanqing Ou
- 1] Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco. [2] University of California San Francisco and University of California Berkeley Joint Graduate Group in Bioengineering, San Francisco, California 94143, USA
| | - Valerie M Weaver
- 1] Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco. [2] Department of Anatomy, University of California, San Francisco. [3] Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco. [4] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco. [5] UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California 94143, USA
| |
Collapse
|
17
|
Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 2014. [PMID: 25370693 DOI: 10.1038/nrm3902 10.1038/nrm3902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
Collapse
|
18
|
Abstract
The biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
Collapse
|