1
|
Li C, Fang Y, Chen YM. Beyond Redox Regulation: Novel Roles of TXNIP in the Pathogenesis and Therapeutic Targeting of Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:615-625. [PMID: 39814099 PMCID: PMC11959421 DOI: 10.1016/j.ajpath.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Cellular stress, such as oxidative and endoplasmic reticulum (ER) stresses, contributes to the development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, Trx-interacting protein (TXNIP) is significantly up-regulated and activated by oxidative and ER stresses. The function of TXNIP is closely linked to its subcellular localizations. Under normal physiological conditions, TXNIP primarily localizes to the nucleus. When exposed to reactive oxygen species or ER stress, TXNIP relocates to mitochondria and binds to mitochondrial Trx2, which releases Trx-tethered apoptosis signal-regulating kinase 1 and activates apoptosis signal-regulating kinase 1-mediated apoptosis. Oxidative and ER stresses are also closely associated with autophagy. TXNIP can promote or inhibit autophagy depending on context. Although recent studies have highlighted the indispensable role of TXNIP in the etiology and progression of kidney disease, TXNIP-targeted therapy is still missing. This review focuses on the following: i) oxidative and ER stresses; ii) regulation and function of TXNIP during cellular stress; iii) TXNIP in stress-regulated autophagy; iv) TXNIP in kidney diseases (nephrotic syndrome, diabetic nephropathy and chronic kidney disease, acute kidney injury, and kidney aging); and v) novel treatment agents targeting TXNIP in kidney disease. Current advances in chemical compounds and RNA-based therapy suppressing TXNIP are also reviewed.
Collapse
Affiliation(s)
- Chuang Li
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Yili Fang
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ying Maggie Chen
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
2
|
Du Y, Wu M, Song S, Bian Y, Shi Y. TXNIP deficiency attenuates renal fibrosis by modulating mTORC1/TFEB-mediated autophagy in diabetic kidney disease. Ren Fail 2024; 46:2338933. [PMID: 38616177 PMCID: PMC11018024 DOI: 10.1080/0886022x.2024.2338933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.
Collapse
Affiliation(s)
- Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yawei Bian
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Jagdale AD, Angal MM, Patil RS, Tupe RS. Exploring the glycation association with dyslipidaemia: Novel approach for diabetic nephropathy. Biochem Pharmacol 2024; 229:116513. [PMID: 39218042 DOI: 10.1016/j.bcp.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood. We provide a rationalized view on how AGEs exert multiple effects that cause SREBP activation and inflammation, contributing to DN through Receptor for AGEs (RAGE) signaling, AGE-R1-dependent downregulation of Sirtuin 1 (SIRT-1), and increased SREBP Cleavage Activating Protein (SCAP) glycosylation. This review emphasizes the association between glycation and the SREBP pathway and how it affects the onset of DN associated with obesity. Finally, we discuss the correlation of glycation and the SREBP pathway with insulin resistance (IR), oxidative stress, endoplasmic reticulum stress, inflammation, and existing and emerging therapeutic approaches toward better controlling obesity-related DN.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Mukul M Angal
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India
| | - Rahul S Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra, India.
| |
Collapse
|
4
|
Xi X, Zhang R, Chi Y, Zhu Z, Sun R, Gong W. TXNIP Regulates NLRP3 Inflammasome-Induced Pyroptosis Related to Aging via cAMP/PKA and PI3K/Akt Signaling Pathways. Mol Neurobiol 2024; 61:8051-8068. [PMID: 38460079 DOI: 10.1007/s12035-024-04089-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024]
Abstract
Aging is an inevitable natural process with time-dependent dysfunction and the occurrence of various diseases, which impose heavy burdens on individuals, families, and society. It has been reported that NLRP3 inflammasome-induced pyroptosis contributes significantly to age-related diseases and aging, while TXNIP is suggested to be involved in regulating pyroptosis mediated by NLRP3. However, the mechanism between TXNIP and NLRP3 inflammasome is still unclear. In this study, we used HT-22 cells to explore the effect of TXNIP on pyroptosis and its potential association with the aging. Also, we delved into the underlying mechanisms. Our findings revealed that TXNIP significantly augmented pyroptosis in HT-22 cells, primarily by enhancing the activation of the NLRP3 inflammasome and promoting the release of proinflammatory cytokines. Remarkably, as TXNIP levels increased, we observed a corresponding rise in the number of p16-positive cells, which is indicative of aging. Furthermore, we conducted experiments to modulate the improvement of TXNIP on NLRP3 inflammasome-induced pyroptosis, that is, the PI3K activator 740 Y-P and the PKA activator DC2797 inhibited the effect, while the PI3K inhibitor LY294002 and the PKA inhibitor H89 enhanced the effect. In conclusion, our study demonstrated that TXNIP regulates NLRP3 inflammasome-induced pyroptosis in HT-22 cells related to aging via the PI3K/Akt and cAMP/PKA pathways.
Collapse
Affiliation(s)
- Xiaoshuang Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Rong Zhang
- The Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yijia Chi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ziman Zhu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Ruifeng Sun
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
- Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China
| | - Weijun Gong
- Department of Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Lee HJ, Min L, Gao J, Matta S, Drel V, Saliba A, Tamayo I, Montellano R, Hejazi L, Maity S, Xu G, Grajeda BI, Roy S, Hallows KR, Choudhury GG, Kasinath BS, Sharma K. Female Protection Against Diabetic Kidney Disease Is Regulated by Kidney-Specific AMPK Activity. Diabetes 2024; 73:1167-1177. [PMID: 38656940 PMCID: PMC11189830 DOI: 10.2337/db23-0807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17β-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Hak Joo Lee
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| | - Liang Min
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Jingli Gao
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Shane Matta
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Viktor Drel
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Afaf Saliba
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Ian Tamayo
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Richard Montellano
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Leila Hejazi
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Soumya Maity
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Guogang Xu
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Brian I. Grajeda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX
| | - Sourav Roy
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX
| | - Kenneth R. Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Goutam Ghosh Choudhury
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| | - Balakuntalam S. Kasinath
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| | - Kumar Sharma
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
6
|
Lee HS, Kim B, Park T. Genome- and epigenome-wide association studies identify susceptibility of CpG sites and regions for metabolic syndrome in a Korean population. Clin Epigenetics 2024; 16:60. [PMID: 38685121 PMCID: PMC11059751 DOI: 10.1186/s13148-024-01671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/13/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND While multiple studies have investigated the relationship between metabolic syndrome (MetS) and its related traits (fasting glucose, triglyceride, HDL cholesterol, blood pressure, waist circumference) and DNA methylation, our understanding of the epigenetic mechanisms in MetS remains limited. Therefore, we performed an epigenome-wide meta-analysis of blood DNA methylation to identify differentially methylated probes (DMPs) and differentially methylated regions (DMRs) associated with MetS and its components using two independent cohorts comprising a total of 2,334 participants. We also investigated the specific genetic effects on DNA methylation, identified methylation quantitative trait loci (meQTLs) through genome-wide association studies and further utilized Mendelian randomization (MR) to assess how these meQTLs subsequently influence MetS status. RESULTS We identified 40 DMPs and 27 DMRs that are significantly associated with MetS. In addition, we identified many novel DMPs and DMRs underlying inflammatory and steroid hormonal processes. The most significant associations were observed in 3 DMPs (cg19693031, cg26974062, cg02988288) and a DMR (chr1:145440444-145441553) at the TXNIP, which are involved in lipid metabolism. These CpG sites were identified as coregulators of DNA methylation in MetS, TG and FAG levels. We identified a total of 144 cis-meQTLs, out of which only 13 were found to be associated with DMPs for MetS. Among these, we confirmed the identified causal mediators of genetic effects at CpG sites cg01881899 at ABCG1 and cg00021659 at the TANK genes for MetS. CONCLUSIONS This study observed whether specific CpGs and methylated regions act independently or are influenced by genetic effects for MetS and its components in the Korean population. These associations between the identified DNA methylation and MetS, along with its individual components, may serve as promising targets for the development of preventive interventions for MetS.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Forensic Toxicology Division, Daegu Institute, National Forensic Service, Chilgok-gun, 39872, Gyeongsangbuk-do, Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea.
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Taesung Park
- Forensic Toxicology Division, Daegu Institute, National Forensic Service, Chilgok-gun, 39872, Gyeongsangbuk-do, Korea
- Department of Statistics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
7
|
Pu L, Meng Q, Li S, Wang Y, Liu B. TXNRD1 knockdown inhibits the proliferation of endothelial cells subjected to oscillatory shear stress via activation of the endothelial nitric oxide synthase/apoptosis pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119436. [PMID: 36754152 DOI: 10.1016/j.bbamcr.2023.119436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease, and fluid shear stress is a key factor regulating its occurrence and development. Oscillatory shear stress (Oss) is an important pro-atherosclerosis factor. Oss mainly occurs in areas that are susceptible to atherosclerosis, but the exact mechanism of atherosclerosis induction remains unclear. Therefore, starting from the atheroprone phenotype that Oss stimulates abnormal vascular endothelial cell proliferation, this study aimed to reveal the underlying mechanism of Oss-induced atherosclerosis formation and to identify new targets for the prevention and treatment of atherosclerosis. In this study, the gene encoding thioredoxin reductase 1 (TXNRD1), which is closely related to atherosclerosis development and cell proliferation, was screened by analyzing the transcriptome sequencing data of static and Oss-treated human aortic endothelial cells (HAECs). Moreover, this study successfully verified that TXNRD1 mRNA and protein were significantly upregulated in Oss-treated HAECs. Oss significantly promoted the proliferation, migration, and tube formation of HAECs, whereas TXNRD1 knockdown impaired the proliferation, migration, and tube formation of Oss-treated HAECs, and this process was mainly achieved via activation of the apoptosis pathway. To further clarify whether Oss-sensitive TXNRD1 affects the apoptosis rate and proliferative ability of HAECs by regulating the endothelial nitric oxide synthase (eNOS) pathway, we used NG-nitro-L-arginine methyl ester (L-NAME) to inhibit eNOS activity and nitric oxide (NO) production. L-NAME significantly reversed the promoting effect of TXNRD1 knockdown on Oss-treated HAEC apoptosis, and it also abolished the inhibitory effect of TXNRD1 knockdown on the proliferation and S + G2 phase cell mass of Oss-treated HAECs. In conclusion, this study showed that TXNRD1 knockdown inhibited the proliferation of HAECs exposed to Oss by activating the eNOS/apoptosis pathway, revealing that TXNRD1 is involved in the dysregulation of Oss-induced endothelial cell proliferation. These findings provide new directions and insights into the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Luya Pu
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Qingyu Meng
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Yaru Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Ren L, Cui H, Wang Y, Ju F, Cai Y, Gang X, Wang G. The role of lipotoxicity in kidney disease: From molecular mechanisms to therapeutic prospects. Biomed Pharmacother 2023; 161:114465. [PMID: 36870280 DOI: 10.1016/j.biopha.2023.114465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lipotoxicity is the dysregulation of the lipid environment and/or intracellular composition that leads to accumulation of harmful lipids and ultimately to organelle dysfunction, abnormal activation of intracellular signaling pathways, chronic inflammation and cell death. It plays an important role in the development of acute kidney injury and chronic kidney disease, including diabetic nephropathy, obesity-related glomerulopathy, age-related kidney disease, polycystic kidney disease, and the like. However, the mechanisms of lipid overload and kidney injury remain poorly understood. Herein, we discuss two pivotal aspects of lipotoxic kidney injury. First, we analyzed the mechanism of lipid accumulation in the kidney. Accumulating data indicate that the mechanisms of lipid overload in different kidney diseases are inconsistent. Second, we summarize the multiple mechanisms by which lipotoxic species affect the kidney cell behavior, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, dysregulated autophagy, and inflammation, highlighting the central role of oxidative stress. Blocking the molecular pathways of lipid accumulation in the kidney and the damage of the kidney by lipid overload may be potential therapeutic targets for kidney disease, and antioxidant drugs may play a pivotal role in the treatment of kidney disease in the future.
Collapse
Affiliation(s)
- Linan Ren
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China; Institute of Translational Medicine, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Feng Ju
- Department of Orthopedics, Yuci District People's Hospital, Yuci 030600, Shanxi, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Guixia Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
9
|
Zhou X, Xu C, Dong J, Liao L. Role of renal tubular programed cell death in diabetic kidney disease. Diabetes Metab Res Rev 2023; 39:e3596. [PMID: 36401596 PMCID: PMC10078574 DOI: 10.1002/dmrr.3596] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
Abstract
The pathogenic mechanism of diabetic kidney disease (DKD) is involved in various functions; however, its inadequate characterisation limits the availability of effective treatments. Tubular damage is closely correlated with renal function and is thought to be the main contributor to the injury observed in early DKD. Programed cell death (PCD) occurs during the biological development of the living body. Accumulating evidence has clarified the fundamental role of abnormalities in tubular PCD during DKD pathogenesis. Among PCD types, classical apoptosis, autophagic cell death, and pyroptosis are the most studied and will be the focus of this review. Our review aims to elucidate the current knowledge of the mechanism of DKD and the potential therapeutic potential of drugs targeting tubular PCD pathways in DKD.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Yan J, Deng J, Cheng F, Zhang T, Deng Y, Cai Y, Cong W. Thioredoxin-Interacting Protein Inhibited Vascular Endothelial Cell-Induced HREC Angiogenesis Treatment of Diabetic Retinopathy. Appl Biochem Biotechnol 2023; 195:1268-1283. [PMID: 36346561 DOI: 10.1007/s12010-022-04191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Diabetic retinopathy is the most common reason for blindness among employed adults worldwide. Hyperglycemia and the overaccumulation of vascular endothelial growth factor (VEGF) lead to diabetic retinopathy, pathological angiogenesis in diabetic retinopathy, and consequent visual impairment. Expression levels of thioredoxin-interacting protein (TXNIP) substantially increase in retinal endothelial cells in diabetic circumstances. The part of TXNIP in retinal angiogenesis combined with diabetes remains unclear. This study examined the effect of reduced TXNIP expression levels and determined how it affects diabetic retinal angiogenesis. Display of human retinal vascular endothelial cells (HRECs) to moderately high glucose (MHG) encouraged tube formation and cell migration, not cell proliferation. In response to MHG conditions, in HRECs, TXNIP knockdown inhibited the production of reactive oxygen species (ROS), cell migration, tube formation, and the Akt/mTOR activation pathway. In addition, gene silencing of TXNIP decreased the VEGF-triggered angiogenic response in HRECs by preventing activation of both VEGF receptor 2 and the downstream components of the Akt/mTOR pathway signaling. Furthermore, TXNIP knockout mice reduced VEGF-induced or VEGF- and MHG-triggered ex vivo retinal angiogenesis compared to wild-type mice. Finally, our findings revealed that TXNIP knockdown suppressed VEGF- and MHG-triggered angiogenic responses in HRECs and mouse retinas, indicating that TXNIP is a promising therapeutic window against the proliferation of diabetic patients' retinopathy.
Collapse
Affiliation(s)
- Jian Yan
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Jiantao Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Fang Cheng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Tao Zhang
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yixuan Deng
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Yulian Cai
- Ophthalmology Department, Guangdong Province, Longgang District Central Hospital of Shenzhen, Shenzhen, 518117, China
| | - Wendong Cong
- Department of Neurology, Guangdong Province, Longgang District Central Hospital, Longgang Road, Shenzhen, 6082518117, No, China.
| |
Collapse
|
11
|
Sun H, Sun R, Hua Y, Lu Q, Shao X. An update on the role of thioredoxin-interacting protein in diabetic kidney disease: A mini review. Front Med (Lausanne) 2023; 10:1153805. [PMID: 37144033 PMCID: PMC10151556 DOI: 10.3389/fmed.2023.1153805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) was first isolated from Vitamin D3-exposed HL60 cells. TXNIP is the main redox-regulating factor in various organs and tissues. We begin with an overview of the TXNIP gene and protein information, followed by a summary of studies that have shown its expression in human kidneys. Then, we highlight our current understanding of the effect of TXNIP on diabetic kidney disease (DKD) to improve our understanding of the biological roles and signal transduction of TXNIP in DKD. Based on the recent review, the modulation of TXNIP may be considered as a new target in the management of DKD.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Rong Sun
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
| | - Yulin Hua
- The First Clinical Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Qianyi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Ophthalmology, Changshu No. 1 People’s Hospital, Suzhou, Jiangsu, China
- Qianyi Lu,
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Xinyu Shao,
| |
Collapse
|
12
|
Chu H, Du C, Yang Y, Feng X, Zhu L, Chen J, Yang F. MC-LR Aggravates Liver Lipid Metabolism Disorders in Obese Mice Fed a High-Fat Diet via PI3K/AKT/mTOR/SREBP1 Signaling Pathway. Toxins (Basel) 2022; 14:toxins14120833. [PMID: 36548730 PMCID: PMC9784346 DOI: 10.3390/toxins14120833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Obesity, a metabolic disease caused by excessive fat accumulation in the body, has attracted worldwide attention. Microcystin-LR (MC-LR) is a hepatotoxic cyanotoxin which has been reportedly to cause lipid metabolism disorder. In this study, C57BL/6J mice were fed a high-fat diet (HFD) for eight weeks to build obese an animal model, and subsequently, the obese mice were fed MC-LR for another eight weeks, and we aimed to determine how MC-LR exposure affects the liver lipid metabolism in high-fat-diet-induced obese mice. The results show that MC-LR increased the obese mice serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), indicating damaged liver function. The lipid parameters include serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), and liver TG, which were all increased, whilst the high-density lipoprotein cholesterol (HDL-c) was decreased. Furthermore, after MC-LR treatment, histopathological observation revealed that the number of red lipid droplets increased, and that steatosis was more severe in the obese mice. In addition, the lipid synthesis-related genes were increased and the fatty acid β-oxidation-related genes were decreased in the obese mice after MC-LR exposure. Meanwhile, the protein expression levels of phosphorylation phosphatidylinositol 3-kinase (p-PI3K), phosphorylation protein kinase B (p-AKT), phosphorylation mammalian target of rapamycin (p-mTOR), and sterol regulatory element binding protein 1c (SREBP1-c) were increased; similarly, the p-PI3K/PI3K, p-AKT/AKT, p-mTOR/mTOR, and SREBP1/β-actin were significantly up-regulated in obese mice after being exposed to MC-LR, and the activated PI3K/AKT/mTOR/SREBP1 signaling pathway. In addition, MC-LR exposure reduced the activity of superoxide dismutase (SOD) and increased the level of malondialdehyde (MDA) in the obese mice's serum. In summary, the MC-LR could aggravate the HFD-induced obese mice liver lipid metabolism disorder by activating the PI3K/AKT/mTOR/SREBP1 signaling pathway to hepatocytes, increasing the SREBP1-c-regulated key enzymes for lipid synthesis, and blocking fatty acid β-oxidation.
Collapse
Affiliation(s)
- Hanyu Chu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
| | - Can Du
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yue Yang
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha 410219, China
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410078, China
- Correspondence: (J.C.); (F.Y.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
- Xiangya School of Public Health, Central South University, Changsha 410078, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province, Department of Education, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
- Correspondence: (J.C.); (F.Y.)
| |
Collapse
|
13
|
Pan Z, Du G, Li G, Wu D, Chen X, Geng Z. Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:1199-1214. [PMID: 36812035 PMCID: PMC9890340 DOI: 10.5187/jast.2022.e60] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/14/2022]
Abstract
Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.
Collapse
Affiliation(s)
- Ziyi Pan
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Du
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Guoyu Li
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Dongsheng Wu
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China
| | - Xingyong Chen
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China,Corresponding author: Xingyong Chen,
College of Animal Science and Technology, Anhui Agricultural University, Hefei
230036, China. Tel: +86-15605510863, E-mail:
| | - Zhaoyu Geng
- College of Animal Science and Technology,
Anhui Agricultural University, Hefei 230036, China,Corresponding author: Xingyong Chen,
College of Animal Science and Technology, Anhui Agricultural University, Hefei
230036, China. Tel: +86-15605510863, E-mail:
| |
Collapse
|
14
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
15
|
Du C, Zhu Y, Yang Y, Mu L, Yan X, Wu M, Zhou C, Wu H, Zhang W, Wu Y, Zhang G, Hu Y, Ren Y, Shi Y. C1q/tumour necrosis factor-related protein-3 alleviates high-glucose-induced lipid accumulation and necroinflammation in renal tubular cells by activating the adenosine monophosphate-activated protein kinase pathway. Int J Biochem Cell Biol 2022; 149:106247. [PMID: 35753650 DOI: 10.1016/j.biocel.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Lipid accumulation and progressive necroinflammation play pivotal roles in the development of diabetic nephropathy. C1q tumour necrosis factor-related protein-3 (CTRP3) is an adipokine with pleiotropic functions in cell proliferation, glucose and lipid metabolism, and inflammation. However, the mechanism and involvement of CTRP3 in lipid metabolism and the necroinflammation of renal tubular cells remain unclear. Here, we report that CTRP3 expression decreased in a time- and concentration-dependent manner in high glucose-stimulated HK-2 cells. We noted that the overexpression of CTRP3 or recombinant CTRP3 (rCTRP3) treatment prevented high glucose-induced lipid accumulation by inhibiting the expression of sterol regulatory element-binding protein-1 and increasing the expression of peroxisome proliferator-activated receptor-α and ATP-binding cassette A1. Moreover, the nucleotide-binding oligomerisation domain-like receptor protein 3-mediated inflammatory response and mixed lineage kinase domain-like protein-dependent necroinflammation were inhibited by CTRP3 overexpression or rCTRP3 treatment in HK-2 cells cultured in high glucose. Furthermore, lipotoxicity-induced by palmitic acid was found to be involved in necroinflammation in HK-2 cells, and CTRP3 displayed the same protective effect. CTRP3 also activated the adenosine monophosphate-activated protein kinase (AMPK) pathway, whereas adenine 9-β-D-arabinofuranoside, an AMPK inhibitor, replicated the protective effects of CTRP3. Besides, using kidney biopsies from patients with diabetes, we found that decreased CTRP3 expression was accompanied by increased lipid deposition, as well as the structural and functional injury of renal tubular cells. Our findings demonstrate that CTRP3 affects lipid metabolism and necroinflammation in renal tubular cells via the AMPK signalling pathway. Thus, CTRP3 may be a potential therapeutic target in diabetic renal injury.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yan Zhu
- Laboratorical center for Electron Microscopy, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Xue Yan
- Department of Pediatrics, the 2nd Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Chenming Zhou
- Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Zhang
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China
| | - Yanhui Wu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guoyu Zhang
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yue Hu
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University; Key Laboratory of Kidney Diseases of Hebei Province, Shijiazhuang, China; Center of Metabolic Diseases and Cancer research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
16
|
Huang S, Tao R, Zhou J, Qian L, Wu J. Trans-10-Hydroxy-2-Decenoic Acid Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice via Regulating the Inflammasome-Mediated Pyroptotic Pathway and Enhancing Colonic Barrier Function. Mol Nutr Food Res 2022; 66:e2100821. [PMID: 35373915 DOI: 10.1002/mnfr.202100821] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/31/2022] [Indexed: 12/24/2022]
Abstract
SCOPE The objective of this study is to explore the effects of 10-hydroxy-2-decenoic acid (10-HDA), the major fatty acid in royal jelly, on dextran sodium sulfate (DSS)-induced mice ulcerative colitis (UC) and its potential mechanism of action. METHODS AND RESULTS Forty male C57BL/6 mice are randomly divided into five experimental groups: control, DSS, DSS + 25 (or 100)mg kg-1 d-1 10-HDA, and DSS + 200 mg kg-1 d-1 mesalazine (ME). UC is induced in mice using 2.5% DSS in drinking water for 7 days. During the induction, these UC mice are orally administrated 10-HDA or ME per day. Meanwhile, lipopolysaccharide (LPS)/adenosine-triphosphate (ATP)-stimulated THP1 cells are used as a model to test the effects of 10-HDA. 10-HDA reduces DSS-induced pathological damage, reactive oxygen species (ROS) accumulation, neutrophil infiltration, and cytokine production in colonic tissue. Compared with the DSS group, the expressions of thioredoxin interacting protein (TXNIP), NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), cysteinyl aspartate specific proteinase-1 (Caspase-1), gasdermin-D (GSDMD), N-terminal domain of gasdermin-D (N-GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in the colon are decreased after administration of 10-HDA. 10-HDA also elevates the barrier integrity and the expressions of zonula occludens-1 (ZO-1) and Occludin in colonic epithelium exposed to DSS. In THP1 cells, the inflammasome-mediated pyroptosis induced by LPS/ATP is inhibited by 10-HDA pretreatment. CONCLUSION 10-HDA alleviates DSS-induced colitis by regulating the NLRP3 inflammasome-mediated pyroptotic pathway and enhancing colonic barrier function.
Collapse
Affiliation(s)
- Shanshan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Ranran Tao
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, P. R. China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, P. R. China
| | - Jiang Wu
- Department of Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, P. R. China
| |
Collapse
|
17
|
Hu M, Chen Y, Deng F, Chang B, Luo J, Dong L, Lu X, Zhang Y, Chen Z, Zhou J. D-Mannose Regulates Hepatocyte Lipid Metabolism via PI3K/Akt/mTOR Signaling Pathway and Ameliorates Hepatic Steatosis in Alcoholic Liver Disease. Front Immunol 2022; 13:877650. [PMID: 35464439 PMCID: PMC9021718 DOI: 10.3389/fimmu.2022.877650] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective properties and mechanisms of D-mannose against hepatic steatosis in experimental alcoholic liver disease (ALD). Drinking-water supplementation of D-mannose significantly attenuated hepatic steatosis in a standard mouse ALD model established by chronic-binge ethanol feeding, especially hepatocyte lipid deposition. This function of D-mannose on lipid accumulation in hepatocytes was also confirmed using ethanol-treated primary mouse hepatocytes (PMHs) with a D-mannose supplement. Meanwhile, D-mannose regulated lipid metabolism by rescuing ethanol-mediated reduction of fatty acid oxidation genes (PPARα, ACOX1, CPT1) and elevation of lipogenic genes (SREBP1c, ACC1, FASN). PI3K/Akt/mTOR signaling pathway was involved in this effect of D-mannose on lipid metabolism since PI3K/Akt/mTOR pathway inhibitors or agonists could abolish this effect in PMHs. Overall, our findings suggest that D-mannose exhibits its anti-steatosis effect in ALD by regulating hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Mengyao Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Bo Chang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lijun Dong
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengliang Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jia Zhou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Mu L, Chen N, Chen Y, Yang Z, Zhou H, Song S, Shi Y. Blocking REDD1/TXNIP Complex Ameliorates HG-Induced Renal Tubular Epithelial Cell Apoptosis and EMT through Repressing Oxidative Stress. Int J Endocrinol 2022; 2022:6073911. [PMID: 36186658 PMCID: PMC9519289 DOI: 10.1155/2022/6073911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy (DN) has become the most common secondary kidney disease causing end-stage renal disease (ESRD). Nevertheless, the underlying mechanisms responsible for DN remain largely unknown. Regulated in development and DNA damage response 1 (REDD1) is a prooxidative molecule known to contribute to diabetes mellitus and its complications. However, it has not been previously examined whether and how REDD1 can further drive renal tubular epithelial cell (RTEC) apoptosis and epithelial-to-mesenchymal transition in DN. The expression of REDD1 was elevated in the kidneys of DN patients and diabetic mice in this study. By generating the DN model in REDD1 knockout mice, we demonstrated that REDD1 deficiency significantly improved apoptosis and EMT in diabetic mice. In vitro experiments showed that REDD1 generation was induced by high glucose (HG) in HK-2 cells. Similarly, the transfection of REDD1 siRNA plasmid also suppressed HG-induced apoptosis and EMT. Furthermore, we discovered that the inhibition of REDD1 suppressed the expression of Nox4-induced HG and reactive oxygen species (ROS) synthesis in HK-2 cells. In addition, HG could induce endogenous REDD1 and TXNIP to form a powerful complex. In summary, our findings demonstrate that blocking the REDD1/TXNIP complex can prevent HG-induced apoptosis and EMT by inhibiting ROS production, highlighting REDD1 as a valuable therapeutic priority site for DN.
Collapse
Affiliation(s)
- Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050000, China
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
| | - Yakun Chen
- Department of Nephrology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
| | - Huandi Zhou
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050000, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang 050000, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang 050000, China
| |
Collapse
|
19
|
Abstract
Pyroptosis is a recently identified mechanism of programmed cell death related to Caspase-1 that triggers a series of inflammatory reactions by releasing several proinflammatory factors such as IL-1β and IL-18. The process is characterised by the rupture of cell membranes and the release of cell contents through the mediation of gasdermin (GSDM) proteins. GSDMD is an important member of the GSDM family and plays a critical role in the two pathways of pyroptosis. Diabetic nephropathy (DN) is a microvascular complication of diabetes and a major cause of end-stage renal disease. Recently, it was revealed that GSDMD-mediated pyroptosis plays an important role in the occurrence and development of DN. In this review, we focus on two types of kidney cells, tubular epithelial cells and renal podocytes, to illustrate the mechanism of pyroptosis in DN and provide new ideas for the prevention, early diagnosis and molecular therapy of DN.
Collapse
|
20
|
Chen L, Guo Y, Wu Z, Zhao S, Zhang Z, Zheng F, Sun L, Hao Z, Xu C, Wang T, Peng Y. Epicatechin gallate prevents the de novo synthesis of fatty acid and the migration of prostate cancer cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1662-1669. [PMID: 34718375 DOI: 10.1093/abbs/gmab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid metabolism disorder caused by the upregulation of lipogenic genes is a typical feature of prostate cancer. The synthesis of fatty acids is enhanced to accelerate the development of prostate cancer and is considered as a potential therapeutic target. Epicatechin gallate, an active compound of green tea, has been reported to modulate lipid metabolism. In this research, the potential role of epicatechin gallate in prostate cancer cells was evaluated. The results indicated that epicatechin gallate downregulates the expression of acetyl-CoA carboxylase, ATP citrate lyase, and fatty acid synthase in prostate cancer cells and prostate xenograft tissues, suggesting that epicatechin gallate can inhibit de novo fatty acid synthesis. Moreover, epicatechin gallate significantly restrains the migration rather than the viability of prostate cancer cells. PI3K/AKT/mTOR signaling pathway, which exhibits regulatory effect on lipogenesis, is also inhibited under epicatechin gallate treatment, while pretreatment with AKT activator SC79 or mTOR activator MHY1485 blocks the inhibitory effect of epicatechin gallate on the expression of lipogenic genes and the migration of prostate cancer cells. In conclusion, this study revealed that epicatechin gallate impairs the synthesis of fatty acids via inhibition PI3K/AKT/mTOR signaling pathway and then attenuates the migration of prostate cancer cells.
Collapse
Affiliation(s)
- Luyao Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaping Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zixuan Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuwu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhaiyi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Likang Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Hao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Tao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
21
|
Chen N, Song S, Yang Z, Wu M, Mu L, Zhou T, Shi Y. ChREBP deficiency alleviates apoptosis by inhibiting TXNIP/oxidative stress in diabetic nephropathy. J Diabetes Complications 2021; 35:108050. [PMID: 34600826 DOI: 10.1016/j.jdiacomp.2021.108050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
AIMS In the present study, we investigated the effect of carbohydrate responsive element binding protein (ChREBP) on the TXNIP/oxidative stress and apoptosis in diabetic nephropathy. METHODS ChREBP-/- mice (8-week old) were produced using the CRISPR/Cas9 gene editing approach. Diabetes was induced in C57BL/6 mice with streptozotocin. HK-2 cells was transfected with plasmid containing either ChREBP shRNA or TXNIP siRNA. RESULTS Renal expression of ChREBP and thioredoxin-interacting protein (TXNIP) was increased in patients with type 2 diabetes mellitus (T2DM) and diabetic mice. ChREBP deficiency improved renal function, apoptosis as well as endoplasmic reticulum (ER) stress in diabetic mice. In addition, ChREBP deficiency prevented expression levels of TXNIP and NADPH oxidase 4 (Nox4), 8-hydroxydeoxyguanosine (8-OHdG) and heme oxygenase-1 (HO-1) in diabetic kidneys. The increased urinary 8-OHdG level induced by diabetes was also attenuated in ChREBP deficiency mice. Similarly, HG was shown to induce ChREBP expression and nuclear translocation in HK-2 cells. HG-induced apoptosis was inhibited by transfection of ChREBP shRNA plasmid. Moreover, we found that knockdown of ChREBP suppressed HG-induced TXNIP and Nox4 expression, reactive oxygen species (ROS) generation and ER stress in HK-2 cells. Furthermore, TXNIP knockdown effectively abrogated HG-induced apoptosis in HK-2 cells. CONCLUSIONS These results suggest that ChREBP deficiency prevents diabetes-induced apoptosis via inhibiting oxidative stress and ER stress, highlighting ChREBP as a potential therapy target for diabetic nephropathy.
Collapse
Affiliation(s)
- Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, Medical School, Hebei University of Engineering, Handan, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Zhifen Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Lin Mu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China; Department of Nephrology, Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Tengxiao Zhou
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China.
| |
Collapse
|
22
|
Sun H, Chen J, Sun L, Shi B, Li J. Role of Thioredoxin-Interacting Protein in Diabetic Fatty Kidney Induced by Advanced Glycation End-Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11982-11991. [PMID: 34606256 DOI: 10.1021/acs.jafc.1c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced glycation end-products (AGEs) have been identified as the etiological factors associated with the fatty kidney. Thioredoxin-interacting protein (TXNIP) might be a mediator involved in AGE-induced fatty kidney. This study focused on investigating how TXNIP affected the AGE-mediated renal lipid deposition. In an in vivo experiment, the db/db mice injected with the lentiviral vector encoding shRNA targeting TXNIP were given the AIN-76 basal or the high-AGE diet. TXNIP-targeting siRNA-transfected human renal proximal tubular epithelial (HK-2) cells were exposed to AGE-BSA in a study in vitro. The results showed that the silencing of TXNIP reduced tubular lipid droplets and intracellular cholesterol content, as well as upregulated Insig-1 and downregulated HMGCoAR, LDLr, nSREBP-2, and SCAP in the kidneys of the db/db mice, the high-AGE-diet-fed db/db mice, and AGE-BSA-treated HK-2 cells. Furthermore, AGE-BSA enhanced SCAP-SREBP-2 complex formation while promoting their transportation to the Golgi apparatus. However, these could be inhibited by TXNIP silencing in the HK-2 cells. The above findings indicated that TXNIP knockdown mitigated the accumulation of renal tubular lipids in diabetes through the regulation of SCAP, thereby inhibiting the SCAP-SREBP-2 signaling pathway, resulting in reduced cholesterol uptake and synthesis. Therefore, TXNIP might be a potential therapeutic target to treat a diabetic fatty kidney.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Juan Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Lili Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000 China
| |
Collapse
|
23
|
He Y, Yu H, Zhao H, Zhu H, Zhang Q, Wang A, Shen Y, Xu X, Li J. Transcriptomic analysis to elucidate the effects of high stocking density on grass carp (Ctenopharyngodon idella). BMC Genomics 2021; 22:620. [PMID: 34399686 PMCID: PMC8369720 DOI: 10.1186/s12864-021-07924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 01/23/2023] Open
Abstract
Background Grass carp (Ctenopharyngodon idella) is one of the most widely cultivated fishes in China. High stocking density can reportedly affect fish growth and immunity. Herein we performed PacBio long-read single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to evaluate the effects of high stocking density on grass carp transcriptome. Results SMRT sequencing led to the identification of 33,773 genes (14,946 known and 18,827 new genes). From the structure analysis, 8,009 genes were detected with alternative splicing events, 10,219 genes showed alternative polyadenylation sites and 15,521 long noncoding RNAs. Further, 1,235, 962, and 213 differentially expressed genes (DEGs) were identified in the intestine, muscle, and brain tissues, respectively. We performed functional enrichment analyses of DEGs, and they were identified to be significantly enriched in nutrient metabolism and immune function. The expression levels of several genes encoding apolipoproteins and activities of enzymes involved in carbohydrate enzymolysis were found to be upregulated in the high stocking density group, indicating that lipid metabolism and carbohydrate decomposition were accelerated. Besides, four isoforms of grass carp major histocompatibility complex class II antigen alpha and beta chains in the aforementioned three tissue was showed at least a 4-fold decrease. Conclusions The results suggesting that fish farmed at high stocking densities face issues associated with the metabolism and immune system. To conclude, our results emphasize the importance of maintaining reasonable density in grass carp aquaculture. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07924-4.
Collapse
Affiliation(s)
- Yan He
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Honggang Zhao
- Department of Natural Resources, Cornell University, 14853, Ithaca, New York, USA
| | - Hua Zhu
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Qingjing Zhang
- Beijing Key Laboratory of Fishery Biotechnology, Beijing Fisheries Research Institute, 100068, Beijing, China
| | - Anqi Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China. .,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
24
|
Domingues A, Jolibois J, Marquet de Rougé P, Nivet-Antoine V. The Emerging Role of TXNIP in Ischemic and Cardiovascular Diseases; A Novel Marker and Therapeutic Target. Int J Mol Sci 2021; 22:ijms22041693. [PMID: 33567593 PMCID: PMC7914816 DOI: 10.3390/ijms22041693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Thioredoxin interacting protein (TXNIP) is a metabolism- oxidative- and inflammation-related marker induced in cardiovascular diseases and is believed to represent a possible link between metabolism and cellular redox status. TXNIP is a potential biomarker in cardiovascular and ischemic diseases but also a novel identified target for preventive and curative medicine. The goal of this review is to focus on the novelties concerning TXNIP. After an overview in TXNIP involvement in oxidative stress, inflammation and metabolism, the remainder of this review presents the clues used to define TXNIP as a new marker at the genetic, blood, or ischemic site level in the context of cardiovascular and ischemic diseases.
Collapse
Affiliation(s)
- Alison Domingues
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Julia Jolibois
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Perrine Marquet de Rougé
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
| | - Valérie Nivet-Antoine
- INSERM 1140, Innovative Therapies in Haemostasis, Faculty of Pharmacy, Université de Paris, 75006 Paris, France; (A.D.); (J.J.); (P.M.d.R.)
- Clinical Biochemistry Department, Assistance Publique des Hôpitaux de Paris, Necker Hospital, 75015 Paris, France
- Correspondence:
| |
Collapse
|
25
|
Thieme K, Pereira BMV, da Silva KS, Fabre NT, Catanozi S, Passarelli M, Correa-Giannella ML. Chronic advanced-glycation end products treatment induces TXNIP expression and epigenetic changes in glomerular podocytes in vivo and in vitro. Life Sci 2021; 270:118997. [PMID: 33453249 DOI: 10.1016/j.lfs.2020.118997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
Advanced glycation end products (AGEs) play an important role in oxidative stress and inflammation, processes implicated in the development and progression of kidney dysfunction. In the present study, we investigated the participation of the pro-oxidant protein thioredoxin-interacting protein (TXNIP) and of epigenetic mechanisms on kidney tissue (in vivo, in non-diabetic rats) and on terminally differentiated glomerular podocytes (in vitro) chronically exposed to AGEs. AGEs induced total kidney and glomerular TXNIP expression and decreased H3K27me3 content. Concomitant treatment with the antioxidant N-acetyl-cysteine (NAC) reversed only the increased TXNIP expression. TXNIP expression positively correlated with proteinuria and negatively correlated with H3K27me3 content. In vitro studies in podocytes showed that 72 h exposure to AGEs decreased nephrin expression and increased Txnip, Nox4, Col4a1, and epithelial-to-mesenchymal transition (EMT) markers (Acta2, Snail1, and Tgfb1). Podocytes treatment with NAC reversed Nox4, Col4a1, Acta2, and Tgfb1 increased expression but did not abrogate the reduced expression of nephrin. MiR-29a expression was downregulated by AGEs in vivo, but not in vitro. In conclusion, treatment of non-diabetic rats with AGEs induced TXNIP expression and decreased the contents of the repressive epigenetic mark H3K27me3 and of miR-29a, potentially driving injury to glomerular filtration barrier and podocytes dysfunction.
Collapse
Affiliation(s)
- Karina Thieme
- Laboratorio de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Beatriz Maria Veloso Pereira
- Laboratorio de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karolline S da Silva
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Nelly T Fabre
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sérgio Catanozi
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marisa Passarelli
- Laboratorio de Lipides (LIM-10) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratorio de Carboidratos e Radioimunoensaio (LIM-18) do Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Programa de Pos-Graduaçao em Medicina, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil.
| |
Collapse
|
26
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
27
|
Yoshihara E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants (Basel) 2020; 9:E765. [PMID: 32824669 PMCID: PMC7464905 DOI: 10.3390/antiox9080765] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Identification of thioredoxin binding protein-2 (TBP-2), which is currently known as thioredoxin interacting protein (TXNIP), as an important binding partner for thioredoxin (TRX) revealed that an evolutionarily conserved reduction-oxidation (redox) signal complex plays an important role for pathophysiology. Due to the reducing activity of TRX, the TRX/TXNIP signal complex has been shown to be an important regulator for redox-related signal transduction in many types of cells in various species. In addition to its role in redox-dependent regulation, TXNIP has cellular functions that are performed in a redox-independent manner, which largely rely on their scaffolding function as an ancestral α-Arrestin family. Both the redox-dependent and -independent TXNIP functions serve as regulatory pathways in glucose metabolism. This review highlights the key advances in understanding TXNIP function as a master regulator for whole-body glucose homeostasis. The potential for therapeutic advantages of targeting TXNIP in diabetes and the future direction of the study are also discussed.
Collapse
Affiliation(s)
- Eiji Yoshihara
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Lee H, Lee H, Lim Y. Vitamin D 3 improves lipophagy-associated renal lipid metabolism and tissue damage in diabetic mice. Nutr Res 2020; 80:55-65. [PMID: 32693268 DOI: 10.1016/j.nutres.2020.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress and abnormal lipid metabolism in diabetes can trigger renal lipotoxicity, extending to diabetic nephropathy. Vitamin D3 has been known to be involved in lipid metabolism as well as insulin secretion or inflammation. Therefore, we hypothesized that vitamin D3 supplementation attenuated hyperglycemia-induced renal damage in diabetic mice. Diabetes was induced by a 40% kJ high-fat diet with 30 mg/kg body weight of streptozotocin by intraperitoneal injection twice in male C57BL/6J mice. Among diabetic mice (fasting blood glucose > 140 mg/dL), mice were supplemented with 300 ng/kg body weight of vitamin D3 dissolved in olive oil for 12 weeks. Normal control and diabetic control mice were orally administrated with olive oil as a vehicle. Normal control mice were fed with an AIN-93G diet during the experiment. Vitamin D3 supplementation in diabetic mice improved glucose intolerance and kidney function, demonstrated by diminishing glomerular areas. Vitamin D3 supplementation in diabetic mice significantly reduced triglycerides and low-density lipoprotein cholesterol in plasma as well as triglycerides and total cholesterol in the kidney. Furthermore, vitamin D3 supplementation attenuated lipid synthesis, oxidative stress, and apoptosis, accompanied by activation of β-oxidation, antioxidant defense enzymes, and autophagy in diabetic mice. In conclusion, vitamin D3 supplementation ameliorates hyperglycemia-induced renal damage through the regulation of lipid metabolisms, oxidative stress, apoptosis, and autophagy in diabetes. Vitamin D3 could be a promising nutrient to weaken diabetic nephropathy.
Collapse
Affiliation(s)
- Heeseung Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea.
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea.
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
29
|
Bian M, Fan R, Zhao S, Liu W. Targeting the Thioredoxin System as a Strategy for Cancer Therapy. J Med Chem 2019; 62:7309-7321. [PMID: 30963763 DOI: 10.1021/acs.jmedchem.8b01595] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thioredoxin reductase (TrxR) participates in the regulation of redox reactions in organisms. It works mainly via its substrate molecule, thioredoxin, to maintain the redox balance and regulate signal transduction, which controls cell proliferation, differentiation, death, and other important physiological processes. In recent years, increasing evidence has shown that the overactivation of TrxR is related to the development of tumors. The exploration of TrxR-targeted antitumor drugs has attracted wide attention and is expected to provide new therapies for cancer treatment. In this perspective, we highlight the specific relationship between TrxR and apoptotic signaling pathways. The cytoplasm and mitochondria both contain TrxR, resulting in the activation of apoptosis. TrxR activity influences reactive oxygen species (ROS) and further regulates the inflammatory signaling pathway. In addition, we discuss representative TrxR inhibitors with anticancer activity and analyze the challenges in developing TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Mianli Bian
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Rong Fan
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China
| | - Sai Zhao
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,Institute of New Medicine Research , Nanjing Hicin Pharmaceutical Co. Ltd. , Nanjing 210046 , P. R. China
| | - Wukun Liu
- Institute of Chinese Medicine, School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing 210023 , P. R. China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing 210009 , P. R. China
| |
Collapse
|
30
|
FOXO1 Overexpression Attenuates Tubulointerstitial Fibrosis and Apoptosis in Diabetic Kidneys by Ameliorating Oxidative Injury via TXNIP-TRX. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3286928. [PMID: 30962862 PMCID: PMC6431359 DOI: 10.1155/2019/3286928] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Objective The generation of hyperglycemia-induced reactive oxygen species (ROS) is a key event in diabetic nephropathy (DN) development. Since forkhead box class O1 (FOXO1) is associated with oxidative stress and shows a positive effect on DN, its role on renal function and the underlying mechanism is still unclear. Methods We examined the role of FOXO1 in vivo (in a transgenic diabetic mouse model overexpressing Foxo1) and in vitro (in human HK-2 cells with FOXO1 knockin (KI) and knockout (KO) cultured under high glucose). Results Renal proximal tubular cells of kidney biopsies from patients with DN showed tubulointerstitial fibrosis and apoptosis. Accordingly, these proximal tubular injuries were accompanied by the increase of ROS generation in diabetic mice. Tissue-specific Foxo1 overexpression in transgenic mice had a protective effect on the renal function and partially reversed tubular injuries by attenuating the diabetes-induced increase in TXNIP and decrease in the TRX levels. FOXO1 knockin and knockout HK-2 cells were constructed to identify the associations between FoxO1 and TXNIP-TRX using CRISPR/CAS9. Similarly, the effects of FOXO1 KI and KO under high glucose were significantly modulated by the treatment of TRX inhibitor PX-12 and TXNIP small interfering RNA. In addition, TXNIP and TXN were identified as the direct FOXO1 transcriptional targets by chromatin immunoprecipitation. Conclusion The regulatory role of FOXO1/TXNIP-TRX activation in DN can protect against the high glucose-induced renal proximal tubular cell injury by attenuating cellular ROS production. Modulating the FOXO1/TXNIP-TRX pathway may be a new therapeutic target in DN.
Collapse
|
31
|
Wang G, Yan Y, Xu N, Hui Y, Yin D. Upregulation of microRNA-424 relieved diabetic nephropathy by targeting Rictor through mTOR Complex2/Protein Kinase B signaling. J Cell Physiol 2019; 234:11646-11653. [PMID: 30637733 DOI: 10.1002/jcp.27822] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the role of miR-424 in diabetic nephropathy (DN) and its relationship with Rictor in mammalian target of rapamycin (mTOR) C2/Akt signaling. METHODS The western blot analysis and real-time polymerase chain reaction were used to determine the differential expression of Rictor, mTOR, and miR-424 in DN rats. The upregulation of miR-424 was achieved by caudal vein injection of miR-424 mimics. The renal lesion was evaluated by hematoxylin-eosin staining (H&E) and periodic acid schiff staining. The dual-luciferase reporter assay was conducted to determine the binding target of miR-424. The effect of miR-424 upregulation on apoptosis was detected by the terminal deoxynucleotidyl transferase-mediated 2-Deoxyuridine-5-Triphosphate (dUTP) nick-end labeling assay and western blot analysis. RESULTS A significantly lower expression of miR-424 and a significantly higher expression of Rictor and mTOR were found in renal tissues of DN rats. The upregulation of miR-424 improved renal lesion and DN symptoms of blood glucose level, urine protein level, body weight, creatinine level, blood urea nitrogen, and KW/BW ratio. The upregulation of miR-424 could significantly reduce apoptosis rates of tissue cells by decreasing the expression levels of caspase-3 and Bax as well as increasing the level of Bcl-2. Furthermore, Rictor was the direct target for miR-424, and upregulation of miR-424 inhibited Rictor through Akt signaling in renal tissue of DN rats and high-glucose-treated human glomerular mesangial cells. CONCLUSION miR-424 contributes to alleviating the symptoms in DN rat models by targeting Rictor through mTORC2/Akt signaling.
Collapse
Affiliation(s)
- Guofeng Wang
- Department of endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Yongxin Yan
- Department of endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Ning Xu
- Department of endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Yuan Hui
- Department of endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Dong Yin
- Department of endocrinology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, The Affiliated Hospital of Kangda College of Nanjing Medical University Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| |
Collapse
|
32
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N, Wu H, Shi Y, Duan H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol 2018; 478:115-125. [PMID: 30098377 DOI: 10.1016/j.mce.2018.08.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Activation of the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported in diabetic kidney, yet the potential role of NLRP3 inflammasome in DN is not well known. In this study, we explored the role of NLRP3 inflammasome on inflammation and fibrosis in diabetic kidney using NLRP3 knockout mice. Renal expression of NLRP3, caspase-1 p10, interleukin-18 (IL-18) and cleaved IL-1β was increased in diabetic wild-type (WT) mice at 24 weeks. NLRP3 knockout (KO) improved renal function, attenuated glomerular hypertrophy, glomerulosclerosis, mesangial expansion, interstitial fibrosis, inflammation and expression of TGF-β1 and connective tissue growth factor (CTGF), as well as the activation of Smad3 in kidneys of STZ-induced diabetic mice. In addition, NLRP3 KO inhibited expression of thioredoxin-interacting protein (TXNIP) and NADPH oxidase 4 (Nox4) and superoxide production in diabetic kidneys. The diabetes-induced increase in urinary level of 8-hydroxydeoxyguanosine (8-OHdG) was attenuated in NLRP3 KO mice. In vitro experiments, using HK-2 cells, revealed that high glucose (HG)-mediated expression of TXNIP and Nox4 was inhibited by transfection with NLRP3 shRNA plasmid or antioxidant tempol treatment. Silencing of the NLRP3 resulted in reduced generation of reactive oxygen species (ROS) in HK-2 cells under HG conditions. Furthermore, we also found exposure of IL-1β to HK-2 cells induced ROS generation and expression of TXNIP and Nox4. Taken together, inhibition of NLRP3 inflammasome activation inhibits renal inflammation and fibrosis at least in part via suppression of oxidative stress in diabetic nephropathy.
Collapse
Affiliation(s)
- Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Weixia Han
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Chao Liu
- Hebei Key Laboratory of Animal Science, Shijiazhuang, China
| | - Nan Chen
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
| |
Collapse
|
33
|
Qian X, Yang Z, Mao E, Chen E. Regulation of fatty acid synthesis in immune cells. Scand J Immunol 2018; 88:e12713. [PMID: 30176060 DOI: 10.1111/sji.12713] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/20/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Metabolic reprogramming plays a critical role in the important cellular metabolic alterations that occur during the activation of immune cells to enable them to adapt to the extracellular environment. Here, we review recent studies on how substrate availability and metabolites mediate the signalling pathways that regulate fatty acid synthesis (FAS) in different immune cells and how FAS determines cellular fate and function. The major regulators sterol regulatory element-binding proteins and liver X receptors, the key enzyme ATP citrate lyase and the PI3K-Akt-mTOR signalling axis play important roles in de novo FAS during a variety of biological events, including cellular proliferation and differentiation and the development of organelles and intracellular membrane components in immune cells. In addition, the regulation of FAS substantially contributes to the inflammatory response of immune cells. Post-transcriptional modifications in FAS are also closely associated with the functional processes of immune cells. Understanding and investigating the intrinsic regulatory mechanism of FAS is of great significance for developing novel therapies for inflammation-induced diseases.
Collapse
Affiliation(s)
- Xuchen Qian
- Department of Emergency and Critical Care Medicine, First People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency Intensive Care Unit, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency Intensive Care Unit, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency Intensive Care Unit, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Tinkov AA, Bjørklund G, Skalny AV, Holmgren A, Skalnaya MG, Chirumbolo S, Aaseth J. The role of the thioredoxin/thioredoxin reductase system in the metabolic syndrome: towards a possible prognostic marker? Cell Mol Life Sci 2018; 75:1567-1586. [PMID: 29327078 PMCID: PMC11105605 DOI: 10.1007/s00018-018-2745-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022]
Abstract
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell's major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- Trace Element Institute for UNESCO, Lyon, France
- Orenburg State University, Orenburg, Russia
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institute, Stockholm, Sweden
| | | | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
- Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
35
|
Wang L, Liu Z, Chen Z, Huang C, Liu X, Chen C, Liu X, Huang J, Liu L, Lin D. Metabonomic analysis of the therapeutic effect of exendin-4 for the treatment of tBHP-induced injury in mouse glomerulus mesangial cells. Free Radic Res 2018. [PMID: 29526117 DOI: 10.1080/10715762.2018.1449948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Although previous studies have reported the protective effect of glucagon-like peptide-1 (GLP-1) in diabetes nephropathy, the molecular mechanism such as nephroprotection remains elusive. In this study, we explored the molecular mechanism of exendin-4 as an GLP-1 receptor agonist for the treatment of tert-butyl hydroperoxide (t-BHP)-induced injury in mouse glomerulus mesangial cells (SV40 MES 13 cells) via an NMR-based metabonomic analysis. We found that exendin-4 protected mesangial cells from t-BHP-mediated toxicity, decreased the percentage of t-BHP-treated cells undergoing apoptosis, and restored glucose consumption in the t-BHP-treated group. A supervised partial least-squares discriminant analysis (PLS-DA) revealed that the metabolic profiles could be distinguished between the control, t-BHP-treated, and exendin-4-pretreated groups. Our findings indicate that exendin-4 pretreatment can cause distinct changes in energy, glycerol phospholipid, and amino acid metabolism. Our study provides novel insight into the metabolic mechanism of exendin-4-mediated nephroprotective effects.
Collapse
Affiliation(s)
- Linxi Wang
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Zhiqing Liu
- b Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , China
| | - Zhou Chen
- c Department of Pharmacology, College of Pharmacy , Fujian Medical University , Fuzhou , China
| | - Caihua Huang
- d Exercise and Health Laboratory , Xiamen University of Technology , Xiamen , China
| | - Xiaohong Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Can Chen
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Xiaoyin Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Jingze Huang
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Libin Liu
- a Department of Endocrinology and Metabolism, Department of Geriatrics , Fujian Institute of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Donghai Lin
- b Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , China
| |
Collapse
|
36
|
Duan J, Du C, Shi Y, Liu D, Ma J. Thioredoxin-interacting protein deficiency ameliorates diabetic retinal angiogenesis. Int J Biochem Cell Biol 2017; 94:61-70. [PMID: 29203232 DOI: 10.1016/j.biocel.2017.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/12/2017] [Accepted: 11/30/2017] [Indexed: 11/29/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness among working-aged adults around the world. Hyperglycemia and intraocular vascular endothelial growth factor (VEGF) over-accumulation are essential for the progression of diabetic retinopathy, which eventually results in proliferative diabetic retinopathy, characterized by pathologic angiogenesis and impaired vision. Thioredoxin-interacting protein (TXNIP) was highly induced in retinal endothelial cells under diabetic conditions. However, the role of TXNIP in diabetes-associated retinal angiogenesis remains elusive. Here, we investigated whether the absence of TXNIP alters diabetes-associated retinal angiogenesis. Exposure of human retinal microvascular endothelial cells (HRMECs) to moderately high glucose (MHG) promoted cell migration and tube formation, but not proliferation. Knockdown of TXNIP suppressed moderately high glucose (MHG)-induced reactive oxygen species (ROS) generation, migration, tube formation and activation of Akt/mTOR pathway in HRMECs. Moreover, gene silencing of TXNIP inhibited VEGF-induced angiogenic response by blocking VEGFR2 and downstream signal pathway Akt/mTOR activation in HRMECs. Furthermore, TXNIP knockout inhibited VEGF or VEGF and MHG-induced retinal angiogenesis ex vivo compared with wild-type mice. In conclusion, our study demonstrated that TXNIP deficiency inhibited VEGF or/and MHG-induced angiogenic response in HRMECs and mice retinas and suggested TXNIP may be a potential therapy target for treating proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Jialiang Duan
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Danyan Liu
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingxue Ma
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
37
|
Oka SI, Hirata T, Suzuki W, Naito D, Chen Y, Chin A, Yaginuma H, Saito T, Nagarajan N, Zhai P, Bhat S, Schesing K, Shao D, Hirabayashi Y, Yodoi J, Sciarretta S, Sadoshima J. Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. J Biol Chem 2017; 292:18988-19000. [PMID: 28939765 DOI: 10.1074/jbc.m117.807735] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Tsuyoshi Hirata
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Wataru Suzuki
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Daichi Naito
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Yanbin Chen
- the Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215000, China
| | - Adave Chin
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Hiroaki Yaginuma
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Toshiro Saito
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Narayani Nagarajan
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Santosh Bhat
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Kevin Schesing
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Dan Shao
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Yoko Hirabayashi
- the Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Junji Yodoi
- the Department of Biological Responses, Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8397, Japan, and
| | - Sebastiano Sciarretta
- the Department of Medical-Surgical Science and Biotechnologies, University of Rome, Latina 04100, Italy
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101,
| |
Collapse
|
38
|
Kwon G, Uddin MJ, Lee G, Jiang S, Cho A, Lee JH, Lee SR, Bae YS, Moon SH, Lee SJ, Cha DR, Ha H. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: possible role of peroxisomal and mitochondrial biogenesis. Oncotarget 2017; 8:74217-74232. [PMID: 29088780 PMCID: PMC5650335 DOI: 10.18632/oncotarget.18540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are increasingly recognized as a key factor in inflammation and extracellular matrix accumulation in diabetic kidney disease. APX-115 (3-phenyl-1-(pyridin-2-yl)-4-propyl-1-5-hydroxypyrazol HCl) is a novel orally active pan-Nox inhibitor. The objective of this study was to compare the protective effect of APX-115 with a renin-angiotensin system inhibitor (losartan), the standard treatment against kidney injury in diabetic patients, on streptozotocin (STZ)-induced diabetic kidney injury. Diabetes was induced by intraperitoneal injection of STZ at 50 mg/kg/day for 5 days in C57BL/6J mice. APX-115 (60 mg/kg/day) or losartan (1.5 mg/kg/day) was administered orally to diabetic mice for 12 weeks. APX-115 effectively prevented kidney injury such as albuminuria, glomerular hypertrophy, tubular injury, podocyte injury, fibrosis, and inflammation as well as oxidative stress in diabetic mice, similar to losartan. In addition, both APX-115 and losartan treatment effectively inhibited mitochondrial and peroxisomal dysfunction associated with lipid accumulation. Our data suggest that APX-115, a pan-Nox inhibitor, may become a novel therapeutic agent against diabetic kidney disease by maintaining peroxisomal and mitochondrial fitness.
Collapse
Affiliation(s)
- Guideock Kwon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Songling Jiang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Ahreum Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jung Hwa Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sae Rom Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | | | | | - Dae Ryong Cha
- Department of Internal Medicine, Division of Nephrology, Korea University, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
39
|
Feng L, Gu C, Li Y, Huang J. High Glucose Promotes CD36 Expression by Upregulating Peroxisome Proliferator-Activated Receptor γ Levels to Exacerbate Lipid Deposition in Renal Tubular Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1414070. [PMID: 28497039 PMCID: PMC5405368 DOI: 10.1155/2017/1414070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/19/2017] [Accepted: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Diabetic kidney disease (DKD) appears to be closely related to lipid deposition in kidney. The aim of this study was to determine whether high glucose (HG) exacerbated lipid deposition by increasing CD36 expression via AKT-PPARγ signaling pathway. Our results showed that HG activated AKT signaling pathway, followed by an increase in PPARγ that induced CD36 overexpression, ultimately causing lipid deposition in HK-2 cells. We also found that inhibition of AKT-PPARγ signaling pathway or knockdown of CD36 could reduce HG-induced lipid accumulation in HK-2 cells. These results indicated that AKT-PPARγ signaling pathway mediated HG-induced lipid deposition by upregulating CD36 expression in HK-2 cells and that inhibition of AKT-PPARγ signaling pathway had the potential beneficial effects of reducing lipid deposition in diabetic kidney.
Collapse
Affiliation(s)
- Lei Feng
- Graduate School, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chengwu Gu
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| | - Yanxia Li
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| | - Jiasui Huang
- Hospital Infection Control Department, The Suining Central Hospital, Suining 629000, China
| |
Collapse
|
40
|
Du E, Xiao L, Hurley MM. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice. J Cell Physiol 2016; 232:610-616. [PMID: 27306296 DOI: 10.1002/jcp.25458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
Abstract
High molecular weight FGF2 transgenic mice (HMWTg) phenocopy the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with phosphate wasting and abnormal fibroblast growth factor (FGF23), fibroblast growth factor receptor (FGFR), Klotho and mitogen activated protein kinases (MAPK) signaling in kidney. In this study, we assessed whether short-term (24 h) in vivo administration of FGF23 neutralizing antibody (FGF23Ab) could rescue hypophosphatemia and impaired FGFR signaling in kidneys of HMWTg male mice. Bone mineral density and bone mineral content in 1-month-old HMWTg mice were significantly reduced compared with Control/VectorTg mice. Serum FGF23 was significantly increased in HMWTg compared with VectorTg. Serum phosphate was significantly reduced in HMWTg and was rescued by FGF23Ab. Serum parathyroid hormone (PTH) was significantly increased in HMWTg but was not reduced by FGF23Ab. 1, 25(OH)2 D was inappropriately normal in serum of HMWTg and was significantly increased in both Vector and HMWTg by FGF23Ab. Analysis of HMWTg kidneys revealed significantly increased mRNA expression of the FGF23 co-receptor Klotho, transcription factor mRNAs for early growth response-1 transcription factor (Egr-1), and c-fos were all significantly decreased by FGF23Ab. A significant reduction in the phosphate transporter Npt2a mRNA was also observed in HMWTg kidneys, which was increased by FGF23Ab. FGF23Ab reduced p-FGFR1, p-FGFR3, KLOTHO, p-ERK1/2, C-FOS, and increased NPT2A protein in HMWTg kidneys. We conclude that FGF23 blockade rescued hypophosphatemia by regulating FGF23/FGFR downstream signaling in HMWTg kidneys. Furthermore, HMWFGF2 isoforms regulate PTH expression independent of FGF23/FGFR signaling. J. Cell. Physiol. 232: 610-616, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- E Du
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - L Xiao
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - M M Hurley
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|