1
|
Elgaabari A, Imatomi N, Kido H, Nakashima T, Okuda S, Manabe Y, Sawano S, Mizunoya W, Kaneko R, Tanaka S, Maeno T, Matsuyoshi Y, Seki M, Kuwakado S, Zushi K, Daneshvar N, Nakamura M, Suzuki T, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Age-related nitration/dysfunction of myogenic stem cell activator HGF. Aging Cell 2024; 23:e14041. [PMID: 37985931 PMCID: PMC10861216 DOI: 10.1111/acel.14041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).
Collapse
Affiliation(s)
- Alaa Elgaabari
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Nana Imatomi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Hirochika Kido
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Okuda
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yoshitaka Manabe
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Sakiho Tanaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yuji Matsuyoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Miyumi Seki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ronald E. Allen
- The School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
2
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
3
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
4
|
Tallon C, Sharma A, Zhang Z, Thomas AG, Ng J, Zhu X, Donoghue A, Schulte M, Joe TR, Kambhampati SP, Sharma R, Liaw K, Kannan S, Kannan RM, Slusher BS. Dendrimer-2PMPA Delays Muscle Function Loss and Denervation in a Murine Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:274-288. [PMID: 34984651 PMCID: PMC9130402 DOI: 10.1007/s13311-021-01159-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease where muscle weakness and neuromuscular junction (NMJ) denervation precede motor neuron cell death. Although acetylcholine is the canonical neurotransmitter at the mammalian NMJ synapse, glutamate has recently been identified as a critical neurotransmitter for NMJ development and maintenance. One source of glutamate is through the catabolism of N-acetyl-aspartyl-glutamate (NAAG), which is found in mM concentrations in mammalian motoneurons, where it is released upon stimulation and hydrolyzed to glutamate by the glial enzyme glutamate carboxypeptidase II (GCPII). Using the SOD1G93A model of ALS, we found an almost fourfold elevation of GCPII enzymatic activity in SOD1G93A versus WT muscle and a robust increase in GCPII expression which was specifically associated with activated macrophages infiltrating the muscle. 2-(Phosphonomethyl)pentanedioic acid (2PMPA) is a potent GCPII inhibitor which robustly blocks glutamate release from NAAG but is highly polar with limited tissue penetration. To improve this, we covalently attached 2PMPA to a hydroxyl polyamidoamine (PAMAM-G4-OH) dendrimer delivery system (D-2PMPA) which is known to target activated macrophages in affected tissues. Systemic D-2PMPA therapy (20 mg/kg 2PMPA equivalent; IP 2 × /week) was found to localize in muscle macrophages in SOD1G93A mice and completely normalize the enhanced GCPII activity. Although no changes in body weight or survival were observed, D-2PMPA significantly improved grip strength and inhibited the loss of NMJ innervation in the gastrocnemius muscles. Our finding that inhibiting elevated GCPII activity in SOD1G93A muscle can prolong muscle function and delay NMJ denervation may have early therapeutic implications for ALS patients.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Anjali Sharma
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zhi Zhang
- Center for Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Justin Ng
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Amanda Donoghue
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Michael Schulte
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tawnjerae R Joe
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Siva P Kambhampati
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rishi Sharma
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kevin Liaw
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sujatha Kannan
- Center for Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Hugo W. Moser Research Institute at Kennedy-Krieger, Inc, Baltimore, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
- Hugo W. Moser Research Institute at Kennedy-Krieger, Inc, Baltimore, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, USA.
- Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 278, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Lia A, Annese T, Fornaro M, Giannini M, D'Abbicco D, Errede M, Lorusso L, Amati A, Tampoia M, Trojano M, Virgintino D, Ribatti D, Serlenga L, Iannone F, Girolamo F. Perivascular and endomysial macrophages expressing VEGF and CXCL12 promote angiogenesis in anti-HMGCR immune-mediated necrotizing myopathy. Rheumatology (Oxford) 2021; 61:3448-3460. [PMID: 34864921 DOI: 10.1093/rheumatology/keab900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/29/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To study the phenotype of macrophage infiltrates and their role in angiogenesis in different Idiopathic Inflammatory Myopathies (IIMs). METHODS The density and distribution of the subpopulations of macrophages subsets (M1, inducible nitric oxide+, CD11c+; M2, arginase-1+), endomysial capillaries (CD31+, FLK1+), degenerating (C5b-9+), and regenerating (NCAM+) myofibers, were investigated by immunohistochemistry in human muscle samples of diagnostic biopsies from a large cohort of untreated patients (n: 81) suffering from anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR)+ Immune Mediated Necrotizing Myopathy (IMNM), anti-signal recognition particle (anti-SRP)+ IMNM, seronegative IMNM, Dermatomyositis, Polymyositis, Polymyositis with mitochondrial pathology, sporadic Inclusion Body Myositis, Scleromyositis, and anti-Synthetase Syndrome. The samples were compared with mitochondrial myopathy and control muscle samples. RESULTS Compared with the other IIMs and controls, endomysial capillary density (CD) was higher in anti-HMGCR+ IMNM, where M1 and M2 macrophages, detected by confocal microscopy, infiltrated perivascular endomysium and expressed angiogenic molecules such as VEGF-A and CXCL12. These angiogenic macrophages were preferentially associated with CD31+ FLK1+ microvessels in anti-HMGCR+ IMNM. The VEGF-A+ M2 macrophage density was significantly correlated with CD (rS: 0.98; p: 0.0004). Western blot analyses revealed increased expression levels of VEGF-A, FLK1, HIF-1α, and CXCL12 in anti-HMGCR+ IMNM. CD and expression levels of these angiogenic molecules were not increased in anti-SRP+ and seronegative IMNM, offering additional, useful information for differential diagnosis among these IIM subtypes. CONCLUSION Our findings suggest that in IIMs, infiltrating macrophages and microvascular cells interactions play a pivotal role in coordinating myogenesis and angiogenesis. This reciprocal crosstalk seems to distinguish anti-HMGCR associated IMNM.
Collapse
Affiliation(s)
- Anna Lia
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Tiziana Annese
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Marco Fornaro
- Unit of Rheumatology, Department of Emergency and Organ Transplantation, University of Bari, Italy
| | - Margherita Giannini
- Unit of Rheumatology, Department of Emergency and Organ Transplantation, University of Bari, Italy.,Service de Physiologie, Unité d'Explorations Fonctionnelles Musculaires, Hôpitaux Universitaires de Strasbourg, France
| | - Dario D'Abbicco
- Institute of General Surgery "G. Marinaccio", Department of Emergency and Organ Transplantation, University of Bari
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Loredana Lorusso
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Angela Amati
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Marilina Tampoia
- Unit of Clinical Pathology, Ospedale SS., Annunziata, Taranto, Italy
| | - Maria Trojano
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Luigi Serlenga
- Unit of Neurophysiopathology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| | - Florenzo Iannone
- Unit of Rheumatology, Department of Emergency and Organ Transplantation, University of Bari, Italy
| | - Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Italy
| |
Collapse
|
6
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. NANOSCALE 2021; 13:15445-15463. [PMID: 34505619 DOI: 10.1039/d1nr03830c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Bart Lucas
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| |
Collapse
|
7
|
Modelling and Refining Neuronal Circuits with Guidance Cues: Involvement of Semaphorins. Int J Mol Sci 2021; 22:ijms22116111. [PMID: 34204060 PMCID: PMC8201269 DOI: 10.3390/ijms22116111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
The establishment of neuronal circuits requires neurons to develop and maintain appropriate connections with cellular partners in and out the central nervous system. These phenomena include elaboration of dendritic arborization and formation of synaptic contacts, initially made in excess. Subsequently, refinement occurs, and pruning takes places both at axonal and synaptic level, defining a homeostatic balance maintained throughout the lifespan. All these events require genetic regulations which happens cell-autonomously and are strongly influenced by environmental factors. This review aims to discuss the involvement of guidance cues from the Semaphorin family.
Collapse
|
8
|
Localization of T-cell factor 4 positive fibroblasts and CD206-positive macrophages during skeletal muscle regeneration in mice. Ann Anat 2021; 235:151694. [DOI: 10.1016/j.aanat.2021.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/17/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
|
9
|
Proietti D, Giordani L, De Bardi M, D’Ercole C, Lozanoska-Ochser B, Amadio S, Volonté C, Marinelli S, Muchir A, Bouché M, Borsellino G, Sacco A, Puri PL, Madaro L. Activation of skeletal muscle-resident glial cells upon nerve injury. JCI Insight 2021; 6:143469. [PMID: 33661767 PMCID: PMC8119188 DOI: 10.1172/jci.insight.143469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
Here, we report on the identification of Itga7-expressing muscle-resident glial cells activated by loss of neuromuscular junction (NMJ) integrity. Gene expression analysis at the bulk and single-cell level revealed that these cells are distinct from Itga7-expressing muscle satellite cells. We show that a selective activation and expansion of Itga7+ glial cells occur in response to muscle nerve lesion. Upon activation, muscle glial-derived progenies expressed neurotrophic genes, including nerve growth factor receptor, which enables their isolation by FACS. We show that activated muscle glial cells also expressed genes potentially implicated in extracellular matrix remodeling at NMJs. We found that tenascin C, which was highly expressed by muscle glial cells, activated upon nerve injury and preferentially localized to NMJ. Interestingly, we observed that the activation of muscle glial cells by acute nerve injury was reversible upon NMJ repair. By contrast, in a mouse model of ALS, in which NMJ degeneration is progressive, muscle glial cells steadily increased over the course of the disease. However, they exhibited an impaired neurotrophic activity, suggesting that pathogenic activation of glial cells may be implicated in ALS progression.
Collapse
Affiliation(s)
- Daisy Proietti
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “la Sapienza”, Rome, Italy
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | | | - Chiara D’Ercole
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “la Sapienza”, Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “la Sapienza”, Rome, Italy
| | | | - Cinzia Volonté
- IRCCS Fondazione Santa Lucia, Rome, Italy
- CNR, National Research Council, Institute for Systems Analysis and Computer Science, Rome, Italy
| | - Sara Marinelli
- CNR, National Research Council, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, Rome, Italy
| | - Antoine Muchir
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Marina Bouché
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “la Sapienza”, Rome, Italy
| | | | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Luca Madaro
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “la Sapienza”, Rome, Italy
| |
Collapse
|
10
|
Vishnyakova P, Poltavets A, Nikitina M, Midiber K, Mikhaleva L, Muminova K, Potapova A, Khodzhaeva Z, Pyregov A, Elchaninov A, Fatkhudinov T, Sukhikh G. Expression of Estrogen Receptor α by Decidual Macrophages in Preeclampsia. Biomedicines 2021; 9:191. [PMID: 33672970 PMCID: PMC7917975 DOI: 10.3390/biomedicines9020191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia is a gestation-associated hypertensive syndrome that threatens the life and health of the mother and the child. The condition is presumably caused by systemic failure with a strong involvement of innate immunity. In particular, it has been associated with flexible phenotypes of macrophages, which depend on the molecules circulating in the blood and tissue fluid, such as cytokines and hormones. This study aimed at a comparative evaluation of pro-inflammatory (TNFα) and anti-inflammatory (CD206, MMP9, HGF) markers, as well as the levels of estrogen receptor α, expressed by decidual macrophages in normal pregnancy and in patients with early- and late-onset preeclampsia. The tissue samples of decidua basalis were examined by immunohistochemistry and Western blotting. Isolation of decidual macrophages and their characterization were performed using cultural methods, flow cytometry and real-time PCR. Over 50% of the isolated decidual macrophages were positive for the pan-macrophage marker CD68. In the early-onset preeclampsia group, the levels of estrogen receptor α in decidua were significantly decreased. Furthermore, significantly decreased levels of HGF and CD206 were observed in both preeclampsia groups compared with the control group. The observed downregulation of estrogen receptor α, HGF and CD206 may contribute to the balance of pro- and anti-inflammatory macrophages and thereby to pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anastasiya Poltavets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Maria Nikitina
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Konstantin Midiber
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Liudmila Mikhaleva
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Kamilla Muminova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alena Potapova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Zulfiya Khodzhaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Alexey Pyregov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
- Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (K.M.); (L.M.)
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia; (A.P.); (K.M.); (A.P.); (Z.K.); (A.P.); (A.E.); (G.S.)
| |
Collapse
|
11
|
Harrison JM, Rafuse VF. Muscle fiber-type specific terminal Schwann cell pathology leads to sprouting deficits following partial denervation in SOD1 G93A mice. Neurobiol Dis 2020; 145:105052. [PMID: 32827689 DOI: 10.1016/j.nbd.2020.105052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset disease characterized by the progressive death of motoneurons and denervation of muscle fibers. To restore motor function, surviving motoneurons in partially denervated muscles typically sprout axons to reinnervate denervated endplates. However, studies on the SOD1G93A rodent models of ALS indicate that sprouting is significantly limited in fast, but not slow, twitch muscles after disease onset. This limitation hastens the rate of muscle weakness and loss of motor function. The causes of this limitation are currently unknown. Sprouting could be limited because the SOD1G93A mutation weakens motoneurons making them incapable of expanding their field of innervation. Alternatively, motoneurons may be capable of sprouting, but unable to do so due to the loss of a permissive sprouting environment. To distinguish between the two possibilities, we compared the sprouting capacity of motoneuron subtypes by partially denervating the fast twitch plantaris (composed of type IIa/IIb muscle fibers) and slow twitch soleus muscles (type I/IIa fibers) prior to disease onset and weakening in SOD1G93A and WT mice. We found that only motoneurons innervating the SOD1G93A plantaris had a limited sprouting capacity. This was correlated with the selective loss of terminal Schwann cells (TSCs) at IIb fibers and an increase in macrophage infiltration. Treating SOD1G93A mice with the tyrosine kinase inhibitor, masitinib, significantly reduced infiltration, prevented TSC loss, and increased the sprouting capacity to near normal. These results suggest that TSCs at denervated type IIb muscle fibers are aberrantly targeted by infiltrating macrophages in SOD1G93A mice, and their loss accounts, at least in part, for the compromised sprouting capacity of the largest motoneurons during early stages of ALS.
Collapse
Affiliation(s)
- Julia M Harrison
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada
| | - Victor F Rafuse
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Brain Repair Centre, Life Sciences Research Institute, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
12
|
Zogbi C, Oliveira NC, Levy D, Bydlowski SP, Bassaneze V, Neri EA, Krieger JE. Beneficial effects of IL-4 and IL-6 on rat neonatal target cardiac cells. Sci Rep 2020; 10:12350. [PMID: 32704142 PMCID: PMC7378182 DOI: 10.1038/s41598-020-69413-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.
Collapse
Affiliation(s)
- Camila Zogbi
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Nathalia C Oliveira
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Débora Levy
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Sergio P Bydlowski
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Vinicius Bassaneze
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Jose E Krieger
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
13
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Röszer T. Signal Mechanisms of M2 Macrophage Activation. PROGRESS IN INFLAMMATION RESEARCH 2020:73-97. [DOI: 10.1007/978-3-030-50480-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Liang Y, Xie H, Wu J, Liu D, Yao S. Villainous role of estrogen in macrophage-nerve interaction in endometriosis. Reprod Biol Endocrinol 2018; 16:122. [PMID: 30518376 PMCID: PMC6282253 DOI: 10.1186/s12958-018-0441-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a complex and heterogeneous disorder with unknown etiology. Dysregulation of macrophages and innervation are important factors influencing the pathogenesis of endometriosis-associated pain. It is known to be an estrogen-dependent disease, estrogen can promote secretion of chemokines from peripheral nerves, enhancing the recruitment and polarization of macrophages in endometriotic tissue. Macrophages have a role in the expression of multiple nerve growth factors (NGF), which mediates the imbalance of neurogenesis in an estrogen-dependent manner. Under the influence of estrogen, co-existence of macrophages and nerves induces an innovative neuro-immune communication. Persistent stimulation by inflammatory cytokines from macrophages on nociceptors of peripheral nerves aggravates neuroinflammation through the release of inflammatory neurotransmitters. This neuro-immune interaction regulated by estrogen sensitizes peripheral nerves, leading to neuropathic pain in endometriosis. The aim of this review is to highlight the significance of estrogen in the interaction between macrophages and nerve fibers, and to suggest a potentially valuable therapeutic target for endometriosis-associated pain.
Collapse
Affiliation(s)
- Yanchun Liang
- grid.412615.5Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province China
| | - Hongyu Xie
- 0000 0001 2360 039Xgrid.12981.33Grade 2012 in 8-year Medical Education Program of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089 China
| | - Jinjie Wu
- 0000 0001 2360 039Xgrid.12981.33Grade 2012 in 8-year Medical Education Program of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510089 China
| | - Duo Liu
- grid.412615.5Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province China
| | - Shuzhong Yao
- grid.412615.5Department of Obstetrics and Gynecology, First Affiliated Hospital, Sun Yat-sen University, No. 58, the 2nd Zhongshan Road, Yuexiu District, Guangzhou, Guangdong Province China
| |
Collapse
|
16
|
Roveimiab Z, Lin F, Anderson JE. Emerging Development of Microfluidics-Based Approaches to Improve Studies of Muscle Cell Migration. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:30-45. [PMID: 30073911 DOI: 10.1089/ten.teb.2018.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPACT STATEMENT The essential interactions between and among cells in the three types of muscle tissue in development, wound healing, and regeneration of tissues, are underpinned by the ability of cardiac, smooth, and skeletal muscle cells to migrate in maintaining functional capacity after pathologies such as myocardial infarction, tissue grafting, and traumatic and postsurgical injury. Microfluidics-based devices now offer significant enhancement over conventional approaches to studying cell chemotaxis and haptotaxis that are inherent in migration. Advances in experimental approaches to muscle cell movement and tissue formation will contribute to innovations in tissue engineering for patching wound repair and muscle tissue replacement.
Collapse
Affiliation(s)
- Ziba Roveimiab
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada.,2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Francis Lin
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada.,2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Judy E Anderson
- 1 Department of Biological Sciences and University of Manitoba, Winnipeg, Canada
| |
Collapse
|
17
|
Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, Tasciotti E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv Healthc Mater 2018; 7:e1800490. [PMID: 29995315 DOI: 10.1002/adhm.201800490] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| | - Christopher Tsao
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay Singleton Park Wales Swansea SA2 8PP UK
| | - Chiara Liverani
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Biosciences Laboratory Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Via Piero Maroncelli 40 47014 Meldola FC Italy
| | - Aaron Shi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Wiess School of Natural Sciences Rice University Houston TX 77251‐1892 USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
18
|
Mahdy MAA. Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res 2018; 374:233-241. [DOI: 10.1007/s00441-018-2846-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
|
19
|
Hei Yuan HS, Katyal S, Anderson JE. A mechanism for semaphorin-induced apoptosis: DNA damage of endothelial and myogenic cells in primary cultures from skeletal muscle. Oncotarget 2018; 9:22618-22630. [PMID: 29854302 PMCID: PMC5978252 DOI: 10.18632/oncotarget.25200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
One hallmark of cancer is its ability to recruit a vascular supply to support rapid growth. Suppression of angiogenesis holds potential as a second-line or adjuvant therapy to stunt cancer growth, progression, metastasis, and post-resection regeneration. To begin to test the hypothesis that semaphorin 3A and 3F together, will induce endothelial cell apoptosis by inducing DNA damage, mixed primary cultures isolated from normal adult mouse skeletal muscle were treated for 48 hr with Sema3A ± Sema3F (100ng/mL). Changes in surviving-cell density, DNA synthesis, DNA repair (gamma-Histone 2AX, γH2AX, an indirect measure for DNA damage), and apoptotic DNA fragmentation (TUNEL staining) were assayed in cultures of CD31+ endothelial and desmin+ muscle cells. Sema3F increased DNA damage-associated DNA repair in both cell types. Co-treatment with Sema3A+3F increased γH2AX staining ~25-fold over control levels, and further increased apoptosis compared to control and Sema3A alone. Results were negated by treatment with neutralizing anti-semaphorin antibodies and are interpreted as suggesting that Sema3A may sensitize endothelial but not muscle cells to Sema3F-induced DNA damage. These preliminary findings on a complex system of interacting cells may contribute to developing applications that could target angiogenic regulatory mechanisms for their therapeutic potential against cancer progression and metastasis.
Collapse
Affiliation(s)
- Haynes Shek Hei Yuan
- Department of Biological Sciences, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, CancerCare Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Sachin Katyal
- Department of Pharmacology and Therapeutics, CancerCare Manitoba, Winnipeg, MB, Canada.,University of Manitoba, Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Judy E Anderson
- Department of Biological Sciences, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Oyaizu T, Enomoto M, Yamamoto N, Tsuji K, Horie M, Muneta T, Sekiya I, Okawa A, Yagishita K. Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation. Sci Rep 2018; 8:1288. [PMID: 29358697 PMCID: PMC5778072 DOI: 10.1038/s41598-018-19670-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperbaric oxygen treatment (HBO) promotes rapid recovery from soft tissue injuries. However, the healing mechanism is unclear. Here we assessed the effects of HBO on contused calf muscles in a rat skeletal muscle injury model. An experimental HBO chamber was developed and rats were treated with 100% oxygen, 2.5 atmospheres absolute for 2 h/day after injury. HBO reduced early lower limb volume and muscle wet weight in contused muscles, and promoted muscle isometric strength 7 days after injury. HBO suppressed the elevation of circulating macrophages in the acute phase and then accelerated macrophage invasion into the contused muscle. This environment also increased the number of proliferating and differentiating satellite cells and the amount of regenerated muscle fibers. In the early phase after injury, HBO stimulated the IL-6/STAT3 pathway in contused muscles. Our results demonstrate that HBO has a dual role in decreasing inflammation and accelerating myogenesis in muscle contusion injuries.
Collapse
Affiliation(s)
- Takuya Oyaizu
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Hyperbaric Medical Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Mitsuhiro Enomoto
- Hyperbaric Medical Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan. .,Sports Medicine Clinical Center, Medical Hospital, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Naoki Yamamoto
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Hyperbaric Medical Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Kunikazu Tsuji
- Department of Cartilage Regeneration, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Masaki Horie
- Hyperbaric Medical Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Takeshi Muneta
- Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Atsushi Okawa
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kazuyoshi Yagishita
- Hyperbaric Medical Center, Medical Hospital, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.,Sports Medicine Clinical Center, Medical Hospital, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
21
|
González MN, de Mello W, Butler-Browne GS, Silva-Barbosa SD, Mouly V, Savino W, Riederer I. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle 2017; 7:20. [PMID: 29017538 PMCID: PMC5635537 DOI: 10.1186/s13395-017-0138-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. Methods We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. Results We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. Conclusions We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach. Electronic supplementary material The online version of this article (10.1186/s13395-017-0138-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Wallace de Mello
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Suse Dayse Silva-Barbosa
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Department of Clinical Research, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil.
| |
Collapse
|
22
|
Yuan J, Ge H, Liu W, Zhu H, Chen Y, Zhang X, Yang Y, Yin Y, Chen W, Wu W, Yang Y, Lin J. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 2017; 8:19855-19865. [PMID: 28423639 PMCID: PMC5386728 DOI: 10.18632/oncotarget.15774] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) are an important source of cells for cell replacement therapy after nerve injury. How to induce NSPCs differentiation towards neurons and oligodendrocytes is a challenging issue in neuroscience research. In the present study, we polarized microglia into M1 and M2 phenotype, used their supernatants to induce NSPCs differentiation, and investigated the effects of different microglia phenotypes on NSPCs differentiation and their mechanisms. We discovered that, after exposure to M1 phenotype supernatant, NSPCs differentiated into fewer Tuj-1+ and Olig2+ cells, but more GFAP+ cells. Meanwhile, a significantly increased number of Tuj-1+ and Olig2+ cells and smaller number of GFAP+ cells were generated by M2 microglia supernatant-induced NSPCs differentiation. We also observed that 15d-PGJ2, an endogenous ligand of PPARγ, was elevated in M2 phenotype supernatant and could activate PPARγ expression in NSPCs, whereas use of the PPARγ inhibitor GW9662, could reduce the percentage of differentiated neurons and oligodendrocytes. Our study results confirm that M2 microglia supernatant can activate the PPARγ signaling pathway and promote neurogenesis and oligodendrogenesis from NSPCs differentiation. The present study provides a further theoretical basis for induction of NSPCs oriented differentiation.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Haitao Zhu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wanjiang Wu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yunfeng Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiangkai Lin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
23
|
Debaud C, Salga M, Begot L, Holy X, Chedik M, de l’Escalopier N, Torossian F, Levesque JP, Lataillade JJ, Le Bousse-Kerdilès MC, Genêt F. Peripheral denervation participates in heterotopic ossification in a spinal cord injury model. PLoS One 2017; 12:e0182454. [PMID: 28854256 PMCID: PMC5576715 DOI: 10.1371/journal.pone.0182454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022] Open
Abstract
We previously reported the development of a new acquired neurogenic HO (NHO) mouse model, combining spinal cord transection (SCI) and chemical muscle injury. Pathological mechanisms responsible for ectopic osteogenesis after central neurological damage are still to be elucidated. In this study, we first hypothesized that peripheral nervous system (PNS) might convey pathological signals from injured spinal cord to muscles in NHO mouse model. Secondly, we sought to determine whether SCI could lead to intramuscular modifications of BMP2 signaling pathways. Twenty one C57Bl6 mice were included in this protocol. Bilateral cardiotoxin (CTX) injection in hamstring muscles was associated with a two-stage surgical procedure, combining thoracic SCI with unilateral peripheral denervation. Volumes of HO (Bone Volume, BV) were measured 28 days after surgery using micro-computed tomography imaging techniques and histological analyses were made to confirm intramuscular osteogenesis. Volume comparisons were conducted between right and left hind limb of each animal, using a Wilcoxon signed rank test. Quantitative polymerase chain reaction (qPCR) was performed to explore intra muscular expression of BMP2, Alk3 and Id1. Nineteen mice survive the complete SCI and peripheral denervation procedure. When CTX injections were done right after surgery (n = 7), bilateral HO were detected in all animals after 28 days. Micro-CT measurements showed significantly increased BV in denervated paws (1.47 mm3 +/- 0.5) compared to contralateral sides (0.56 mm3 +/-0.4), p = 0.03. When peripheral denervation and CTX injections were performed after sham SCI surgery (n = 6), bilateral HO were present in three mice at day 28. Quantitative PCR analyses showed no changes in intra muscular BMP2 expression after SCI as compared to control mice (shamSCI). Peripheral denervation can be reliably added to spinal cord transection in NHO mouse model. This new experimental design confirms that neuro inflammatory mechanisms induced by central or peripheral nervous system injury plays a key role in triggering ectopic osteogenesis.
Collapse
Affiliation(s)
- Charlotte Debaud
- Spine Division Orthopaedic Surgery Department, Hôpital Européen Georges Pompidou, APHP, Paris, France
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
- * E-mail:
| | - Marjorie Salga
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
- Rehabilitation Service, Hôpital Raymond Poincaré, APHP, CIC-IT 1429, Garches, France
| | - Laurent Begot
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Xavier Holy
- Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Malha Chedik
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
| | | | - Fréderic Torossian
- University of Paris-Sud, INSERM UMR-S/MD 1197, Hôpital Paul Brousse, APHP, Villejuif, France
| | - Jean-Pierre Levesque
- Blood and Bone Diseases Program, Mater Research Institute, University of Queensland, Woolloongabba and School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Jean-Jacques Lataillade
- University of Paris-Sud, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | | | - François Genêt
- University of Versailles Saint Quentin en Yvelines, U1179 INSERM, UFR des Sciences de la Santé – Simone Veil, Montigny-le-Bretonneux, France
- Rehabilitation Service, Hôpital Raymond Poincaré, APHP, CIC-IT 1429, Garches, France
| |
Collapse
|
24
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
25
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
26
|
Ohtsubo H, Sato Y, Suzuki T, Mizunoya W, Nakamura M, Tatsumi R, Ikeuchi Y. APOBEC2 negatively regulates myoblast differentiation in muscle regeneration. Int J Biochem Cell Biol 2017; 85:91-101. [DOI: 10.1016/j.biocel.2017.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 01/08/2023]
|
27
|
Oh KJ, Lee DS, Kim WK, Han BS, Lee SC, Bae KH. Metabolic Adaptation in Obesity and Type II Diabetes: Myokines, Adipokines and Hepatokines. Int J Mol Sci 2016; 18:ijms18010008. [PMID: 28025491 PMCID: PMC5297643 DOI: 10.3390/ijms18010008] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/24/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Obesity and type II diabetes are characterized by insulin resistance in peripheral tissues. A high caloric intake combined with a sedentary lifestyle is the leading cause of these conditions. Whole-body insulin resistance and its improvement are the result of the combined actions of each insulin-sensitive organ. Among the fundamental molecular mechanisms by which each organ is able to communicate and engage in cross-talk are cytokines or peptides which stem from secretory organs. Recently, it was reported that several cytokines or peptides are secreted from muscle (myokines), adipose tissue (adipokines) and liver (hepatokines) in response to certain nutrition and/or physical activity conditions. Cytokines exert autocrine, paracrine or endocrine effects for the maintenance of energy homeostasis. The present review is focused on the relationship and cross-talk amongst muscle, adipose tissue and the liver as secretory organs in metabolic diseases.
Collapse
Affiliation(s)
- Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Baek Soo Han
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea.
| |
Collapse
|
28
|
Mahdy MA, Warita K, Hosaka YZ. Early ultrastructural events of skeletal muscle damage following cardiotoxin-induced injury and glycerol-induced injury. Micron 2016; 91:29-40. [DOI: 10.1016/j.micron.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/29/2022]
|
29
|
Mizunoya W, Okamoto S, Miyahara H, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Qahar M, Waga T, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Fast-to-slow shift of muscle fiber-type composition by dietary apple polyphenols in rats: Impact of the low-dose supplementation. Anim Sci J 2016; 88:489-499. [PMID: 27417667 DOI: 10.1111/asj.12655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/27/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022]
Abstract
Our previous studies demonstrated that an 8-week intake of 5% (w/w) apple polyphenol (APP) in the diet improves muscle endurance of young-adult rats. In order to identify a lower limit of the dietary contribution of APP to the effect, the experiments were designed for lower-dose supplementation (8-week feeding of 0.5% APP in AIN-93G diet) to 12-week-old male Sprague-Dawley rats. Results clearly showed that the 0.5% APP diet significantly up-regulates slower myosin-heavy-chain (MyHC) isoform ratios (IIx and IIa relative to total MyHC) and myoglobin expression in lower hind-limb muscles examined (P < 0.05). There was a trend to increased fatigue resistance detected from measurements of relative isometric plantar-flexion force torque generated by a stimulus train delivered to the tibial nerve (F(98, 1372) = 1.246, P = 0.0574). Importantly, there was no significant difference in the animal body-phenotypes or locomotor activity shown as total moving distance in light and dark periods. Therefore, the present study encourages the notion that even low APP-intake may increase the proportions of fatigue-resistant myofibers, and has promise as a strategy for modifying performance in human sports and improving function in age-related muscle atrophy.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mulan Qahar
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan.,Wakodo, Ltd., Chofu, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
31
|
Roh SG, Suzuki Y, Gotoh T, Tatsumi R, Katoh K. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1-15. [PMID: 26732322 PMCID: PMC4698675 DOI: 10.5713/ajas.16.0001r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.
Collapse
Affiliation(s)
- Sang-Gun Roh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Yutaka Suzuki
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kazuo Katoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| |
Collapse
|
32
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
33
|
Abstract
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.
Collapse
|
34
|
Do MKQ, Shimizu N, Suzuki T, Ohtsubo H, Mizunoya W, Nakamura M, Sawano S, Furuse M, Ikeuchi Y, Anderson JE, Tatsumi R. Transmembrane proteoglycans syndecan-2, 4, receptor candidates for the impact of HGF and FGF2 on semaphorin 3A expression in early-differentiated myoblasts. Physiol Rep 2015; 3:e12553. [PMID: 26381016 PMCID: PMC4600393 DOI: 10.14814/phy2.12553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 12/03/2022] Open
Abstract
Regenerative mechanisms that regulate intramuscular motor innervation are thought to reside in the spatiotemporal expression of axon-guidance molecules. Our previous studies proposed an unexplored role of resident myogenic stem cell (satellite cell)-derived myoblasts as a key presenter of a secreted neural chemorepellent semaphorin 3A (Sema3A); hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) triggered its expression exclusively at the early differentiation phase. In order to advance this concept, the present study described that transmembrane heparan/chondroitin sulfate proteoglycans syndecan-2, 4 may be the plausible receptor candidates for HGF and FGF2 to signal Sema3A expression. Results showed that mRNA expression of syndecan-2, 4 was abundant (two magnitudes higher than syndecan-1, 3) in early-differentiated myoblasts and their in vitro knockdown diminished the HGF/FGF2-induced expression of Sema3A down to a baseline level. Pretreatment with heparitinase and chondroitinase ABC decreased the HGF and FGF2 responses, respectively, in non-knockdown cultures, supporting a possible model that HGF and FGF2 may bind to heparan and chondroitin sulfate chains of syndecan-2, 4 to signal Sema3A expression. The findings, therefore, extend our understanding that HGF/FGF2-syndecan-2, 4 association may stimulate a burst of Sema3A secretion by myoblasts recruited to the site of muscle injury; this would ensure a coordinated delay in the attachment of motoneuron terminals onto fibers early in muscle regeneration, and thus synchronize the recovery of muscle fiber integrity and the early resolution of inflammation after injury with reinnervation toward functional recovery.
Collapse
Affiliation(s)
- Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Naomi Shimizu
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Furuse
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| | - Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
D'Souza DM, Trajcevski KE, Al-Sajee D, Wang DC, Thomas M, Anderson JE, Hawke TJ. Diet-induced obesity impairs muscle satellite cell activation and muscle repair through alterations in hepatocyte growth factor signaling. Physiol Rep 2015; 3:3/8/e12506. [PMID: 26296771 PMCID: PMC4562589 DOI: 10.14814/phy2.12506] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A healthy skeletal muscle mass is essential in attenuating the complications of obesity. Importantly, healthy muscle function is maintained through adequate repair following overuse and injury. The purpose of this study was to investigate the impact of diet-induced obesity (DIO) on skeletal muscle repair and the functionality of the muscle satellite cell (SC) population. Male C57BL/6J mice were fed a standard chow or high-fat diet (60% kcal fat; DIO) for 8 weeks. Muscles from DIO mice subjected to cardiotoxin injury displayed attenuated muscle regeneration, as indicated by prolonged necrosis, delayed expression of MyoD and Myogenin, elevated collagen content, and persistent embryonic myosin heavy chain expression. While no significant differences in SC content were observed, SCs from DIO muscles did not activate normally nor did they respond to exogenous hepatocyte growth factor (HGF) despite similar receptor (cMet) density. Furthermore, HGF release from crushed muscle was significantly less than that from muscles of chow fed mice. This study demonstrates that deficits in muscle repair are present in DIO, and the impairments in the functionality of the muscle SC population as a result of altered HGF/c-met signaling are contributors to the delayed regeneration.
Collapse
Affiliation(s)
- Donna M D'Souza
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karin E Trajcevski
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dhuha Al-Sajee
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David C Wang
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Melissa Thomas
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thomas J Hawke
- Departments of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Mizunoya W, Miyahara H, Okamoto S, Akahoshi M, Suzuki T, Do MKQ, Ohtsubo H, Komiya Y, Lan M, Waga T, Iwata A, Nakazato K, Ikeuchi Y, Anderson JE, Tatsumi R. Improvement of Endurance Based on Muscle Fiber-Type Composition by Treatment with Dietary Apple Polyphenols in Rats. PLoS One 2015. [PMID: 26222548 PMCID: PMC4519157 DOI: 10.1371/journal.pone.0134303] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A recent study demonstrated a positive effect of apple polyphenol (APP) intake on muscle endurance of young-adult animals. While an enhancement of lipid metabolism may be responsible, in part, for the improvement, the contributing mechanisms still need clarification. Here we show that an 8-week intake of 5% (w/w) APP in the diet, up-regulates two features related to fiber type: the ratio of myosin heavy chain (MyHC) type IIx/IIb and myoglobin protein expression in plantaris muscle of 9-week-old male Fischer F344 rats compared to pair-fed controls (P < 0.05). Results were demonstrated by our SDS-PAGE system specialized for MyHC isoform separation and western blotting of whole muscles. Animal-growth profiles (food intake, body-weight gain, and internal-organ weights) did not differ between the control and 5% APP-fed animals (n = 9/group). Findings may account for the increase in fatigue resistance of lower hind limb muscles, as evidenced by a slower decline in the maximum isometric planter-flexion torque generated by a 100-s train of electrical stimulation of the tibial nerve. Additionally, the fatigue resistance was lower after 8 weeks of a 0.5% APP diet than after 5% APP, supporting an APP-dose dependency of the shift in fiber-type composition. Therefore, the present study highlights a promising contribution of dietary APP intake to increasing endurance based on fiber-type composition in rat muscle. Results may help in developing a novel strategy for application in animal sciences, and human sports and age-related health sciences.
Collapse
Affiliation(s)
- Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideo Miyahara
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Shinpei Okamoto
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mariko Akahoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mai-Khoi Q. Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Mu Lan
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Toshiaki Waga
- Fundamental Research Laboratory, Asahi Breweries, Ltd., Moriya, Ibaraki, Japan
| | - Akira Iwata
- Department of Physical Therapy, Faculty of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Graduate School of Health and Sport Sciences, Nippon Sport Science University, Fukasawa, Tokyo, Japan
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
37
|
Gigliotti D, Leiter JRS, Macek B, Davidson MJ, MacDonald PB, Anderson JE. Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol 2015; 309:C383-91. [PMID: 26135801 DOI: 10.1152/ajpcell.00143.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
Abstract
The high frequency of poor outcome and chronic pain after surgical repair of shoulder rotator-cuff injury (RCI) prompted this study to explore the potential to amplify muscle regeneration using nitric oxide (NO)-based treatment. After preoperative magnetic resonance imaging (MRI), biopsies of supraspinatus and ipsilateral deltoid (as a control) were collected during reparative surgery for RCI. Muscle fiber diameter, the pattern of neuromuscular junctions observed with alpha-bungarotoxin staining, and the γ:ε subunit ratio of acetylcholine receptors in Western blots were examined in tandem with experiments to determine the in vitro responsiveness of muscle satellite cells to activation (indicated by uptake of bromodeoxyuridine, BrdU) by the NO-donor drug, isosorbide dinitrate (ISDN). Consistent with MRI findings of supraspinatus atrophy (reduced occupation ratio and tangent sign), fiber diameter was lower in supraspinatus than in deltoid. ISDN induced a significant increase over baseline (up to 1.8-fold), in the proportion of BrdU+ (activated) Pax7+ satellite cells in supraspinatus, but not in deltoid, after 40 h in culture. The novel application of denervation indices revealed a trend for supraspinatus muscle to have a higher γ:ε subunit ratio than deltoid (P = 0.13); this ratio inversely with both occupancy ratio (P < 0.05) and the proportion of clusters at neuromuscular junctions (P = 0.05). Results implicate possible supraspinatus denervation in RCI and suggest NO-donor treatment has potential to promote growth in atrophic supraspinatus muscle after RCI and improve functional outcome.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Bryce Macek
- College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael J Davidson
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter B MacDonald
- Section of Orthopedics, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;
| |
Collapse
|
38
|
Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm 2015; 2015:816460. [PMID: 26089604 PMCID: PMC4452191 DOI: 10.1155/2015/816460] [Citation(s) in RCA: 1278] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 11/17/2022] Open
Abstract
The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
Collapse
|