1
|
Typiak M, Sobczak A, Dobrzyńska Z, Saleem MA, Jaźwińska A. RNA production of IgG receptors is present in podocytes and varies depending on glycemia - preliminary results on Fc gamma receptor presence in kidney cells. Gene 2025; 958:149501. [PMID: 40228757 DOI: 10.1016/j.gene.2025.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Diabetes results from high blood glucose level and is one of the four main noncommunicable diseases. It is also a major cause of kidney failure. An inflammation of renal tissue during diabetic kidney disease (DKD) is aimed to resolve the ongoing homeostatic imbalance, however it leads to renal tissue injury. Because, the kidney glomerulus, where the blood filtration occurs, is an immunologically privileged place with very few leukocytes within, it was suspected that cells within the glomerulus possess immunological features and may initiate or increase the inflammation of renal tissue. One of the cell types in glomerulus, podocytes, are not only crucial for plasma filtration, but also can phagocytose and were described as professional antigen presenting cells. Due to an increased level of IgG-based immune complexes generated in the blood of diabetic patients and deposited in their kidneys, it was also proposed, that podocytes may express receptors for Fc fragment of IgG (FcγRs), which initiate phagocytosis. Many analyses point to that, but it has never been tested before. Thus, in the current study, we have analyzed mRNA expression levels of FcγR-coding genes in human podocytes, compared it to their expression levels in other non-immune epithelial cells (ovarian cells) and to leukocytes, as well as compared FcγR-coding genes' expression levels in podocytes cultured in a medium with standard versus high glucose concentration. The detection of FcγR expression in podocytes could help to understand the pathomechanism of renal tissue inflammation during DKD and subsequently help to prevent or minimize it.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Aleksandra Sobczak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Zofia Dobrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Anna Jaźwińska
- Regional Center of Blood Donation and Blood Treatment in Gdansk, Poland
| |
Collapse
|
2
|
Rachubik P, Grochowalska K, Audzeyenka I, Rogacka D, Piwkowska A. Role of bile acid-dependent Takeda G-coupled protein receptor 5 (TGR5) in regulating AMPK expression in human podocytes. Biochem Biophys Res Commun 2025; 759:151671. [PMID: 40147352 DOI: 10.1016/j.bbrc.2025.151671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Bile acids affect podocyte function by stimulating membrane-bound Takeda G protein-coupled receptor 5 (TGR5), the activity of which is linked to the regulation of glucose and lipid metabolism. In podocytes, adenosine monophosphate-dependent protein kinase (AMPK) is critical for maintaining energy balance, suggesting that the bile acid-dependent stimulation of TGR5 may impact AMPK activity to regulate metabolic processes in podocytes. Despite the beneficial effect of TGR5 activation on AMPK activity in podocytes that are exposed to hyperglycemic conditions, the effect of TGR5 signaling on AMPKα expression and phosphorylation state under control conditions have not been studied in podocytes. Our studies confirmed TGR5 expression in podocytes at both the mRNA and protein levels. Moreover, TGR5 inhibition decreased the protein expression of both AMPKα1 and AMPKα2 isoforms, which correlated with significantly lower levels of AMPKα phosphorylation at Thr172 in podocytes. Additionally, the immunofluorescent staining of podocytes with pharmacologically inhibited TGR5 activity were characterized by a lower mean intensity of the AMPKα fluorescence signal. TGR5 stimulation decreased the mRNA expression of AMPKα1 and AMPKα2 but did not change the degree of AMPKα phosphorylation at Thr172. These data suggest that TGR5 inactivation significantly downregulates AMPK activity. This may shed new light on the bile acid-dependent regulation of glucose and lipid metabolism in podocytes, especially under pathological conditions.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.
| | - Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
3
|
Rogacka D, Rachubik P, Typiak M, Kulesza T, Audzeyenka I, Saleem MA, Sikora H, Gruba N, Wysocka M, Lesner A, Piwkowska A. Involvement of ADAM17-Klotho Crosstalk in High Glucose-Induced Alterations of Podocyte Function. Int J Mol Sci 2025; 26:731. [PMID: 39859443 PMCID: PMC11765903 DOI: 10.3390/ijms26020731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Microalbuminuria is the earliest clinical abnormality in diabetic kidney disease. High glucose (HG) concentrations are associated with the induction of oxidative stress in podocytes, leading to disruption of the glomerular filtration barrier. Our recent study revealed a significant decrease in the membrane-bound fraction of Klotho in podocytes that were cultured under HG conditions. Given that disintegrin and metalloproteinase 17 (ADAM17) is responsible for the shedding of Klotho from the cell membrane, the present study investigated the impact of HG on the interplay between ADAM17 and Klotho in human podocytes. We demonstrated that ADAM17 protein levels significantly increased in urine, renal tissue, and glomeruli from diabetic rats, with a concomitant increase in glomerular albumin permeability. High glucose increased ADAM17 extracellular activity, NADPH oxidase activity, and albumin permeability in podocytes. These effects were reversed after treatment with ADAM17 inhibitor, in cells with downregulated ADAM17 expression, or after the addition of Klotho. Additionally, elevations of extracellular ADAM17 activity were observed in podocytes with the downregulation of Klotho expression. Our data indicate a novel mechanism whereby hyperglycemia deteriorates podocyte function via ADAM17 activation. We also demonstrated the ability of Klotho to protect podocyte function under hyperglycemic conditions in an ADAM17-dependent manner.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; (P.R.); (T.K.); (I.A.); (A.P.)
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; (P.R.); (T.K.); (I.A.); (A.P.)
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-309 Gdansk, Poland;
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; (P.R.); (T.K.); (I.A.); (A.P.)
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; (P.R.); (T.K.); (I.A.); (A.P.)
| | - Moin A. Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK;
| | - Honorata Sikora
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (H.S.); (M.W.)
| | - Natalia Gruba
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (N.G.); (A.L.)
| | - Magdalena Wysocka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (H.S.); (M.W.)
| | - Adam Lesner
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland; (N.G.); (A.L.)
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 80-308 Gdansk, Poland; (P.R.); (T.K.); (I.A.); (A.P.)
| |
Collapse
|
4
|
Williquett J, Allamargot C, Sun H. AMPK-SP1-Guided Dynein Expression Represents a New Energy-Responsive Mechanism and Therapeutic Target for Diabetic Nephropathy. KIDNEY360 2024; 5:538-549. [PMID: 38467599 PMCID: PMC11093544 DOI: 10.34067/kid.0000000000000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Key Points AMP kinase senses diabetic stresses in podocytes, subsequently upregulates specificity protein 1–mediated dynein expression and promotes podocyte injury. Pharmaceutical restoration of dynein expression by targeting specificity protein 1 represents an innovative therapeutic strategy for diabetic nephropathy. Background Diabetic nephropathy (DN) is a major complication of diabetes. Injury to podocytes, epithelial cells that form the molecular sieve of a kidney, is a preclinical feature of DN. Protein trafficking mediated by dynein, a motor protein complex, is a newly recognized pathophysiology of diabetic podocytopathy and is believed to be derived from the hyperglycemia-induced expression of subunits crucial for the transportation activity of the dynein complex. However, the mechanism underlying this transcriptional signature remains unknown. Methods Through promoter analysis, we identified binding sites for transcription factor specificity protein 1 (SP1) as the most shared motif among hyperglycemia-responsive dynein genes. We demonstrated the essential role of AMP-activated protein kinase (AMPK)–regulated SP1 in the transcription of dynein subunits and dynein-mediated trafficking in diabetic podocytopathy using chromatin immunoprecipitation quantitative PCR and live cell imaging. SP1-dependent dynein-driven pathogenesis of diabetic podocytopathy was demonstrated by pharmaceutical intervention with SP1 in a mouse model of streptozotocin-induced diabetes. Results Hyperglycemic conditions enhance SP1 binding to dynein promoters, promoted dynein expression, and enhanced dynein-mediated mistrafficking in cultured podocytes. These changes can be rescued by chemical inhibition or genetic silencing of SP1. The direct repression of AMPK, an energy sensor, replicates hyperglycemia-induced dynein expression by activating SP1. Mithramycin inhibition of SP1-directed dynein expression in streptozotocin-induced diabetic mice protected them from developing podocytopathy and prevented DN progression. Conclusions Our work implicates AMPK-SP1–regulated dynein expression as an early mechanism that translates energy disturbances in diabetes into podocyte dysfunction. Pharmaceutical restoration of dynein expression by targeting SP1 offers a new therapeutic strategy to prevent DN.
Collapse
Affiliation(s)
- Jillian Williquett
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
5
|
Żołnierkiewicz O, Rogacka D. Hyperglycemia - A culprit of podocyte pathology in the context of glycogen metabolism. Arch Biochem Biophys 2024; 753:109927. [PMID: 38350532 DOI: 10.1016/j.abb.2024.109927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Prolonged disruption in the balance of glucose can result in metabolic disorders. The kidneys play a significant role in regulating blood glucose levels. However, when exposed to chronic hyperglycemia, the kidneys' ability to handle glucose metabolism may be impaired, leading to an accumulation of glycogen. Earlier studies have shown that there can be a significant increase in glucose storage in the form of glycogen in the kidneys in diabetes. Podocytes play a crucial role in maintaining the integrity of filtration barrier. In diabetes, exposure to elevated glucose levels can lead to significant metabolic and structural changes in podocytes, contributing to kidney damage and the development of diabetic kidney disease. The accumulation of glycogen in podocytes is not a well-established phenomenon. However, a recent study has demonstrated the presence of glycogen granules in podocytes. This review delves into the intricate connections between hyperglycemia and glycogen metabolism within the context of the kidney, with special emphasis on podocytes. The aberrant storage of glycogen has the potential to detrimentally impact podocyte functionality and perturb their structural integrity. This review provides a comprehensive analysis of the alterations in cellular signaling pathways that may potentially lead to glycogen overproduction in podocytes.
Collapse
Affiliation(s)
- Olga Żołnierkiewicz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
6
|
Vu Nguyen D, Muanprasat C, Kaewin S, Hengphasatporn K, Shigeta Y, Rungrotmongkol T, Chavasiri W. Synthesis and biological evaluation of 2'-hydroxychalcone derivatives as AMPK activators. Bioorg Chem 2024; 143:107048. [PMID: 38141328 DOI: 10.1016/j.bioorg.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
A series of 2'-hydroxychalcone derivatives with various substituents on B-ring were synthesized and evaluated for AMP-activated protein kinase (AMPK) activation activity in podocyte cells. The results displayed that hydroxy, methoxy and methylenedioxy groups on B-ring could enhance the activitiy better than O-saturated alkyl, O-unsaturated alkyl or other alkoxy groups. Compounds 27 and 29 possess the highest fold change of 2.48 and 2.73, respectively, which were higher than those of reference compound (8) (1.28) and metformin (1.88). Compounds 27 and 29 were then subjected to a concentration-response study to obtain the EC50 values of 2.0 and 4.8 µM, respectively and MTT assays also showed that cell viability was not influenced by the exposure of podocytes to compounds 27 and 29 at concentrations up to 50 μM. In addition, compound 27 was proved to activate AMPK via calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-dependent pathway without affecting intracellular calcium levels. The computational study showed that the potent compounds exhibited stronger ligand-binding strength to CaMKKβ, particularly compounds 27 (-8.4 kcal/mol) and 29 (-8.0 kcal/mol), compared to compound 8 (-7.5 kcal/mol). Fragment molecular orbital (FMO) calculation demonstrated that compound 27 was superior to compound 29 due to the presence of methyl group, which amplified the binding by hydrophobic interactions. Therefore, compound 27 would represent a promising AMPK activator for further investigation of the treatment of diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Duy Vu Nguyen
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Suchada Kaewin
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Rajathevi, Bangkok, 10400, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Bioinformatics and Computational Biology Program, Graduated School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Bohovyk R, Khedr S, Levchenko V, Stefanenko M, Semenikhina M, Kravtsova O, Isaeva E, Geurts AM, Klemens CA, Palygin O, Staruschenko A. Protease-Activated Receptor 1-Mediated Damage of Podocytes in Diabetic Nephropathy. Diabetes 2023; 72:1795-1808. [PMID: 37722138 PMCID: PMC10658073 DOI: 10.2337/db23-0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
There is clinical evidence that increased urinary serine proteases are associated with the disease severity in the setting of diabetic nephropathy (DN). Elevation of serine proteases may mediate [Ca2+]i dynamics in podocytes through the protease-activated receptors (PARs) pathway, including associated activation of nonspecific cation channels. Cultured human podocytes and freshly isolated glomeruli were used for fluorescence and immunohistochemistry stainings, calcium imaging, Western blot analysis, scanning ion conductance microscopy, and patch clamp analysis. Goto-Kakizaki, Wistar, type 2 DN (T2DN), and a novel PAR1 knockout on T2DN rat background rats were used to test the importance of PAR1-mediated signaling in DN settings. We found that PAR1 activation increases [Ca2+]i via TRPC6 channels. Both human cultured podocytes exposed to high glucose and podocytes from freshly isolated glomeruli of T2DN rats had increased PAR1-mediated [Ca2+]i compared with controls. Imaging experiments revealed that PAR1 activation plays a role in podocyte morphological changes. T2DN rats exhibited a significantly higher response to thrombin and urokinase. Moreover, the plasma concentration of thrombin in T2DN rats was significantly elevated compared with Wistar rats. T2DNPar1-/- rats were embryonically lethal. T2DNPar1+/- rats had a significant decrease in glomerular damage associated with DN lesions. Overall, these data provide evidence that, during the development of DN, elevated levels of serine proteases promote an excessive [Ca2+]i influx in podocytes through PAR1-TRPC6 signaling, ultimately leading to podocyte apoptosis, the development of albuminuria, and glomeruli damage. ARTICLE HIGHLIGHTS Increased urinary serine proteases are associated with diabetic nephropathy. During the development of diabetic nephropathy in type 2 diabetes, the elevation of serine proteases could overstimulate protease-activated receptor 1 (PAR1). PAR1 signaling is involved in the development of DN via TRPC6-mediated intracellular calcium signaling. This study provides fundamental knowledge that can be used to develop efficient therapeutic approaches targeting serine proteases or corresponding PAR pathways to prevent or slow the progression of diabetes-associated kidney diseases.
Collapse
Affiliation(s)
- Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Sherif Khedr
- Department of Physiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| |
Collapse
|
8
|
Rachubik P, Rogacka D, Audzeyenka I, Typiak M, Wysocka M, Szrejder M, Lesner A, Piwkowska A. Role of lysosomes in insulin signaling and glucose uptake in cultured rat podocytes. Biochem Biophys Res Commun 2023; 679:145-159. [PMID: 37696068 DOI: 10.1016/j.bbrc.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Podocytes are sensitive to insulin, which governs the functional and structural integrity of podocytes that are essential for proper function of the glomerular filtration barrier. Lysosomes are acidic organelles that are implicated in regulation of the insulin signaling pathway. Cathepsin D (CTPD) and lysosome-associated membrane protein 1 (LAMP1) are major lysosomal proteins that reflect the functional state of lysosomes. However, the effect of insulin on lysosome activity and role of lysosomes in the regulation of insulin-dependent glucose uptake in podocytes are unknown. Our studies showed that the short-term incubation of podocytes with insulin decreased LAMP1 and CTPD mRNA levels. Insulin and bafilomycin A1 reduced both the amounts of LAMP1 and CTPD proteins and activity of CTPD, which were associated with a decrease in the fluorescence intensity of lysosomes that were labeled with LysoTracker. Bafilomycin A1 inhibited insulin-dependent endocytosis of the insulin receptor and increased the amounts of the insulin receptor and glucose transporter 4 on the cell surface of podocytes. Bafilomycin A1 also inhibited insulin-dependent glucose uptake despite an increase in the amount of glucose transporter 4 in the plasma membrane of podocytes. These results suggest that lysosomes are signaling hubs that may be involved in the coupling of insulin signaling with the regulation of glucose uptake in podocytes. The dysregulation of this mechanism can lead to the dysfunction of podocytes and development of insulin resistance.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Marlena Typiak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59 St, Gdansk, 80-308, Poland.
| | - Magdalena Wysocka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St, Gdansk, 80-308, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St, Gdansk, 80-308, Poland.
| |
Collapse
|
9
|
Kaewin S, Poolsri W, Korkut GG, Patrakka J, Aiebchun T, Rungrotmongkol T, Sungkaworn T, Sukanadi IB, Chavasiri W, Muanprasat C. A sulfonamide chalcone AMPK activator ameliorates hyperglycemia and diabetic nephropathy in db/db mice. Biomed Pharmacother 2023; 165:115158. [PMID: 37473685 DOI: 10.1016/j.biopha.2023.115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus (DM), which currently lacks effective treatments. AMP-activated protein kinase (AMPK) stimulation by chalcones, a class of polyphenols abundantly found in plants, is proposed as a promising therapeutic approach for DM. This study aimed to identify novel chalcone derivatives with improved AMPK-stimulating activity in human podocytes and evaluate their mechanisms of action as well as in vivo efficacy in a mouse model of DN. Among 133 chalcone derivatives tested, the sulfonamide chalcone derivative IP-004 was identified as the most potent AMPK activator in human podocytes. Western blot analyses, intracellular calcium measurements and molecular docking simulation indicated that IP-004 activated AMPK by mechanisms involving direct binding at allosteric site of calcium-dependent protein kinase kinase β (CaMKKβ) without affecting intracellular calcium levels. Interestingly, eight weeks of intraperitoneal administration of IP-004 (20 mg/kg/day) significantly decreased fasting blood glucose level, activated AMPK in the livers, muscles and glomeruli, and ameliorated albuminuria in db/db type II diabetic mice. Collectively, this study identifies a novel chalcone derivative capable of activating AMPK in vitro and in vivo and exhibiting efficacy against hyperglycemia and DN in mice. Further development of AMPK activators based on chalcone derivatives may provide an effective treatment of DN.
Collapse
Affiliation(s)
- Suchada Kaewin
- Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Wanangkan Poolsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - Gül Gizem Korkut
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jaakko Patrakka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Thitinan Aiebchun
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Titiwat Sungkaworn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand
| | - I Butu Sukanadi
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn 10540, Thailand.
| |
Collapse
|
10
|
Kleibert M, Zygmunciak P, Łakomska K, Mila K, Zgliczyński W, Mrozikiewicz-Rakowska B. Insight into the Molecular Mechanism of Diabetic Kidney Disease and the Role of Metformin in Its Pathogenesis. Int J Mol Sci 2023; 24:13038. [PMID: 37685845 PMCID: PMC10487922 DOI: 10.3390/ijms241713038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.
Collapse
Affiliation(s)
- Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemysław Zygmunciak
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Klaudia Łakomska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Klaudia Mila
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| |
Collapse
|
11
|
Rogacka D, Rachubik P, Audzeyenka I, Kulesza T, Szrejder M, Myślińska D, Angielski S, Piwkowska A. Inhibition of phosphodiesterase 5A by tadalafil improves SIRT1 expression and activity in insulin-resistant podocytes. Cell Signal 2023; 105:110622. [PMID: 36754339 DOI: 10.1016/j.cellsig.2023.110622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
A decrease in intracellular levels of 3',5'-cyclic guanosine monophosphate (cGMP) has been implicated in the progression of diabetic nephropathy. Hyperglycemia significantly inhibits cGMP-dependent pathway activity in the kidney, leading to glomerular damage and proteinuria. The enhancement of activity of this pathway that is associated with an elevation of cGMP levels may be achieved by inhibition of the cGMP specific phosphodiesterase 5A (PDE5A) using selective inhibitors, such as tadalafil. Hyperglycemia decreased the insulin responsiveness of podocytes and impaired podocyte function. These effects were associated with lower protein amounts and activity of the protein deacetylase sirtuin 1 (SIRT1) and a decrease in the phosphorylation of adenosine monophosphate-dependent protein kinase (AMPK). We found that PDE5A protein levels increased in hyperglycemia, and PDE5A downregulation improved the insulin responsiveness of podocytes with reestablished SIRT1 expression and activity. PDE5A inhibitors potentiate nitric oxide (NO)/cGMP signaling, and NO modulates the activity and expression of SIRT1. Therefore, we investigated the effects of tadalafil on SIRT1 and AMPK in the context of improving the insulin sensitivity in podocytes and podocyte function in hyperglycemia. Our study revealed that tadalafil restored SIRT1 expression and activity and activated AMPK by increasing its phosphorylation. Tadalafil also restored stimulating effect of insulin on glucose transport in podocytes with high glucose-induced insulin resistance. Additionally, tadalafil improved the function of podocytes that were exposed to high glucose concentrations. Our results display novel mechanisms involved in the pathogenesis of glomerulopathies in diabetes, which may contribute to the development of more effective treatment strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| |
Collapse
|
12
|
Rachubik P, Rogacka D, Audzeyenka I, Szrejder M, Topolewska A, Rychłowski M, Piwkowska A. The Role of PKGIα and AMPK Signaling Interplay in the Regulation of Albumin Permeability in Cultured Rat Podocytes. Int J Mol Sci 2023; 24:ijms24043952. [PMID: 36835364 PMCID: PMC9964913 DOI: 10.3390/ijms24043952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The permeability of the glomerular filtration barrier (GFB) is mainly regulated by podocytes and their foot processes. Protein kinase G type Iα (PKGIα) and adenosine monophosphate-dependent kinase (AMPK) affect the contractile apparatus of podocytes and influence the permeability of the GFB. Therefore, we studied the interplay between PKGIα and AMPK in cultured rat podocytes. The glomerular permeability to albumin and transmembrane FITC-albumin flux decreased in the presence of AMPK activators and increased in the presence of PKG activators. The knockdown of PKGIα or AMPK with small-interfering RNA (siRNA) revealed a mutual interaction between PKGIα and AMPK and influenced podocyte permeability to albumin. Moreover, PKGIα siRNA activated the AMPK-dependent signaling pathway. AMPKα2 siRNA increased basal levels of phosphorylated myosin phosphate target subunit 1 and decreased the phosphorylation of myosin light chain 2. Podocytes that were treated with AMPK or PKG activators were characterized by the different organization of actin filaments within the cell. Our findings suggest that mutual interactions between PKGIα and AMPKα2 regulate the contractile apparatus and permeability of the podocyte monolayer to albumin. Understanding this newly identified molecular mechanism in podocytes provides further insights into the pathogenesis of glomerular disease and novel therapeutic targets for glomerulopathies.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Correspondence: ; Tel.: +48-585235486
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Anna Topolewska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk, Medical University of Gdansk, Abrahama 58 St., 80-307 Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63 St., 80-308 Gdansk, Poland
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 St., 80-308 Gdansk, Poland
| |
Collapse
|
13
|
Sun H, Weidner J, Allamargot C, Piper RC, Misurac J, Nester C. Dynein-Mediated Trafficking: A New Mechanism of Diabetic Podocytopathy. KIDNEY360 2023; 4:162-176. [PMID: 36821608 PMCID: PMC10103215 DOI: 10.34067/kid.0006852022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Key Points The expression of dynein is increased in human and rodent models of diabetic nephropathy (DN), eliciting a new dynein-driven pathogenesis. Uncontrolled dynein impairs the molecular sieve of kidney by remodeling the postendocytic triage and homeostasis of nephrin. The delineation of the dynein-driven pathogenesis promises a broad spectrum of new therapeutic targets for human DN. Background Diabetic nephropathy (DN) is characterized by increased endocytosis and degradation of nephrin, a protein that comprises the molecular sieve of the glomerular filtration barrier. While nephrin internalization has been found activated in diabetes-stressed podocytes, the postinternalization trafficking steps that lead to the eventual depletion of nephrin and the development of DN are unclear. Our work on an inherited podocytopathy uncovered that dysregulated dynein could compromise nephrin trafficking, leading us to test whether and how dynein mediates the pathogenesis of DN. Methods We analyzed the transcription of dynein components in public DN databases, using the Nephroseq platform. We verified altered dynein transcription in diabetic podocytopathy by quantitative PCR. Dynein-mediated trafficking and degradation of nephrin was investigated using an in vitro nephrin trafficking model and was demonstrated in a mouse model with streptozotocin (STZ)-induced DN and in human kidney biopsy sections. Results Our transcription analysis revealed increased expression of dynein in human DN and diabetic mouse kidney, correlated significantly with the severity of hyperglycemia and DN. In diabetic podocytopathy, we observed that dynein-mediated postendocytic sorting of nephrin was upregulated, resulting in accelerated nephrin degradation and disrupted nephrin recycling. In hyperglycemia-stressed podocytes, Dynll1 , one of the most upregulated dynein components, is required for the recruitment of dynein complex that mediates the postendocytic sorting of nephrin. This was corroborated by observing enhanced Dynll1-nephrin colocalization in podocytes of diabetic patients, as well as dynein-mediated trafficking and degradation of nephrin in STZ-induced diabetic mice with hyperglycemia. Knockdown of Dynll1 attenuated lysosomal degradation of nephrin and promoted its recycling, suggesting the essential role of Dynll1 in dynein-mediated mistrafficking. Conclusions Our studies show that hyperglycemia stimulates dynein-mediated trafficking of nephrin to lysosomes by inducing its expression. The decoding of dynein-driven pathogenesis of diabetic podocytopathy offers a spectrum of new dynein-related therapeutic targets for DN.
Collapse
Affiliation(s)
- Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jillian Weidner
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Jason Misurac
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Carla Nester
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
14
|
Rogacka D, Rachubik P, Audzeyenka I, Szrejder M, Kulesza T, Myślińska D, Angielski S, Piwkowska A. Enhancement of cGMP-dependent pathway activity ameliorates hyperglycemia-induced decrease in SIRT1-AMPK activity in podocytes: Impact on glucose uptake and podocyte function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119362. [PMID: 36152759 DOI: 10.1016/j.bbamcr.2022.119362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyperglycemia significantly decreases 3',5'-cyclic guanosine monophosphate (cGMP)-dependent pathway activity in the kidney. A well-characterized downstream signaling effector of cGMP is cGMP-dependent protein kinase G (PKG), exerting a wide range of downstream effects, including vasodilation and vascular smooth muscle cells relaxation. In podocytes that are exposed to high glucose concentrations, crosstalk between the protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) decreased, attenuating insulin responsiveness and impairing podocyte function. The present study examined the effect of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk in podocytes under hyperglycemic conditions. We found that enhancing cGMP-dependent pathway activity using a cGMP analog was associated with increases in SIRT1 protein levels and activity, with a concomitant increase in the degree of AMPK phosphorylation. The beneficial effects of enhancing cGMP-dependent pathway activity on SIRT1-AMPK crosstalk also included improvements in podocyte function. Based on our findings, we postulate an important role for SIRT1-AMPK crosstalk in the regulation of albumin permeability in hyperglycemia that is strongly associated with activity of the cGMP-dependent pathway.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
15
|
Audzeyenka I, Rachubik P, Typiak M, Kulesza T, Topolewska A, Rogacka D, Angielski S, Saleem MA, Piwkowska A. Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes. Exp Cell Res 2021; 407:112758. [PMID: 34437881 DOI: 10.1016/j.yexcr.2021.112758] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
Podocytes constitute the outer layer of the renal glomerular filtration barrier. Their energy requirements strongly depend on efficient oxidative respiration, which is tightly connected with mitochondrial dynamics. We hypothesized that hyperglycemia modulates energy metabolism in glomeruli and podocytes and contributes to the development of diabetic kidney disease. We found that oxygen consumption rates were severely reduced in glomeruli from diabetic rats and in human podocytes that were cultured in high glucose concentration (30 mM; HG). In these models, all of the mitochondrial respiratory parameters, including basal and maximal respiration, ATP production, and spare respiratory capacity, were significantly decreased. Podocytes that were treated with HG showed a fragmented mitochondrial network, together with a decrease in expression of the mitochondrial fusion markers MFN1, MFN2, and OPA1, and an increase in the activity of the fission marker DRP1. We showed that markers of mitochondrial biogenesis, such as PGC-1α and TFAM, decreased in HG-treated podocytes. Moreover, PINK1/parkin-dependent mitophagy was inhibited in these cells. These results provide evidence that hyperglycemia impairs mitochondrial dynamics and turnover, which may underlie the remarkable deterioration of mitochondrial respiration parameters in glomeruli and podocytes.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Anna Topolewska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| |
Collapse
|
16
|
Rogacka D. Insulin resistance in glomerular podocytes: Potential mechanisms of induction. Arch Biochem Biophys 2021; 710:109005. [PMID: 34371008 DOI: 10.1016/j.abb.2021.109005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
Glomerular podocytes are a target for the actions of insulin. Accumulating evidence indicates that exposure to nutrient overload induces insulin resistance in these cells, manifested by abolition of the stimulatory effect of insulin on glucose uptake. Numerous recent studies have investigated potential mechanisms of the induction of insulin resistance in podocytes. High glucose concentrations stimulated reactive oxygen species production through NADPH oxidase activation, decreased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and reduced deacetylase sirtuin 1 (SIRT1) protein levels and activity. Calcium signaling involving transient receptor potential cation channel C, member 6 (TRPC6) also was demonstrated to play an essential role in the regulation of insulin-dependent signaling and glucose uptake in podocytes. Furthermore, podocytes exposed to diabetic environment, with elevated insulin levels become insulin resistant as a result of degradation of insulin receptor (IR), resulting in attenuation of insulin signaling responsiveness. Also elevated levels of palmitic acid appear to be an important factor and contributor to podocytes insulin resistance. This review summarizes cellular and molecular alterations that contribute to the development of insulin resistance in glomerular podocytes.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
17
|
Rogacka D, Piwkowska A. Beneficial effects of metformin on glomerular podocytes in diabetes. Biochem Pharmacol 2021; 192:114687. [PMID: 34274355 DOI: 10.1016/j.bcp.2021.114687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/15/2023]
Abstract
Podocytes and their foot processes form an important cellular layer of the glomerular barrier involved in regulating glomerular permeability. Disturbances in podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction of podocyte foot processes forming a slit diaphragm is a common feature of proteinuria. Metformin is an oral antidiabetic agent of the biguanide class that is widely recommended for the treatment of high blood glucose in patients with type 2 diabetes mellitus. In addition to lowering glucose, several recent studies have reported potential beneficial effects of metformin on diabetic kidney function. Furthermore, a key molecule of the antidiabetic mechanism of action of metformin is adenosine 5'-monophospate-activated protein kinase (AMPK), as the metformin-induced activation of AMPK is well documented. The present review summarizes current knowledge on the protective effects of metformin against pathological changes in podocytes that are induced by hyperglycemia.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| |
Collapse
|
18
|
Rogacka D, Audzeyenka I, Rachubik P, Szrejder M, Typiak M, Angielski S, Piwkowska A. Involvement of nitric oxide synthase/nitric oxide pathway in the regulation of SIRT1-AMPK crosstalk in podocytes: Impact on glucose uptake. Arch Biochem Biophys 2021; 709:108985. [PMID: 34252390 DOI: 10.1016/j.abb.2021.108985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023]
Abstract
The protein deacetylase sirtuin 1 (SIRT1) and adenosine monophosphate-dependent protein kinase (AMPK) play important roles in the development of insulin resistance. In glomerular podocytes, crosstalk between these two enzymes may be altered under hyperglycemic conditions. SIRT1 protein levels and activity and AMPK phosphorylation decrease under hyperglycemic conditions, with concomitant inhibition of the effect of insulin on glucose uptake into these cells. Nitric oxide (NO)-dependent regulatory signaling pathways have been shown to be downregulated under diabetic conditions. The present study examined the involvement of the NO synthase (NOS)/NO pathway in the regulation of SIRT1-AMPK signaling and glucose uptake in podocytes. We examined the effects of NOS/NO pathway alterations on SIRT1/AMPK signaling and glucose uptake using pharmacological tools and a small-interfering transfection approach. We also examined the ability of the NOS/NO pathway to protect podocytes against high glucose-induced alterations of SIRT1/AMPK signaling and insulin-dependent glucose uptake. Inhibition of the NOS/NO pathway reduced SIRT1 protein levels and activity, leading to a decrease in AMPK phosphorylation and blockade of the effect of insulin on glucose uptake. Treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) prevented high glucose-induced decreases in SIRT1 and AMPK activity and increased GLUT4 protein expression, thereby improving glucose uptake in podocytes. These findings suggest that inhibition of the NOS/NO pathway may result in alterations of the effects of insulin on glucose uptake in podocytes. In turn, the enhancement of NOS/NO pathway activity may prevent these deleterious effects of high glucose concentrations, thus bidirectionally stimulating the SIRT1-AMPK reciprocal activation loop.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
19
|
Wang L, Wang Z, Yang Z, Yang K, Yang H. Study of the Active Components and Molecular Mechanism of Tripterygium wilfordii in the Treatment of Diabetic Nephropathy. Front Mol Biosci 2021; 8:664416. [PMID: 34164430 PMCID: PMC8215273 DOI: 10.3389/fmolb.2021.664416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
We aimed to explore the active ingredients and molecular mechanism of Tripterygium wilfordii (TW) in the treatment of diabetic nephropathy (DN) through network pharmacology and molecular biology. First, the active ingredients and potential targets of TW were obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and related literature materials, and Cytoscape 3.7.2 software was used to construct the active ingredient-target network diagram of TW. Second, the target set of DN was obtained through the disease database, and the potential targets of TW in the treatment of DN were screened through a Venn diagram. A protein interaction network diagram (PPI) was constructed with the help of the String platform and Cytoscape 3.7.2. Third, the ClueGO plug-in tool was used to enrich the GO biological process and the KEGG metabolic pathway. Finally, molecular docking experiments and cell pathway analyses were performed. As a result, a total of 52 active ingredients of TW were screened, and 141 predicted targets and 49 target genes related to DN were identified. The biological process of GO is mediated mainly through the regulation of oxygen metabolism, endothelial cell proliferation, acute inflammation, apoptotic signal transduction pathway, fibroblast proliferation, positive regulation of cyclase activity, adipocyte differentiation and other biological processes. KEGG enrichment analysis showed that the main pathways involved were AGE-RAGE, vascular endothelial growth factor, HIF-1, IL-17, relaxin signalling pathway, TNF, Fc epsilon RI, insulin resistance and other signaling pathways. It can be concluded that TW may treat DN by reducing inflammation, reducing antioxidative stress, regulating immunity, improving vascular disease, reducing insulin resistance, delaying renal fibrosis, repairing podocytes, and reducing cell apoptosis, among others, with multicomponent, multitarget and multisystem characteristics.
Collapse
Affiliation(s)
- Lin Wang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheyi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Graduate School, First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Wang Q, Zhao B, Zhang J, Sun J, Wang S, Zhang X, Xu Y, Wang R. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes. J Biochem Mol Toxicol 2021; 35:e22797. [PMID: 33957017 DOI: 10.1002/jbt.22797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN) is becoming a research hotspot in recent years because the prevalence is high and the prognosis is poor. Lipid accumulation in podocytes induced by hyperglycemia has been shown to be a driving mechanism underlying the development of DN. However, the mechanism of lipotoxicity remains unclear. Increasing evidence shows that acetyl-CoA carboxylase 2 (ACC2) plays a crucial role in the metabolism of fatty acid, but its effect in podocyte injury of DN is still unclear. In this study, we investigated whether ACC2 could be a therapeutic target of lipid deposition induced by hyperglycemia in the human podocytes. Our results showed that high glucose (HG) triggered significant lipid deposition with a reduced β-oxidation rate. It also contributed to the downregulation of phosphorylated ACC2 (p-ACC2), which is an inactive form of ACC2. Knockdown of ACC2 by sh-RNA reduced lipid deposition induced by HG. Additionally, ACC2-shRNA restored the expression of glucose transporter 4 (GLUT4) on the cell surface, which was downregulated in HG and normalized in the insulin signaling pathway. We verified that ACC2-shRNA alleviated cell injury, apoptosis, and restored the cytoskeleton disturbed by HG. Mechanistically, SIRT1/PGC-1α is close related to the insulin metabolism pathway. ACC2-shRNA could restore the expression of SIRT1/PGC-1α, which was downregulated in HG. Rescue experiment revealed that inhibition of SIRT1 by EX-527 counteracted the effect of ACC2-shRNA. Taken together, our data suggest that podocyte injury mediated by HG-induced insulin resistance and lipotoxicity could be alleviated by ACC2 inhibition via SIRT1/PGC-1α.
Collapse
Affiliation(s)
- Qinglian Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingshu Sun
- Department of Nephrology, Weifang people's hospital, Weifang, Shandong, China
| | - Simeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
21
|
Kulesza T, Piwkowska A. The impact of type III sodium-dependent phosphate transporters (Pit 1 and Pit 2) on podocyte and kidney function. J Cell Physiol 2021; 236:7176-7185. [PMID: 33738792 DOI: 10.1002/jcp.30368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023]
Abstract
The sodium-dependent phosphate transporters Pit 1 and Pit 2 belong to the solute carrier 20 (SLC20) family of membrane proteins. They are ubiquitously distributed in the human body. Their crucial function is the intracellular transport of inorganic phosphate (Pi) in the form of H2 PO4 - . They are one of the main elements in maintaining physiological phosphate homeostasis. Recent data have emerged that indicate novel roles of Pit 1 and Pit 2 proteins besides the well-known function of Pi transporters. These membrane proteins are believed to be precise phosphate sensors that mediate Pi-dependent intracellular signaling. They are also involved in insulin signaling and influence cellular insulin sensitivity. In diseases that are associated with hyperphosphatemia, such as diabetes and chronic kidney disease (CKD), disturbances in the function of Pit 1 and Pit 2 are observed. Phosphate transporters from the SLC20 family participate in the calcification of soft tissues, mainly blood vessels, during the course of CKD. The glomerulus and podocytes therein can also be a target of pathological calcification that damages these structures. A few studies have demonstrated the development of Pi-dependent podocyte injury that is mediated by Pit 1 and Pit 2. This paper discusses the role of Pit 1 and Pit 2 proteins in podocyte function, mainly in the context of the development of pathological calcification that disrupts permeability of the renal filtration barrier. We also describe the mechanisms that may contribute to podocyte damage by Pit 1 and Pit 2.
Collapse
Affiliation(s)
- Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| |
Collapse
|
22
|
Lehtonen S. Metformin Protects against Podocyte Injury in Diabetic Kidney Disease. Pharmaceuticals (Basel) 2020; 13:ph13120452. [PMID: 33321755 PMCID: PMC7764076 DOI: 10.3390/ph13120452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin is the most commonly prescribed drug for treating type 2 diabetes mellitus (T2D). Its mechanisms of action have been under extensive investigation, revealing that it has multiple cellular targets, either direct or indirect ones, via which it regulates numerous cellular pathways. Diabetic kidney disease (DKD), the serious complication of T2D, develops in up to 50% of the individuals with T2D. Various mechanisms contribute to the development of DKD, including hyperglycaemia, dyslipidemia, oxidative stress, chronic low-grade inflammation, altered autophagic activity and insulin resistance, among others. Metformin has been shown to affect these pathways, and thus, it could slow down or prevent the progression of DKD. Despite several animal studies demonstrating the renoprotective effects of metformin, there is no concrete evidence in clinical settings. This review summarizes the renoprotective effects of metformin in experimental settings. Special emphasis is on the effects of metformin on podocytes, the glomerular epithelial cells that are central in maintaining the glomerular ultrafiltration function.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism and Department of Pathology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
23
|
Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21217994. [PMID: 33121167 PMCID: PMC7663488 DOI: 10.3390/ijms21217994] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 9.1% of the global population and is a significant public health problem associated with increased morbidity and mortality. CKD is associated with highly prevalent physiological and metabolic disturbances such as hypertension, obesity, insulin resistance, cardiovascular disease, and aging, which are also risk factors for CKD pathogenesis and progression. Podocytes and proximal tubular cells of the kidney strongly express AMP-activated protein kinase (AMPK). AMPK plays essential roles in glucose and lipid metabolism, cell survival, growth, and inflammation. Thus, metabolic disease-induced renal diseases like obesity-related and diabetic chronic kidney disease demonstrate dysregulated AMPK in the kidney. Activating AMPK ameliorates the pathological and phenotypical features of both diseases. As a metabolic sensor, AMPK regulates active tubular transport and helps renal cells to survive low energy states. AMPK also exerts a key role in mitochondrial homeostasis and is known to regulate autophagy in mammalian cells. While the nutrient-sensing role of AMPK is critical in determining the fate of renal cells, the role of AMPK in kidney autophagy and mitochondrial quality control leading to pathology in metabolic disease-related CKD is not very clear and needs further investigation. This review highlights the crucial role of AMPK in renal cell dysfunction associated with metabolic diseases and aims to expand therapeutic strategies by understanding the molecular and cellular processes underlying CKD.
Collapse
|
24
|
Kong G, Zhou L, Serger E, Palmisano I, De Virgiliis F, Hutson TH, Mclachlan E, Freiwald A, La Montanara P, Shkura K, Puttagunta R, Di Giovanni S. AMPK controls the axonal regenerative ability of dorsal root ganglia sensory neurons after spinal cord injury. Nat Metab 2020; 2:918-933. [PMID: 32778834 DOI: 10.1038/s42255-020-0252-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
Regeneration after injury occurs in axons that lie in the peripheral nervous system but fails in the central nervous system, thereby limiting functional recovery. Differences in axonal signalling in response to injury that might underpin this differential regenerative ability are poorly characterized. Combining axoplasmic proteomics from peripheral sciatic or central projecting dorsal root ganglion (DRG) axons with cell body RNA-seq, we uncover injury-dependent signalling pathways that are uniquely represented in peripheral versus central projecting sciatic DRG axons. We identify AMPK as a crucial regulator of axonal regenerative signalling that is specifically downregulated in injured peripheral, but not central, axons. We find that AMPK in DRG interacts with the 26S proteasome and its CaMKIIα-dependent regulatory subunit PSMC5 to promote AMPKα proteasomal degradation following sciatic axotomy. Conditional deletion of AMPKα1 promotes multiple regenerative signalling pathways after central axonal injury and stimulates robust axonal growth across the spinal cord injury site, suggesting inhibition of AMPK as a therapeutic strategy to enhance regeneration following spinal cord injury.
Collapse
Affiliation(s)
- Guiping Kong
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Luming Zhou
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School for Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Elisabeth Serger
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Ilaria Palmisano
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Francesco De Virgiliis
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Thomas H Hutson
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Eilidh Mclachlan
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Anja Freiwald
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Paolo La Montanara
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Kirill Shkura
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Radhika Puttagunta
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Rogacka D, Audzeyenka I, Piwkowska A. Regulation of podocytes function by AMP-activated protein kinase. Arch Biochem Biophys 2020; 692:108541. [PMID: 32781053 DOI: 10.1016/j.abb.2020.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
Podocytes are unique, highly specialized, terminally differentiated cells that form an essential, integral part of the glomerular filter. These cells limit the outside border of the glomerular basement membrane, forming a tight barrier that prevents significant protein loss from the capillary space. The slit diaphragm formed by podocytes is crucial for maintaining glomerular integrity and function. They are the target of injury in many glomerular diseases, including hypertension and diabetes mellitus. Accumulating studies have revealed that AMP-activated protein kinase (AMPK), an essential cellular energy sensor, might play a fundamental role in regulating podocyte metabolism and function. AMPK participates in insulin signaling, therefore controls glucose uptake and podocytes insulin sensitivity. It is also involved in insulin-dependent cytoskeleton reorganization in podocytes, mediating glomerular albumin permeability. AMPK plays an important role in the regulation of autophagy/apoptosis processes, which influence podocytes viability. The present review aimed to highlight the molecular mechanisms associated with AMPK that are involved in the regulation of podocyte function in health and disease states.
Collapse
Affiliation(s)
- Dorota Rogacka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Irena Audzeyenka
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Wita Stwosza 63, 80-308, Gdansk, Poland; University of Gdansk, Faculty of Chemistry, Department of Molecular Biotechnology, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
26
|
Yuan X, Ding L, Diao J, Wen S, Xu C, Zhou L, Du A. PolyMet-HA nanocomplexs regulates glucose uptake by inhibiting SHIP2 activity. J Biomater Appl 2020; 35:849-856. [PMID: 32741295 DOI: 10.1177/0885328220947343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metformin, the first-line drug to treat type 2 diabetes, inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. The major adverse effects caused by metformin were lactic acidosis and gastrointestinal discomfort. Therefore, there is need to develop a strategy with excellent permeability and appropriate retention effects.In this study, we synthesized a simple and biocompatible PolyMetformin (denoted as PolyMet) through conjugation of PEI1.8K with dicyandiamide, and then formed PolyMet-hyaluronic acid (HA) nanocomplexs by electrostatic self-assembly of the polycationic PolyMet and polyanionic hyaluronic acid (HA). Similar to metformin, the PolyMet-HA nanocomplexs could reduce the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. In SHIP2-overexpressing myotubes, PolyMet-HA nanocomplexes ameliorated glucose uptake by downregulating glucose transporter 4 endocytosis. PolyMet-HA nanocomplexes also could restore Akt signaling and protect the podocyte from apoptosis induced by SHIP2 overexpression. In essence, the PolyMet-HA nanocomplexes act similarly to metformin and increase glucose uptake, and maybe have a potential role in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Xinlu Yuan
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ling Ding
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Jianjun Diao
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Song Wen
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Chenglin Xu
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ligang Zhou
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Anqing Du
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
27
|
Audzeyenka I, Rachubik P, Rogacka D, Typiak M, Kulesza T, Angielski S, Rychłowski M, Wysocka M, Gruba N, Lesner A, Saleem MA, Piwkowska A. Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118723. [PMID: 32302668 DOI: 10.1016/j.bbamcr.2020.118723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk - Medical University of Gdansk, Poland
| | | | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
28
|
Metformin reduces TRPC6 expression through AMPK activation and modulates cytoskeleton dynamics in podocytes under diabetic conditions. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165610. [DOI: 10.1016/j.bbadis.2019.165610] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
|
29
|
Shati AA. Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway. J Food Biochem 2020; 44:e13158. [PMID: 32030786 DOI: 10.1111/jfbc.13158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
This study investigated if the nephroprotective effect of Salidroside T1DM rats involves activation of AMPK/SIRT1. Rats were divided into control or T1DM and treated with vehicle or Salidroside (100 mg/kg) for 56 days. Mesangial cells were cultured in LG or HG media with or without Salidroside (100 µM/L) for 24 hr. Also, HG + Salidroside-treated cells were pre-incubated with EX-527 or compound C (CC) for 1 hr. With reducing glucose levels, Salidroside improved kidney structure/function in the T1DM rat. It also increased GSH and Bcl-2 levels in control and T1DM rats and inhibited ROS, increased activation of AMPK and nuclear SIRT1, and lowered acetylation of P53 and FOXO-1 in control and T1DM rats and in LG and HG-treated cells. These effects were abolished by EX-527 and CC. Also, CC decreased the nuclear levels of SIRT1. In conclusion, Salidroside attenuates DN in T1DM rats by activation of AMPK and subsequently, SIRT1. PRACTICAL APPLICATIONS: This animal and pre-clinical study shows that Salidroside is able to ameliorate DN in T1DM-induced rats and showed that it mainly acts by a hypoglycemic effect and activation of renal AMPK/SIRT1 axis. Given the wide tissue stimulatory effect of AMPK on peripheral glucose utilization, lipogenesis, and other cell signaling pathways, these data are encouraging to investigate the anti-diabetic effect of glycoside in more clinical trials.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, Science College, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
30
|
Wen F, Zhuge W, Wang J, Lu X, You R, Liu L, Zhuge Q, Ding S. Oridonin prevents insulin resistance-mediated cognitive disorder through PTEN/Akt pathway and autophagy in minimal hepatic encephalopathy. J Cell Mol Med 2019; 24:61-78. [PMID: 31568638 PMCID: PMC6933371 DOI: 10.1111/jcmm.14546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Minimal hepatic encephalopathy (MHE) was characterized for cognitive dysfunction. Insulin resistance (IR) has been identified to be correlated with the pathogenesis of MHE. Oridonin (Ori) is an active terpenoid, which has been reported to rescue synaptic loss and restore insulin sensitivity. In this study, we found that intraperitoneal injection of Ori rescued IR, reduced the autophagosome formation and synaptic loss and improved cognitive dysfunction in MHE rats. Moreover, in insulin‐resistant PC12 cells and N2a cells, we found that Ori blocked IR‐induced synaptic deficits via the down‐regulation of PTEN, the phosphorylation of Akt and the inhibition of autophagy. Taken together, these results suggested that Ori displays therapeutic efficacy towards memory deficits via improvement of IR in MHE and represents a novel bioactive therapeutic agent for treating MHE.
Collapse
Affiliation(s)
- Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weishan Zhuge
- Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoai Lu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruimin You
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Liu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Neurosurgery Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Regmi A, Liu G, Zhong X, Hu S, Ma R, Gou L, Zafar MI, Chen L. Evaluation of Serum microRNAs in Patients with Diabetic Kidney Disease: A Nested Case-Controlled Study and Bioinformatics Analysis. Med Sci Monit 2019; 25:1699-1708. [PMID: 30835718 PMCID: PMC6413564 DOI: 10.12659/msm.913265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) can result in end-stage kidney disease and renal failure. This study aimed to examine the expression of serum microRNAs (miRNAs), miR-20a, miR-99b, miR-122-5p, and miR-486-5p, and to use bioinformatics data to investigate the pathways involved in DKD. MATERIAL AND METHODS Serum miRNAs were obtained from 25 healthy volunteers, 50 patients with non-complicated type 2 diabetes mellitus (T2DM), and 42 patients with T2DM and DKD. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of serum miRNAs. Specificity and sensitivity of the association between serum miRNAs in DKD were evaluated by analysis of the receiver operating characteristic (ROC) area under the curve (AUC). Serum miRNAs and clinical parameters of the patients were compared. Bioinformatics data analysis accessed the miRNA targets involved in the pathways related to the pathogenesis of DKD. RESULTS Serum levels of miR-99b and miR-122 significantly increased, and mir-20a and miR-486 decreased in the DKD group compared with healthy controls. Serum levels of miR-20a, miR-99b, miR-486-5p, and miR-122-5p were significantly correlated with albuminuria, estimated glomerular filtration rate (eGFR), blood glucose and lipid profiles. ROC curve analysis showed that diagnostic accuracy of serum levels of miR-99b for DKD was superior to miR-486-5p, miR-122-5p, and miR-20a, resulting in AUCs of 0.895, 0.853, 0.80, and 0.697, respectively. These four miRNAs regulate several genes affecting oxidative stress, inflammation, and apoptosis. CONCLUSIONS Serum miR-99b, miR-486-5p, miR-122-5p, and miR-20a were differentially expressed in patients with T2DM and DKD and should be evaluated further as potential biomarkers for DKD.
Collapse
Affiliation(s)
- Anita Regmi
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Geng Liu
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Xueyu Zhong
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Shengqing Hu
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Rong Ma
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Luoning Gou
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Mohammad Ishraq Zafar
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - LuLu Chen
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
32
|
Szrejder M, Piwkowska A. AMPK signalling: Implications for podocyte biology in diabetic nephropathy. Biol Cell 2019; 111:109-120. [DOI: 10.1111/boc.201800077] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Centre Polish Academy of SciencesLaboratory of Molecular and Cellular Nephrology Gdańsk Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of SciencesLaboratory of Molecular and Cellular Nephrology Gdańsk Poland
| |
Collapse
|
33
|
Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, Dash SN, Berg M, Naams JB, Hautala LC, Nisen H, Mirtti T, Groop PH, Wähälä K, Tienari J, Lehtonen S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J 2019; 33:2858-2869. [PMID: 30321069 PMCID: PMC6338644 DOI: 10.1096/fj.201800529rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Metformin, the first-line drug to treat type 2 diabetes (T2D), inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. However, the direct target and the underlying mechanisms by which metformin increases glucose uptake in peripheral tissues remain uncharacterized. Lipid phosphatase Src homology 2 domain-containing inositol-5-phosphatase 2 (SHIP2) is upregulated in diabetic rodent models and suppresses insulin signaling by reducing Akt activation, leading to insulin resistance and diminished glucose uptake. Here, we demonstrate that metformin directly binds to and reduces the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. Metformin inhibits SHIP2 in cultured cells and in skeletal muscle and kidney of db/db mice. In SHIP2-overexpressing myotubes, metformin ameliorates reduced glucose uptake by slowing down glucose transporter 4 endocytosis. SHIP2 overexpression reduces Akt activity and enhances podocyte apoptosis, and both are restored to normal levels by metformin. SHIP2 activity is elevated in glomeruli of patients with T2D receiving nonmetformin medication, but not in patients receiving metformin, compared with people without diabetes. Furthermore, podocyte loss in kidneys of metformin-treated T2D patients is reduced compared with patients receiving nonmetformin medication. Our data unravel a novel molecular mechanism by which metformin enhances glucose uptake and acts renoprotectively by reducing SHIP2 activity.-Polianskyte-Prause, Z., Tolvanen, T. A., Lindfors, S., Dumont, V., Van, M., Wang, H., Dash, S. N., Berg, M., Naams, J.-B., Hautala, L. C., Nisen, H., Mirtti, T., Groop, P.-H., Wähälä, K., Tienari, J., Lehtonen, S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Kidney Diseases/prevention & control
- Male
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Podocytes/cytology
- Podocytes/drug effects
- Podocytes/metabolism
- Rats
Collapse
Affiliation(s)
| | | | - Sonja Lindfors
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Vincent Dumont
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mervi Van
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hong Wang
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mika Berg
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Laura C. Hautala
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Kristiina Wähälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Hyvinkää, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Shin EJ, Choi HK, Sung MJ, Park JH, Chung MY, Chung S, Hwang JT. Anti-tumour effects of beta-sitosterol are mediated by AMPK/PTEN/HSP90 axis in AGS human gastric adenocarcinoma cells and xenograft mouse models. Biochem Pharmacol 2018; 152:60-70. [PMID: 29559312 DOI: 10.1016/j.bcp.2018.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/09/2018] [Indexed: 01/08/2023]
Abstract
We investigated the anti-cancer effects of beta-sitosterol (BS), a plant-derived sterol in AGS human gastric adenocarcinoma cells and xenograft mouse models. BS significantly reduced cell viability by inducing apoptosis in AGS adenocarcinoma cells. This was accompanied by the formation of apoptotic bodies, as detected by Annexin V, caspase 3/7 activity, and MitoPotential assay. BS stimulated phosphatase and tensin homolog (PTEN) and phospho-AMP-activated protein kinase (p-AMPK) expression. Pharmacological inhibitors or siRNA were used to further analyse the relationship between the two proteins. AMPK was found to represent a likely upstream regulator of PTEN. Additionally, two-dimensional gel electrophoresis was used to identify related proteins in the treatment of BS. The decrease of Hsp90 protein by BS was observed. Induction of PTEN protein and reduction of Hsp90 was mediated by AICAR, an AMPK activator, indicating that AMPK is necessary for PTEN and Hsp90 expression. Additionally, BS was found to be effective through the regulation of cancer biomarker. Furthermore, BS suppressed tumour growth without toxicity in the AGS xenograft mouse models-. Taken together, the present results demonstrate that BS exerts anti-cancer effects in AGS cells and xenograft mouse models by mediating AMPK, PTEN, and Hsp90.
Collapse
Affiliation(s)
- Eun Ju Shin
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Mi Jeong Sung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae Ho Park
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Yu Chung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Sangwon Chung
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
35
|
Wang H, Feng Z, Xie J, Wen F, Jv M, Liang T, Li J, Wang Y, Zuo Y, Li S, Li R, Li Z, Zhang B, Liang X, Liu S, Shi W, Wang W. Podocyte-specific knockin of PTEN protects kidney from hyperglycemia. Am J Physiol Renal Physiol 2018; 314:F1096-F1107. [PMID: 29361670 DOI: 10.1152/ajprenal.00575.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has proven to be downregulated in podocytes challenged with high glucose (HG), and knockout of PTEN in podocytes aggravated the progression of diabetic kidney disease (DKD). However, whether podocyte-specific knockin of PTEN protects the kidney against hyperglycemia in vivo remains unknown. The inducible podocyte-specific PTEN knockin (PPKI) mice were generated by crossing newly created transgenic loxP-stop- loxP-PTEN mice with podocin-iCreERT2 mice. Diabetes mellitus was induced in mice by intraperitoneal injection of streptozotocin at a dose of 150 mg/kg. In vitro, small interfering RNA and adenovirus interference were used to observe the role of PTEN in HG-treated podocytes. Our data demonstrated that PTEN was markedly reduced in the podocytes of patients with DKD and focal segmental glomerulosclerosis, as well as in those of db/db mice. Interestingly, podocyte-specific knockin of PTEN significantly alleviated albuminuria, mesangial matrix expansion, effacement of podocyte foot processes, and incrassation of glomerular basement membrane in diabetic PPKI mice compared with wild-type diabetic mice, whereas no alteration was observed in the level of blood glucose. The potential renal protection of overexpressed PTEN in podocytes was partly attributed with an improvement in autophagy and motility and the inhibition of apoptosis. Our results showed that podocyte-specific knockin of PTEN protected the kidney against hyperglycemia in vivo , suggesting that targeting PTEN might be a novel and promising therapeutic strategy against DKD.
Collapse
Affiliation(s)
- Huizhen Wang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Ziwei Feng
- Division of Urology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Jianteng Xie
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Feng Wen
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Menglei Jv
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Tiantian Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Jing Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yanhui Wang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Yangyang Zuo
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Sheng Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Ruizhao Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Zhilian Li
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Bin Zhang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Wei Shi
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| | - Wenjian Wang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , China
| |
Collapse
|
36
|
Rogacka D, Audzeyenka I, Rychłowski M, Rachubik P, Szrejder M, Angielski S, Piwkowska A. Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK. Biochim Biophys Acta Mol Basis Dis 2018; 1864:115-125. [DOI: 10.1016/j.bbadis.2017.10.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
|
37
|
Wasik AA, Lehtonen S. Glucose Transporters in Diabetic Kidney Disease-Friends or Foes? Front Endocrinol (Lausanne) 2018; 9:155. [PMID: 29686650 PMCID: PMC5900043 DOI: 10.3389/fendo.2018.00155] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a common cause of end-stage renal disease worldwide. DKD manifests as an increased urinary protein excretion (albuminuria). Multiple studies have shown that insulin resistance correlates with the development of albuminuria in non-diabetic and diabetic patients. There is also accumulating evidence that glomerular epithelial cells or podocytes are insulin sensitive and that insulin signaling in podocytes is essential for maintaining normal kidney function. At the cellular level, the mechanisms leading to the development of insulin resistance include mutations in the insulin receptor gene, impairments in the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, or perturbations in the trafficking of glucose transporters (GLUTs), which mediate the uptake of glucose into cells. Podocytes express several GLUTs, including GLUT1, GLUT2, GLUT3, GLUT4, and GLUT8. Of these, the most studied ones are GLUT1 and GLUT4, both shown to be insulin responsive in podocytes. In the basal state, GLUT4 is preferentially located in perinuclear and cytosolic vesicular structures and to a lesser extent at the plasma membrane. After insulin stimulation, GLUT4 is sorted into GLUT4-containing vesicles (GCVs) that translocate to the plasma membrane. GCV trafficking consists of several steps, including approaching of the GCVs to the plasma membrane, tethering, and docking, after which the lipid bilayers of the GCVs and the plasma membrane fuse, delivering GLUT4 to the cell surface for glucose uptake into the cell. Studies have revealed novel molecular regulators of the GLUT trafficking in podocytes and unraveled unexpected roles for GLUT1 and GLUT4 in the development of DKD, summarized in this review. These findings pave the way for better understanding of the mechanistic pathways associated with the development and progression of DKD and aid in the development of new treatments for this devastating disease.
Collapse
|
38
|
Rogacka D, Piwkowska A, Audzeyenka I, Angielski S, Jankowski M. SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes. Exp Cell Res 2016; 349:328-338. [DOI: 10.1016/j.yexcr.2016.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/14/2016] [Accepted: 11/05/2016] [Indexed: 11/29/2022]
|
39
|
Xu HZ, Cheng YL, Wang WN, Wu H, Zhang YY, Zang CS, Xu ZG. 12-Lipoxygenase Inhibition on Microalbuminuria in Type-1 and Type-2 Diabetes Is Associated with Changes of Glomerular Angiotensin II Type 1 Receptor Related to Insulin Resistance. Int J Mol Sci 2016; 17:ijms17050684. [PMID: 27164093 PMCID: PMC4881510 DOI: 10.3390/ijms17050684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
(1) BACKGROUND: 12-lipoxygenase (12-LO) is involved in the development of diabetic nephropathy (DN). In the present study, we investigated whether 12-LO inhibition may ameliorate type-2 DN (T2DN) by interfering with insulin resistance (IR); (2) METHODS: Rat glomerular mesangial cells, glomeruli and skeletal muscles were isolated and used in this study. Kidney histological changes were confirmed by periodic-acid Schiff staining; mRNA expression was detected by competitive reverse transcription polymerase chain reaction; and the protein level was determined by Western blot and the enzyme-linked immunosorbent assay, respectively; (3) RESULTS: The inhibition of 12-LO attenuated microalbuminuria (MAU) increases in type-2 diabetic rats, but not in type-1 diabetic rats. Infusion of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) significantly increased the expression of angiotensin II (Ang II) and Ang II type 1 receptor (AT1R), but decreased the expression of AT1R-associated protein (ATRAP) in rat glomeruli, compared to the control. An in vitro study revealed that both 12(S)-HETE and insulin upregulated AT1R expression in rat mesangial cells. In the presence of p38 mitogen-activated protein kinase (MAPK) inhibitor, SB202190, the 12(S)-HETE-induced ATRAP reduction was significantly abolished. Interestingly, 12-LO inhibition did not influence AT1R expression in type-1 diabetic rats, but significantly abolished the increased AT1R and Ang II expression in glomeruli of type-2 diabetic rats. Furthermore, the inhibition of 12-LO significantly corrected impaired insulin sensitivity and fast serum insulin level, as well as the p-AMP-activated protein kinase (AMPK) reduction in skeletal muscle of type-2 diabetic rats; (4) CONCLUSION: The inhibition of 12-LO potentially ameliorated MAU by preventing IR through the downregulation of glomerular AT1R expression in T2DN.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- Albuminuria/etiology
- Albuminuria/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/metabolism
- Down-Regulation
- Insulin Resistance
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/metabolism
- Lipoxygenase Inhibitors/pharmacology
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Hong-Zhao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yan-Li Cheng
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Wan-Ning Wang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Hao Wu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yuan-Yuan Zhang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Chong-Sen Zang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhong-Gao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
40
|
Xing L, Liu Q, Fu S, Li S, Yang L, Liu S, Hao J, Yu L, Duan H. PTEN Inhibits High Glucose-Induced Phenotypic Transition in Podocytes. J Cell Biochem 2016; 116:1776-84. [PMID: 25736988 DOI: 10.1002/jcb.25136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/06/2015] [Indexed: 12/17/2022]
Abstract
Accumulating evidence has suggested that podocytes undergo epithelial-mesenchymal transition (EMT) in diabetic nephropathy (DN). However, the underlying mechanisms of EMT in podocyte are not well understood. PI3K/Akt pathway is involved in the progression of DN. In the present study, we demonstrated that PI3K/Akt pathway was activated in podocytes exposed to high glucose conditions, accompanied by down-regulation of the podocalyxin (PCX) and nephrin expression and up-regulation of the desmin and α-smooth muscle actin (α-SMA) expression. Inhibition of PI3K/Akt pathway by chemical LY294002 or Phosphase and tensin homology deleted on chromosome ten (PTEN) prevented the phenotypic transition. These findings indicate that PTEN/PI3K/Akt pathway mediates high glucose-induced phenotypic transition in podocytes.
Collapse
Affiliation(s)
- Lingling Xing
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China.,Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| | - Shuxia Fu
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shaomei Li
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Lin Yang
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| | - Lianying Yu
- Department of Nephrology, the Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
41
|
Langer S, Kreutz R, Eisenreich A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J Nephrol 2016; 29:765-773. [PMID: 26733332 DOI: 10.1007/s40620-015-0258-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Diabetic nephropathy, which is associated with loss of human (h) podocytes (PC), is a major complication in diabetes mellitus. High-glucose modulates AMP-activated protein kinase (AMPK) signaling and cell apoptosis. Metformin has been demonstrated to reduce apoptosis and albuminuria in type 2 diabetes. Here, we examined the effect of metformin on cell apoptosis and on pro-/anti-apoptotic signaling in hPC. Expression analyses were done by real-time polymerase chain reaction and western blotting. Moreover, a functional apoptosis assay was performed in hPC. Determination of kinase activation by phosphorylation was done via immunodetection analyses and digital quantification. We found that hPC express organic cation transporter 1 which is the major uptake transporter of metformin. High-glucose reduced AMPK phosphorylation and induced mammalian target of rapamycin (mTOR) activation in podocytes, which was abolished and reversed by pre-treatment with metformin. Furthermore, metformin reduced high-glucose-induced podocytes apoptosis in a concentration-dependent manner. In summary, metformin exhibits an anti-apoptotic impact on podocytes under high-glucose conditions via activation of AMPK and inhibition of mTOR signaling. These data support a beneficial effect of metformin in diabetic nephropathy.
Collapse
Affiliation(s)
- Sebastian Langer
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Reinhold Kreutz
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Eisenreich
- Klinische Pharmakologie und Toxikologie, CC04, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
42
|
IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3224-34. [PMID: 26384875 DOI: 10.1016/j.bbamcr.2015.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/01/2015] [Accepted: 09/14/2015] [Indexed: 01/03/2023]
Abstract
Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN.
Collapse
|
43
|
Lee JH, Choi SB, Jin M, Lee JH, Han SD, Bae H, Lim I, Noh YH. Euglycemia in Diabetic Rats Leads to Reduced Liver Weight via Increased Autophagy and Apoptosis through Increased AMPK and Caspase-3 and Decreased mTOR Activities. J Diabetes Res 2015; 2015:497431. [PMID: 26060824 PMCID: PMC4427805 DOI: 10.1155/2015/497431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/11/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023] Open
Abstract
Euglycemia is the ultimate goal in diabetes care to prevent complications. However, the benefits of euglycemia in type 2 diabetes are controversial because near-euglycemic subjects show higher mortality than moderately hyperglycemic subjects. We previously reported that euglycemic-diabetic rats on calorie-control lose a critical liver weight (LW) compared with hyperglycemic rats. Here, we elucidated the molecular mechanisms underlying the loss of LW in euglycemic-diabetic rats and identified a potential risk in achieving euglycemia by calorie-control. Sprague-Dawley diabetic rats generated by subtotal-pancreatectomy were fed a calorie-controlled diet for 7 weeks to achieve euglycemia using 19 kcal% (19R) or 6 kcal% (6R) protein-containing chow or fed ad libitum (19AL). The diet in both R groups was isocaloric/kg body weight to the sham-operated group (19S). Compared with 19S and hyperglycemic 19AL, both euglycemic R groups showed lower LWs, increased autophagy, and increased AMPK and caspase-3 and decreased mTOR activities. Though degree of insulin deficiency was similar among the diabetic rats, Akt activity was lower, and PTEN activity was higher in both R groups than in 19AL whose signaling patterns were similar to 19S. In conclusion, euglycemia achieved by calorie-control is deleterious in insulin deficiency due to increased autophagy and apoptosis in the liver via AMPK and caspase-3 activation.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Biochemistry, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Soo-Bong Choi
- Department of Internal Medicine, School of Medicine, Konkuk University, Chungju Hospital, 82 Kukwondae-ro, Chungju 380-704, Republic of Korea
| | - Mingli Jin
- Department of Biochemistry, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Ju-Han Lee
- Department of Biochemistry, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Rmedica-Stem Cell, 98 Gasan Digital 2-ro, Geumcheon-gu, Seoul 153-768, Republic of Korea
| | - Sang-Don Han
- Department of Neurology, School of Medicine, Konkuk University, Chungju Hospital, 82 Kukwondae-ro, Chungju 380-704, Republic of Korea
| | - Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseouk-ro, Dongjak-gu, Seoul 156-861, Republic of Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseouk-ro, Dongjak-gu, Seoul 156-861, Republic of Korea
| | - Yun-Hee Noh
- Department of Biochemistry, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
- *Yun-Hee Noh:
| |
Collapse
|