1
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
2
|
Huang J, Zhu Y, Liu Y, Zhang R, Zhang Z, Liu J, Zhang Z, Liang Y, Ma B. The cold-inducible RNA-binding protein-Thioredoxin 1 pathway ameliorates mitochondrial dysfunction and mitochondrial dynamin-related protein 1 level in the hippocampus of aged mice with perioperative neurocognitive dysfunction. CNS Neurosci Ther 2024; 30:e14433. [PMID: 37641878 PMCID: PMC10915978 DOI: 10.1111/cns.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND As a multi-disease model, neuroinflammation, mitochondrial dysfunction, and oxidative stress might be involved in the pathogenic process of perioperative neurocognitive dysfunction (PND). Dynamin-related protein 1 (Drp1) could mediate mitochondrial fission and play important roles in mitochondrial dynamic homeostasis and mitochondria function. The Drp1 may be involved in PND development. The cold-inducible RNA-binding protein (Cirbp) could bind to the 3'-UTR of the thioredoxin 1 (Trx1) mRNA, control oxidative stress, and improve mitochondrial function. In this study, we hypothesized that the Cirbp-Trx1 pathway could ameliorate mitochondrial dysfunction and Drp1 levels in PND mice. METHODS Differentially expressed genes were screened using the Gene Expression Omnibus (GEO) database GSE95426 and validated using PCR. Eighteen-month-old C57BL/6 mice were subjected to tibial fracture surgery to generate a PND model. Cirbp was upregulated by hippocampal stereotaxic injections of over-Cirbp plasmid according to the manufacturer's instructions for the in vivo DNA transfection reagent. Cirbp expression was measured using western blot (WB) and immunofluorescence (IF). The Morris water maze (MWM) was used to assess cognitive function. After behavioral testing, the hippocampal tissue was extracted to examine changes in mitochondrial Drp1, mitochondrial function, neuroinflammation, and oxidative stress. RESULTS Differential gene screening showed that Cirbp expression was significantly downregulated (fold change >1.5, p = 0.003272) in the PND model. In this study, we also found that Cirbp protein levels were downregulated, accompanied by an impairment of cognition, a decrease in superoxide dismutase (SOD) activity, and an increase in malondialdehyde (MDA) content, mitochondrial Drp1 levels, neuroinflammation, and apoptosis. Cirbp overexpression increased Trx1 protein levels and reversed the damage. However, this protective effect was abolished by PX-12 treatment with a Trx1 inhibitor. CONCLUSIONS The Cirbp-Trx1 pathway may regulate mitochondrial dysfunction and mitochondrial Drp1 expression in the hippocampus of PND mice to ameliorate cognitive dysfunction.
Collapse
Affiliation(s)
- Jingyao Huang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Yongliang Zhu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Yongxin Liu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Rui Zhang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Zhenjiang Zhang
- Department of Thoracic SurgeryWeifang People's HospitalWeifangChina
| | - Jie Liu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Zhihao Zhang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Yingxia Liang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| | - Baoyu Ma
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of AnesthesiologyWeifang Medical UniversityWeifangChina
| |
Collapse
|
3
|
He CF, Xiong W, Li XF, Jiang GZ, Zhang L, Liu ZS, Liu WB. The P4' Peptide-Carrying Bacillus subtilis in Cottonseed Meal Improves the Chinese Mitten Crab Eriocheir sinensis Innate Immunity, Redox Defense, and Growth Performance. AQUACULTURE NUTRITION 2024; 2024:3147505. [PMID: 38374819 PMCID: PMC10876306 DOI: 10.1155/2024/3147505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.
Collapse
Affiliation(s)
- Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Zi-Shang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
4
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Tepebaşi MY, Aşci H, Coşan S, Sevük MA, Karakuyu NF, Özmen Ö. Irbesartan has a curative effect on lipopolysaccharide-induced cardiotoxicity by antioxidant and antiapoptotic pathways. Rev Port Cardiol 2023; 42:895-903. [PMID: 37385588 DOI: 10.1016/j.repc.2023.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 07/01/2023] Open
Abstract
INTRODUCTION AND OBJECTIVE Lipopolysaccharide (LPS) has been associated with myocardial inflammation, oxidative stress, apoptosis, and cardiac dysfunction, as well as death by causing sepsis. In this study, we investigated the effect of irbesartan (IRB), an angiotensin receptor antagonist, on cardiotoxicity caused by LPS. METHODS The experiment involved 24 Wistar albino rats divided into three groups of eight: control, LPS (5 mg/kg), and LPS (5 mg/kg)+IRB (3 mg/kg). Parameters including total oxidative status, total antioxidant status, oxidative stress index, and ischemia-modified albumin were measured to assess oxidative stress in heart tissues and serum. Serum CK, CK-MB, and LDH levels were measured spectrophotometrically. RT-qPCR was used to detect the mRNA expression levels of Bcl-2, BAX, p53, caspase-3, and sirtuin 1. Tissues taken from the heart and aorta were examined by immunohistochemistry and histopathology. RESULTS While there was an increase in the parameters indicating heart damage, oxidative stress, and apoptosis in the group given LPS, there was an improvement in all parameters and heart damage in the group treated with IRB. CONCLUSION As a result of our study, we determined that IRB has an ameliorating effect on myocardial damage caused by oxidative stress and apoptosis developed by the LPS-induced sepsis model.
Collapse
Affiliation(s)
| | - Halil Aşci
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, TR, Turkey
| | - Samet Coşan
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, TR, Turkey
| | | | - Nasıf Fatih Karakuyu
- Department of Medical Pharmacology, University of Süleyman Demirel, Isparta, TR, Turkey
| | - Özlem Özmen
- Department of Pathology, University of Mehmet Akif Ersoy, Burdur, TR, Turkey
| |
Collapse
|
6
|
Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The Importance of Thioredoxin-1 in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12051078. [PMID: 37237944 DOI: 10.3390/antiox12051078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thioredoxin-1 (Trx-1) is a multifunctional protein ubiquitously found in the human body. Trx-1 plays an important role in various cellular functions such as maintenance of redox homeostasis, proliferation, and DNA synthesis, but also modulation of transcription factors and control of cell death. Thus, Trx-1 is one of the most important proteins for proper cell and organ function. Therefore, modulation of Trx gene expression or modulation of Trx activity by various mechanisms, including post-translational modifications or protein-protein interactions, could cause a transition from the physiological state of cells and organs to various pathologies such as cancer, and neurodegenerative and cardiovascular diseases. In this review, we not only discuss the current knowledge of Trx in health and disease, but also highlight its potential function as a biomarker.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Leonie Kraft
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Moritz Schanz
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Jörg Latus
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Severin Schricker
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| |
Collapse
|
7
|
Yalameha B, Nejabati HR, Nouri M. Cardioprotective potential of vanillic acid. Clin Exp Pharmacol Physiol 2023; 50:193-204. [PMID: 36370144 DOI: 10.1111/1440-1681.13736] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Nowadays, cardiovascular diseases (CVDs) are a global threat to public health, accounting for almost one-third of all deaths worldwide. One of the key mechanistic pathways contributing to the development of CVDs, including cardiotoxicity (CTX) and myocardial ischaemia-reperfusion injury (MIRI) is oxidative stress (OS). Increased generation of reactive oxygen species (ROS) is closely associated with decreased antioxidant capacity and mitochondrial dysfunction. Currently, despite the availability of modern pharmaceuticals, dietary-derived antioxidants are becoming more popular in developed societies to delay the progression of CVDs. One of the antioxidants derived from herbs, fruits, whole grains, juices, beers, and wines is vanillic acid (VA), which, as a phenolic compound, possesses different therapeutic properties, including cardioprotective. Based on experimental evidence, VA improves mitochondrial function as a result of the reduction in ROS production, aggravates antioxidative status, scavenges free radicals, and reduces levels of lipid peroxidation, thereby decreasing cardiac dysfunction, in particular CTX and MIRI. Considering the role of OS in the pathophysiology of CVDs, the purpose of this study is to comprehensively address recent evidence on the antioxidant importance of VA in the cardiovascular system.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Li J, Ruan S, Jia J, Li Q, Jia R, Wan L, Yang X, Teng P, Peng Q, Shi YD, Yu P, Pan Y, Duan ML, Liu WT, Zhang L, Hu L. Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway. J Neuroinflammation 2023; 20:22. [PMID: 36737785 PMCID: PMC9896749 DOI: 10.1186/s12974-022-02670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Postoperative pain is a serious clinical problem with a poorly understood mechanism, and lacks effective treatment. Hydrogen (H2) can reduce neuroinflammation; therefore, we hypothesize that H2 may alleviate postoperative pain, and aimed to investigate the underlying mechanism. METHODS Mice were used to establish a postoperative pain model using plantar incision surgery. Mechanical allodynia was measured using the von Frey test. Cell signaling was assayed using gelatin zymography, western blotting, immunohistochemistry, and immunofluorescence staining. Animals or BV-2 cells were received with/without ASK1 and Trx1 inhibitors to investigate the effects of H2 on microglia. RESULTS Plantar incision surgery increased MMP-9 activity and ASK1 phosphorylation in the spinal cord of mice. MMP-9 knockout and the ASK1 inhibitor, NQDI-1, attenuated postoperative pain. H2 increased the expression of Trx1 in the spinal cord and in BV-2 cells. H2 treatment mimicked NQDI1 in decreasing the phosphorylation of ASK1, p38 and JNK. It also reduced MMP-9 activity, downregulated pro-IL-1β maturation and IBA-1 expression in the spinal cord of mice, and ameliorated postoperative pain. The protective effects of H2 were abolished by the Trx1 inhibitor, PX12. In vitro, in BV-2 cells, H2 also mimicked NQDI1 in inhibiting the phosphorylation of ASK1, p38, and JNK, and also reduced MMP-9 activity and decreased IBA-1 expression induced by LPS. The Trx1 inhibitor, PX12, abolished the protective effects of H2 in BV-2 cells. CONCLUSIONS For the first time, the results of our study confirm that H2 can be used as a therapeutic agent to alleviate postoperative pain through the Trx1/ASK1/MMP9 signaling pathway. MMP-9 and ASK1 may be the target molecules for relieving postoperative pain.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019 Jiangsu China
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Shirong Ruan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Jinhui Jia
- Department of Orthopedics, Jiangsu Province Hospital of Integration of Chinese and Western Medicine, Nanjing, 210029 Jiangsu China
| | - Qian Li
- Department of Anesthesiology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Rumeng Jia
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Li Wan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Xing Yang
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Peng Teng
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Qilin Peng
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Ya-dan Shi
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100 Jiangsu China
| | - Pan Yu
- Department of Burn and Plastic, Jingling Hospital, School of Medicine, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Man-lin Duan
- Department of Anesthesiology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019 Jiangsu China
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210002 Jiangsu China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| | - Li Zhang
- Department of Anesthesiology, Children’s Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008 Jiangsu China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210029 Jiangsu China
| |
Collapse
|
9
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
10
|
Mokhtari B, Yavari R, Badalzadeh R, Mahmoodpoor A. An Overview on Mitochondrial-Based Therapies in Sepsis-Related Myocardial Dysfunction: Mitochondrial Transplantation as a Promising Approach. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3277274. [PMID: 35706715 PMCID: PMC9192296 DOI: 10.1155/2022/3277274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022]
Abstract
Sepsis is defined as a life-threatening organ failure due to dysregulated host response to infection. Despite current advances in our knowledge about sepsis, it is still considered as a major global health challenge. Myocardial dysfunction is a well-defined manifestation of sepsis which is related to worse outcomes in septic patients. Given that the heart is a mitochondria-rich organ and the normal function of mitochondria is essential for successful modulation of septic response, the contribution of mitochondrial damage in sepsis-related myocardial dysfunction has attracted the attention of many scientists. It is widely accepted that mitochondrial damage is involved in sepsis-related myocardial dysfunction; however, effective and potential treatment modalities in clinical setting are still lacking. Mitochondrial-based therapies are potential approaches in sepsis treatment. Although various therapeutic strategies have been used for mitochondrial function improvement, their effects are limited when mitochondria undergo irreversible alterations under septic challenge. Therefore, application of more effective approaches such as mitochondrial transplantation has been suggested. This review highlights the crucial role of mitochondrial damage in sepsis-related myocardial dysfunction, then provides an overview on mitochondrial-based therapies and current approaches to mitochondrial transplantation as a novel strategy, and proposes future directions for more researches in this field.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Yavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Intensive Care Unit, Emam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Evidence-Based Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Petroni RC, de Oliveira SJS, Fungaro TP, Ariga SKK, Barbeiro HV, Soriano FG, de Lima TM. Short-term Obesity Worsens Heart Inflammation and Disrupts Mitochondrial Biogenesis and Function in an Experimental Model of Endotoxemia. Inflammation 2022; 45:1985-1999. [PMID: 35411498 DOI: 10.1007/s10753-022-01669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Cardiomyopathy is a well-known complication of sepsis that may deteriorate when accompanied by obesity. To test this hypothesis we fed C57black/6 male mice for 6 week with a high fat diet (60% energy) and submitted them to endotoxemic shock using E. coli LPS (10 mg/kg). Inflammatory markers (cytokines and adhesion molecules) were determined in plasma and heart tissue, as well as heart mitochondrial biogenesis and function. Obesity markedly shortened the survival rate of mouse after LPS injection and induced a persistent systemic inflammation since TNFα, IL-1β, IL-6 and resistin plasma levels were higher 24 h after LPS injection. Heart tissue inflammation was significantly higher in obese mice, as detected by elevated mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα). Obese animals presented reduced maximum respiratory rate after LPS injection, however fatty acid oxidation increased in both groups. LPS decreased mitochondrial DNA content and mitochondria biogenesis factors, such as PGC1α and PGC1β, in both groups, while NRF1 expression was significantly stimulated in obese mice hearts. Mitochondrial fusion/fission balance was only altered by obesity, with no influence of endotoxemia. Obesity accelerated endotoxemia death rate due to higher systemic inflammation and decreased heart mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Ricardo Costa Petroni
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suelen Jeronymo Souza de Oliveira
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Pineda Fungaro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suely K K Ariga
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Francisco Garcia Soriano
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil.
| |
Collapse
|
12
|
Aboulgheit A, Karbasiafshar C, Zhang Z, Sabra M, Shi G, Tucker A, Sodha N, Abid MR, Sellke FW. Lactobacillus plantarum probiotic induces Nrf2-mediated antioxidant signaling and eNOS expression resulting in improvement of myocardial diastolic function. Am J Physiol Heart Circ Physiol 2021; 321:H839-H849. [PMID: 34506225 PMCID: PMC8616611 DOI: 10.1152/ajpheart.00278.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Yorkshire swine were fed standard diet (n = 7) or standard diet containing applesauce rich in caffeic acid with Lactobacillus plantarum (n = 7) for 3 wk. An ameroid constrictor was next placed around the left coronary circumflex artery, and the dietary regimens were continued. At 14 wk, cardiac function, myocardial perfusion, vascular density, and molecular signaling in ischemic myocardium were evaluated. The L. plantarum-applesauce augmented NF-E2-related factor 2 (Nrf2) in the ischemic myocardium and induced Nrf2-regulated antioxidant enzymes heme oxygenase-1 (HO-1), NADPH dehydrogenase quinone 1 (NQO-1), and thioredoxin reductase (TRXR-1). Improved left ventricular diastolic function and decreased myocardial collagen expression were seen in animals receiving the L. plantarum-applesauce supplements. The expression of endothelial nitric oxide synthase (eNOS) was increased in ischemic myocardial tissue of the treatment group, whereas levels of asymmetric dimethyl arginine (ADMA), hypoxia inducible factor 1α (HIF-1α), and phosphorylated MAPK (pMAPK) were decreased. Collateral-dependent myocardial perfusion was unaffected, whereas arteriolar and capillary densities were reduced as determined by α-smooth muscle cell actin and CD31 immunofluorescence in ischemic myocardial tissue. Dietary supplementation with L. plantarum-applesauce is a safe and effective method of enhancing Nrf2-mediated antioxidant signaling cascade in ischemic myocardium. Although this experimental diet was associated with a reduction in hypoxic stimuli, decreased vascular density, and without any change in collateral-dependent perfusion, the net effect of an increase in antioxidant activity and eNOS expression resulted in improvement in diastolic function.NEW & NOTEWORTHY Colonization of the gut microbiome with certain strains of L. Plantarum has been shown to convert caffeic acid readily available in applesauce to 4-vinyl-catechol, a potent activator of the Nrf2 antioxidant defense pathway. In this exciting study, we show that simple dietary supplementation with L. Plantarum-applesauce-mediated Nrf2 activation supports vascular function, ameliorates myocardial ischemic diastolic dysfunction, and upregulates expression of eNOS.
Collapse
Affiliation(s)
- Ahmed Aboulgheit
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Zhiqi Zhang
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Aja Tucker
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Neel Sodha
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
13
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
14
|
Ren X, Lv J, Fu Y, Zhang N, Zhang C, Dong Z, Chudhary M, Zhong S, Kong L, Kong H. Upregulation of thioredoxin contributes to inhibiting diabetic hearing impairment. Diabetes Res Clin Pract 2021; 179:109025. [PMID: 34454003 DOI: 10.1016/j.diabres.2021.109025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
AIMS Hair cell reduction was related to diabetes-induced hearing loss. Oxidative stress, endoplasmic reticulum stress, and autophagy participate in this process. Thioredoxin (Trx) is a protein with many biological functions which can regulate them. In this study, aiming to clarify protective effect of Trx on diabetic hearing loss and to identify an early potential therapeutic target for diabetic hearing impairment in the future. METHODS Trx transgenic (Tg) mice were used to establish a diabetic model by intraperitoneally injecting streptozotocin (STZ) and with/without SF or PX12 treatment. Succinate dehydrogenase (SDH) staining was used to evaluate the loss of hair cells. The relative expression of related proteins and genes was detected using western blotting and qRT-PCR. RESULTS In vivo, loss of outer hair cells was observed. However, it can be delayed Trx overexpression. Moreover, the expression of PGC-1α, bcl-2 and LC3 was increased in Tg(+)-DM mice compared with Tg(-)-DM mice. The expression of ASK1, Txnip, GRP78, CHOP and p62 was decreased in Tg(+)-DM mice compared with Tg(-)-DM mice. CONCLUSIONS Upregulation of Trx protects diabetes-induced cochlear hair cells reduction. The underlying mechanisms were related to the regulation of ER stress through ASK1 and the mitochondrial pathway or autophagy via Txnip.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China; Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Jinjuan Lv
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Yuzhen Fu
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Na Zhang
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Chenghong Zhang
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Zhenghao Dong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Maryam Chudhary
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China
| | - Shiwen Zhong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China
| | - Li Kong
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, LiaoNing Province, China.
| | - Hui Kong
- Department of Otorhinolaryngology of the Second Hospital, Dalian Medical University, Dalian 116023, LiaoNing Province, China.
| |
Collapse
|
15
|
Sepsis-Induced Myocardial Dysfunction (SIMD): the Pathophysiological Mechanisms and Therapeutic Strategies Targeting Mitochondria. Inflammation 2021; 43:1184-1200. [PMID: 32333359 DOI: 10.1007/s10753-020-01233-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sepsis is a lethal syndrome with multiple organ failure caused by an inappropriate host response to infection. Cardiac dysfunction is one of the important complications of sepsis, termed sepsis-induced myocardial dysfunction (SIMD), which is characterized by systolic and diastolic dysfunction of both sides of the heart. Mechanisms that contribute to SIMD include an excessive inflammatory response, altered circulatory, microvascular status, nitric oxide (NO) synthesis impairment, endothelial dysfunction, disorders of calcium regulation, cardiac autophagy anomaly, autonomic nervous system dysregulation, metabolic reprogramming, and mitochondrial dysfunction. The role of mitochondrial dysfunction, which is characterized by structural abnormalities, increased oxidative stress, abnormal opening of the mitochondrial permeability transition pore (mPTP), mitochondrial uncoupling, and disordered quality control systems, has been gaining increasing attention as a central player in the pathophysiology of SIMD. The disruption of homeostasis within the organism induced by mitochondrial dysfunction may also be an important aspect of SIMD development. In addition, an emerging therapy strategy targeting mitochondria, namely, metabolic resuscitation, seems promising. The current review briefly introduces the mechanism of SIMD, highlights how mitochondrial dysfunction contributes to SIMD, and discusses the role of metabolic resuscitation in the treatment of SIMD.
Collapse
|
16
|
Liu L, Yan M, Yang R, Qin X, Chen L, Li L, Si J, Li X, Ma K. Adiponectin Attenuates Lipopolysaccharide-induced Apoptosis by Regulating the Cx43/PI3K/AKT Pathway. Front Pharmacol 2021; 12:644225. [PMID: 34084134 PMCID: PMC8167433 DOI: 10.3389/fphar.2021.644225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Cardiomyocyte apoptosis is a crucial factor leading to myocardial dysfunction. Adiponectin (APN) has a cardiomyocyte-protective impact. Studies have shown that the connexin43 (Cx43) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathways play an important role in the heart, but whether APN plays a protective role by regulating these pathways is unclear. Our study aimed to confirm whether APN protects against lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis and to explore whether it plays an important role through regulating the Cx43 and PI3K/AKT signaling pathways. In addition, our research aimed to explore the relationship between the Cx43 and PI3K/AKT signaling pathways. In vitro experiments: Before H9c2 cells were treated with LPS for 24 h, they were pre-treated with APN for 2 h. The cytotoxic effect of APN on H9c2 cells was evaluated by a CCK-8 assay. The protein levels of Bax, Bcl2, cleaved caspase-3, cleaved caspase-9, Cx43, PI3K, p-PI3K, AKT and p-AKT were evaluated by Western blot analysis, and the apoptosis rate was evaluated by flow cytometry. APN attenuated the cytotoxicity induced by LPS. LPS upregulated Bax, cleaved caspase-3 and cleaved caspase-9 and downregulated Bcl2 in H9c2 cells; however, these effects were attenuated by APN. In addition, LPS upregulated Cx43 expression, and APN downregulated Cx43 expression and activated the PI3K/AKT signaling pathway. LPS induced apoptosis and inhibited PI3K/AKT signaling pathway in H9c2 cells, and these effects were attenuated by Gap26 (a Cx43 inhibitor). Moreover, the preservation of APN expression was reversed by LY294002 (a PI3K/AKT signaling pathway inhibitor). In vivo experiments: In C57BL/6J mice, a sepsis model was established by intraperitoneal injection of LPS, and APN was injected into enterocoelia. The protein levels of Bax, Bcl2, cleaved caspase-3, and Cx43 were evaluated by Western blot analysis, and immunohistochemistry was used to detect Cx43 expression and localization in myocardial tissue. LPS upregulated Bax and cleaved caspase-3 and downregulated Bcl2 in sepsis; however, these effects were attenuated by APN. In addition, the expression of Cx43 was upregulated in septic myocardial tissue, and APN downregulated Cx43 expression in septic myocardial tissue. In conclusion, both in vitro and in vivo, the data demonstrated that APN can protect against LPS-induced apoptosis during sepsis by modifying the Cx43 and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Luqian Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuqing Qin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Ling Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
17
|
dos Santos PP, Rafacho BPM, Gonçalves AF, Pires VCM, Roscani MG, Azevedo PS, Polegato BF, Minicucci MF, Fernandes AAH, Tanni SE, Zornoff LAM, de Paiva SAR. Vitamin D Supplementation Induces Cardiac Remodeling in Rats: Association with Thioredoxin-Interacting Protein and Thioredoxin. Arq Bras Cardiol 2021; 116:970-978. [PMID: 34008824 PMCID: PMC8121481 DOI: 10.36660/abc.20190633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Vitamin D (VD) has been shown to play an important role in cardiac function. However, this vitamin exerts a biphasic "dose response" curve in cardiovascular pathophysiology and may cause deleterious effects, even in non-toxic doses. VD exerts its cellular functions by binding to VD receptor. Additionally, it was identified that the thioredoxin-interacting protein (TXNIP) expression is positively regulated by VD. TXNIP modulate different cell signaling pathways that may be important for cardiac remodeling. OBJECTIVE To evaluate whether VD supplementation lead to cardiac remodeling and if TXNIP and thioredoxin (Trx) proteins are associated with the process. METHODS A total of 250 Male Wistar rats were allocated into three groups: control (C, n=21), with no VD supplementation; VD3 (n = 22) and VD10 (n=21), supplemented with 3,000 and 10,000 IU of VD/ kg of chow respectively, for two months. The groups were compared by one-way analysis of variance (ANOVA) and Holm-Sidak post hoc analysis, (variables with normal distribution), or by Kruskal-Wallis test and Dunn's test post hoc analysis. The significance level for all tests was 5%. RESULTS TXNIP protein expression was higher and Trx activity was lower in VD10. The animals supplemented with VD showed increased lipid hydroperoxide and decreased superoxide dismutase and glutathione peroxidase. The protein Bcl-2 was lower in VD10. There was a decrease in fatty acid β-oxidation, tricarboxylic acid cycle and electron transport chain with shift to increase in glycolytic pathway. CONCLUSION VD supplementation led to cardiac remodeling and this process may be modulated by TXNIP and Trx proteins and consequently oxidative stress.
Collapse
Affiliation(s)
- Priscila P. dos Santos
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
- UNESPInstituto de Biociências de BotucatuBotucatuSPBrasilInstituto de Biociências de Botucatu-UNESP, Botucatu, SP - Brasil.
| | - Bruna P. M. Rafacho
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Andrea F. Gonçalves
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Vanessa C. M. Pires
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Meliza G. Roscani
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Paula S. Azevedo
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Bertha F. Polegato
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Marcos F. Minicucci
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Ana Angélica H. Fernandes
- UNESPInstituto de Biociências de BotucatuBotucatuSPBrasilInstituto de Biociências de Botucatu-UNESP, Botucatu, SP - Brasil.
| | - Suzana E. Tanni
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Leonardo A. M. Zornoff
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
| | - Sergio A. R. de Paiva
- UNESPFaculdade de Medicina de BotucatuBotucatuSPBrasilFaculdade de Medicina de Botucatu – UNESP, Botucatu, SP - Brasil.
- Centro de Pesquisa em AlimentosSão PauloSPBrasilCentro de Pesquisa em Alimentos, São Paulo, SP - Brasil.
| |
Collapse
|
18
|
Regulation of Mitochondrial Homeostasis by sAC-Derived cAMP Pool: Basic and Translational Aspects. Cells 2021; 10:cells10020473. [PMID: 33671810 PMCID: PMC7926680 DOI: 10.3390/cells10020473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
In contrast to the traditional view of mitochondria being solely a source of cellular energy, e.g., the "powerhouse" of the cell, mitochondria are now known to be key regulators of numerous cellular processes. Accordingly, disturbance of mitochondrial homeostasis is a basic mechanism in several pathologies. Emerging data demonstrate that 3'-5'-cyclic adenosine monophosphate (cAMP) signalling plays a key role in mitochondrial biology and homeostasis. Mitochondria are equipped with an endogenous cAMP synthesis system involving soluble adenylyl cyclase (sAC), which localizes in the mitochondrial matrix and regulates mitochondrial function. Furthermore, sAC localized at the outer mitochondrial membrane contributes significantly to mitochondrial biology. Disturbance of the sAC-dependent cAMP pools within mitochondria leads to mitochondrial dysfunction and pathology. In this review, we discuss the available data concerning the role of sAC in regulating mitochondrial biology in relation to diseases.
Collapse
|
19
|
Yao Y, Lawrence DA. Susceptibility to COVID-19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants. J Biochem Mol Toxicol 2021; 35:e22626. [PMID: 32905655 PMCID: PMC9340490 DOI: 10.1002/jbt.22626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 is a novel betacoronavirus that has caused the global health crisis known as COVID-19. The implications of mitochondrial dysfunction with COVID-19 are discussed as well as deregulated mitochondria and inter-organelle functions as a posited comorbidity enhancing detrimental outcomes. Many environmental chemicals (ECs) and endocrine-disrupting chemicals can do damage to mitochondria and cause mitochondrial dysfunction. During infection, SARS-CoV-2 via its binding target ACE2 and TMPRSS2 can disrupt mitochondrial function. Viral genomic RNA and structural proteins may also affect the normal function of the mitochondria-endoplasmic reticulum-Golgi apparatus. Drugs considered for treatment of COVID-19 should consider effects on organelles including mitochondria functions. Mitochondrial self-balance and clearance via mitophagy are important in SARS-CoV-2 infection, which indicate monitoring and protection of mitochondria against SARS-CoV-2 are important. Mitochondrial metabolomic analysis may provide new indicators of COVID-19 prognosis. A better understanding of the role of mitochondria during SARS-CoV-2 infection may help to improve intervention therapies and better protect mitochondrial disease patients from pathogens as well as people living with poor nutrition and elevated levels of socioeconomic stress and ECs.
Collapse
Affiliation(s)
- Yunyi Yao
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, New York
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, New York
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York
| |
Collapse
|
20
|
Cai M, Xu Z, Bo W, Wu F, Qi W, Tian Z. Up-regulation of Thioredoxin 1 by aerobic exercise training attenuates endoplasmic reticulum stress and cardiomyocyte apoptosis following myocardial infarction. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:132-140. [PMID: 35782283 PMCID: PMC9219273 DOI: 10.1016/j.smhs.2020.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exercise training (ET) has been reported to reduce oxidative stress and endoplasmic reticulum (ER) stress in the heart following myocardial infarction (MI). Thioredoxin 1 (Trx1) plays a protective role in the infarcted heart. However, whether Trx1 regulates ER stress of the infarcted heart and participates in ET-induced cardiac protective effects are still not well known. In this work, H9c2 cells were treated with hydrogen peroxide (H2O2) and recombinant human Trx1 protein (TXN), meanwhile, adult male C57B6L mice were used to establish the MI model, and subjected to a six-week aerobic exercise training (AET) with or without the injection of Trx1 inhibitor, PX-12. Results showed that H2O2 significantly increased reactive oxygen species (ROS) level and the expression of TXNIP, CHOP and cleaved caspase12, induced cell apoptosis; TXN intervention reduced ROS level and the expression of CHOP and cleaved caspase12, and inhibited cell apoptosis in H2O2-treated H9c2 cells. Furthermore, AET up-regulated endogenous Trx1 protein expression and down-regulated TXNIP expression, restored ROS level and the expression of ER stress-related proteins, inhibited cell apoptosis as well as improved cardiac fibrosis and heart function in mice after MI. PX-12 partly inhibited the AET-induced beneficial effects in the infarcted heart. This study demonstrates that Trx1 attenuates ER stress-induced cell apoptosis, and AET reduces MI-induced ROS overproduction, ER stress and cell apoptosis partly through up-regulating of Trx1 expression in mice with MI.
Collapse
|
21
|
Habimana R, Choi I, Cho HJ, Kim D, Lee K, Jeong I. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit Care 2020; 35:57-66. [PMID: 32506871 PMCID: PMC7280799 DOI: 10.4266/acc.2020.00248] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
It is well known that cardiac dysfunction in sepsis is associated with significantly increased mortality. The pathophysiology of sepsis-induced cardiac dysfunction can be summarized as involving impaired myocardial circulation, direct myocardial depression, and mitochondrial dysfunction. Impaired blood flow to the myocardium is associated with microvascular dysfunction, impaired endothelium, and ventriculo-arterial uncoupling. The mechanisms behind direct myocardial depression consist of downregulation of β-adrenoceptors and several myocardial suppressants (such as cytokine and nitric oxide). Recent research has highlighted that mitochondrial dysfunction, which results in energy depletion, is a major factor in sepsis-induced cardiac dysfunction. Therefore, the authors summarize the pathophysiological process of cardiac dysfunction in sepsis based on the results of recent studies.
Collapse
Affiliation(s)
| | - Insu Choi
- Department of Pediatrics, Chonnam National University Children's Hospital, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital and Medical School, Gwangju, Korea
| | - Dowan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Kyoseon Lee
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Inseok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| |
Collapse
|
22
|
Gao S, Li H, Xie H, Wu S, Yuan Y, Chu L, Sun S, Yang H, Wu L, Bai Y, Zhou Q, Wang X, Zhan B, Cui H, Yang X. Therapeutic efficacy of Schistosoma japonicum cystatin on sepsis-induced cardiomyopathy in a mouse model. Parasit Vectors 2020; 13:260. [PMID: 32423469 PMCID: PMC7236195 DOI: 10.1186/s13071-020-04104-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myocardial dysfunction is one of the most common complications of multiple organ failure in septic shock and significantly increases mortality in patients with sepsis. Although many studies having confirmed that helminth-derived proteins have strong immunomodulatory functions and could treat inflammatory diseases, there is no report on the therapeutic effect of Schistosoma japonicum-produced cystatin (Sj-Cys) on sepsis-induced cardiac dysfunction. METHODS A model of sepsis-induced myocardial injury was established by cecal ligation and puncture (CLP) in mice. Upon CLP operation, each mouse was intraperitoneally treated with 10 µg of recombinant Sj-Cys (rSj-Cys). Twelve hours after CLP, the systolic and diastolic functions of the left ventricular were examined by echocardiography. The levels of myoglobin (Mb), cardiac troponin I (cTnI), N-terminal pro-Brain Natriuretic peptide (NT-proBNP) in sera, and the activity of myeloperoxidase (MPO) in cardiac tissues were examined as biomarkers for heart injury. The heart tissue was collected for checking pathological changes, macrophages and pro-inflammatory cytokine levels. To address the signaling pathway involved in the anti-inflammatory effects of rSj-Cys, myeloid differentiation factor 88 (MyD88) was determined in heart tissue of mice with sepsis and LPS-stimulated H9C2 cardiomyocytes. In addition, the therapeutic effects of rSj-Cys on LPS-induced cardiomyocyte apoptosis were also detected. The levels of M1 biomarker iNOS and M2 biomarker Arg-1 were detected in heart tissue. The pro-inflammatory cytokines TNF-α and IL-6, and regulatory cytokines IL-10 and TGF-β were measured in sera and their mRNA levels in heart tissue of rSj-Cys-treated mice. RESULTS After rSj-Cys treatment, the sepsis-induced heart malfunction was largely improved. The inflammation and injury of heart tissue were significantly alleviated, characterized as significantly decreased infiltration of inflammatory cells in cardiac tissues and fiber swelling, reduced levels of Mb, cTnI and NT-proBNP in sera, and MPO activity in heart tissue. The therapeutic efficacy of rSj-Cys is associated with downregulated pro-inflammatory cytokines (TNF-α and IL-6) and upregulated regulatory inflammatory cytokines (IL-10 and TGF-β), possibly through inhibiting the LPS-MyD88 signal pathway. CONCLUSIONS RSj-Cys significantly reduced sepsis-induced cardiomyopathy and could be considered as a potential therapeutic agent for the prevention and treatment of sepsis associated cardiac dysfunction.
Collapse
Affiliation(s)
- Shifang Gao
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.,Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Hong Xie
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Shili Wu
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Yuan Yuan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Liang Chu
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Siying Sun
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Huijuan Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Yongsheng Bai
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Qiao Zhou
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Xin Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hu Cui
- Second Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China. .,Basic Medical College of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
23
|
Di S, Wang Z, Hu W, Yan X, Ma Z, Li X, Li W, Gao J. The Protective Effects of Melatonin Against LPS-Induced Septic Myocardial Injury: A Potential Role of AMPK-Mediated Autophagy. Front Endocrinol (Lausanne) 2020; 11:162. [PMID: 32373063 PMCID: PMC7176935 DOI: 10.3389/fendo.2020.00162] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: Melatonin is an indolamine secreted by the pineal gland, as well as most of the organs and tissues. In addition to regulating circadian biology, studies have confirmed the multiple pharmacological effects of melatonin. Melatonin provides a strong defense against septic myocardial injury. However, the underlying mechanism has not been fully described. In this study, we investigated the protective effects of melatonin against lipopolysaccharide (LPS)-induced myocardial injury as well as the mechanisms involved. Methods: Mice were intraperitoneally injected with LPS to induce a septic myocardial injury model or an LPS shock model, depending on the dose of LPS. Melatonin was given (20 mg/kg/day, via intraperitoneal injection) for a week prior to LPS insult. 6 h after LPS injection, echocardiographic analysis, TUNEL staining, transmission electron microscopy (TEM), western blot, quantitative real-time PCR and ELISA were used to investigate the protective effects of melatonin against LPS induced myocardial injury. AMPK inhibitor, autophagy activator and inhibitor, siRNAs were used for further validation. Results: Survival test showed that melatonin significantly increased the survival rate after LPS-induced shock. In the sepsis model, melatonin markedly ameliorated myocardial dysfunction, decreased the release of inflammatory cytokines, activated AMP-activated protein kinase (AMPK), improved mitochondrial function, and activated autophagy. To confirm whether the protection of melatonin was mediated by AMPK and autophagy, Compound C, an AMPK inhibitor; 3-MA, an autophagy inhibitor; and Rapamycin (Rapa), an autophagy activator, were used in this study. AMPK inhibition down-regulated autophagy, abolished protection of melatonin, as indicated by significantly decreased cardiac function, increased inflammation and damaged mitochondrial function. Furthermore, autophagy inhibition by 3-MA significantly impaired the protective effects of melatonin, whereas autophagy activation by Rapa reversed LPS + Compound C induced myocardial injury. In addition, in vitro studies further confirmed the protection of melatonin against LPS-induced myocardial injury and the mechanisms involving AMPK-mediated autophagy signaling. Conclusions: In summary, our results demonstrated that melatonin protects against LPS-induced septic myocardial injury by activating AMPK mediated autophagy pathway.
Collapse
Affiliation(s)
- Shouyin Di
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Department of Thoracic Surgery, Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weimiao Li
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Weimiao Li
| | - Jianyuan Gao
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
- Jianyuan Gao
| |
Collapse
|
24
|
Lemnalol Modulates the Electrophysiological Characteristics and Calcium Homeostasis of Atrial Myocytes. Mar Drugs 2019; 17:md17110619. [PMID: 31671563 PMCID: PMC6891404 DOI: 10.3390/md17110619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Sepsis, an inflammatory response to infection provoked by lipopolysaccharide (LPS), is associated with high mortality, as well as ischemic stroke and new-onset atrial arrhythmia. Severe bacterial infections causing sepsis always result in profound physiological changes, including fever, hypotension, arrhythmia, necrosis of tissue, systemic multi-organ dysfunction and finally death. LPS challenge-induced inflammatory responses during sepsis may increase the likelihood of the arrhythmogenesis. Lemnalol is known to possess potent anti-inflammatory effects. This study examined whether Lemnalol (0.1 μM) could modulate the electrophysiological characteristics and calcium homeostasis of atrial myocytes under the influence of LPS (1μg/mL). Under challenge with LPS, Lemnalol-treated LA myocytes, had a longer AP duration at 20%, 50% and 90% repolarization of the amplitude, compared to the LPS-treated cells. LPS-challenged LA myocytes showed increased late sodium current, Na+-Ca2+ exchanger current, transient outward current, rapid component of delayed rectifier potassium current, tumor necrosis factor-α, NF-κB and increased phosphorylation of ryanodine receptor (RyR), but a lower L-type Ca2+ current than the control LA myocytes. Exposure to Lemnalol reversed the LPS-induced effects. The LPS-treated and control groups of LA myocytes, with or without the existence of Lemnalol. showed no apparent alterations in the sodium current amplitude or Cav1.2 expression. The expression of sarcoendoplasmic reticulum calcium transport ATPase (SERCA2) was reduced by LPS treatment, while Lemnalol ameliorated the LPS-induced alterations. The phosphorylation of RyR was enhanced by LPS treatment, while Lemnalol attenuated the LPS-induced alterations. In conclusion, Lemnalol modulates LPS-induced alterations of LA calcium homeostasis and blocks the NF-κB pathways, which may contribute to the attenuation of LPS-induced arrhythmogenesis.
Collapse
|
25
|
Heme Oxygenase-1 Protects the Liver from Septic Injury by Modulating TLR4-Mediated Mitochondrial Quality Control in Mice. Shock 2019; 50:209-218. [PMID: 29028772 DOI: 10.1097/shk.0000000000001020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of sepsis-induced multiple organ dysfunction syndrome (MODS). Mitochondrial quality control (QC) is characterized by self-recovering mitochondrial damage through mitochondrial biogenesis, mitophagy, and fission/fusion. Heme oxygenase (HO)-1 acts as a signaling molecule to modulate inflammation. The present study elucidated the cytoprotective mechanisms of HO-1 in sepsis, particularly focusing on toll-like receptor (TLR)4-mediated mitochondrial QC. Mice were subjected to sepsis by cecal ligation and puncture (CLP). The mice were injected intraperitoneally with hemin (10 mg/kg) at 12 h before CLP or zinc protoporphyrin IX (ZnPP; 30 mg/kg) at 2 h before CLP. The serum and tissues were collected 6 h after CLP. Mortality, MODS, and proinflammatory cytokines increased in septic mice. These increases were augmented by ZnPP but attenuated by hemin. Hemin decreased mitochondrial lipid peroxidation and mitochondrial dysfunction. Hemin enhanced mitochondrial biogenesis, as indicated by increased levels of peroxisome proliferator-activated receptor-γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A (TFAM). Hemin also enhanced mitophagy, as indicated by decreased PTEN-induced putative kinase 1 (PINK1) level and increased Parkin level. Hemin decreased fission-related protein, dynamin-related protein 1 (DRP1), and increased fusion-related protein, mitofusin 2. Hemin attenuated the increased TLR4 expression. TAK-242, a TLR4 antagonist, attenuated mortality, inflammatory response, and impaired mitochondrial QC. Our findings suggest that HO-1 attenuates septic injury by modulating TLR4-mediated mitochondrial QC.
Collapse
|
26
|
Zaobornyj T, Mazo T, Perez V, Gomez A, Contin M, Tripodi V, D'Annunzio V, Gelpi RJ. Thioredoxin-1 is required for the cardioprotecive effect of sildenafil against ischaemia/reperfusion injury and mitochondrial dysfunction in mice. Free Radic Res 2019; 53:993-1004. [PMID: 31455116 DOI: 10.1080/10715762.2019.1661404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sildenafil is a phosphodiesterase type 5 inhibitor which confers cardioprotection against myocardial ischaemia/reperfusion (I/R) injury. The aim of this study was to determine if Trx1 participates in cardioprotection exerted by sildenafil in an acute model of I/R, and to evaluate mitochondrial bioenergetics and cellular redox status. Langendorff-perfused hearts from wild type (WT) mice and a dominant negative (DN-Trx1) mutant of Trx1 were assigned to placebo or sildenafil (0.7 mg/kg i.p.) and subjected to 30 min of ischaemia followed by 120 min of reperfusion. WT + S showed a significant reduction of infarct size (51.2 ± 3.0% vs. 30 ± 3.0%, p < .001), an effect not observed in DN-Trx. After I/R, sildenafil preserved state 3 oxygen consumption from WT, but had a milder effect in DN-Trx1 only partially protecting state 3 values. Treatment restored respiratory control (RC) after I/R, which resulted 8% (WT) and 24% (DN-Trx1) lower than in basal conditions. After I/R, a significant increase in H2O2 production was observed both for WT and DN-Trx (WT: 1.17 ± 0.13 nmol/mg protein and DN-Trx: 1.38 ± 0.12 nmol/min mg protein). With sildenafil, values were 21% lower only in WT I/R. Treatment decreased GSSG levels both in WT and DN-Trx1. In addition, GSSG/GSH2 ratio was partially restored by sildenafil. Also, an increase in p-eNOS/eNOS even before the myocardial ischaemia was observed with sildenafil, both in WT (14%, p > .05) and in DN-Trx (35%, p < .05). Active Trx1 is required for the onset of the cardioprotective effects of sildenafil on I/R injury, together with the preservation of cellular redox balance and mitochondrial function.
Collapse
Affiliation(s)
- Tamara Zaobornyj
- Department of Analytical Chemistry and Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina.,Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina
| | - Tamara Mazo
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina
| | - Virginia Perez
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| | - Anabella Gomez
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| | - Mario Contin
- Department of Analytical Chemistry and Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina
| | - Valeria Tripodi
- National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina.,Department of Pharmaceutical Technology, School of Pharmacy and Biochemistry, University of Buenos Aires , Buenos Aires , Argentina
| | - Verónica D'Annunzio
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| | - Ricardo J Gelpi
- Institute of Biochemistry and Molecular Medicine (IBIMOL UBA-CONICET) , Buenos Aires , Argentina.,National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina.,Department of Pathology, Faculty of Medicine, Institute of Cardiovascular Physiopathology, University of Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
27
|
Tan Y, Chen S, Zhong J, Ren J, Dong M. Mitochondrial Injury and Targeted Intervention in Septic Cardiomyopathy. Curr Pharm Des 2019; 25:2060-2070. [PMID: 31284854 DOI: 10.2174/1381612825666190708155400] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022]
Abstract
Background:
Sepsis and septic shock are known to prompt multiple organ failure including cardiac
contractile dysfunction, which is typically referred to as septic cardiomyopathy. Among various theories postulated
for the etiology of septic cardiomyopathy, mitochondrial injury (both morphology and function) in the heart
is perceived as the main culprit for reduced myocardial performance and ultimately heart failure in the face of
sepsis.
Methods:
Over the past decades, ample of experimental and clinical work have appeared, focusing on myocardial
mitochondrial changes and related interventions in septic cardiomyopathy.
Results and Conclusion:
Here we will briefly summarize the recent experimental and clinical progress on myocardial
mitochondrial morphology and function in sepsis, and discuss possible underlying mechanisms, as well as
the contemporary interventional options.
Collapse
Affiliation(s)
- Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, 528300, Guangdong, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Maolong Dong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
28
|
Yin X, Xin H, Mao S, Wu G, Guo L. The Role of Autophagy in Sepsis: Protection and Injury to Organs. Front Physiol 2019; 10:1071. [PMID: 31507440 PMCID: PMC6716215 DOI: 10.3389/fphys.2019.01071] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory disease with infection, and autophagy has been shown to play an important role in sepsis. This review summarizes the main regulatory mechanisms of autophagy in sepsis and its latest research. Recent studies have shown that autophagy can regulate innate immune processes and acquired immune processes, and the regulation of autophagy in different immune cells is different. Mitophagy can select damaged mitochondria and remove it to deal with oxidative stress damage. The process of mitophagy is regulated by other factors. Non-coding RNA is also an important factor in the regulation of autophagy. In addition, more and more studies in recent years have shown that autophagy plays different roles in different organs. It tends to be protective in the lungs, heart, kidneys, and brain, and tends to be damaging in skeletal muscle. We also mentioned that some drugs can regulate autophagy. The process of modulating autophagy through drug intervention appears to be a new potential hope for the treatment of sepsis.
Collapse
Affiliation(s)
- Xin Yin
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huang Xin
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Mao
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangping Wu
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liheng Guo
- Department of Critical Care Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Lautz AJ, Zingarelli B. Age-Dependent Myocardial Dysfunction in Critically Ill Patients: Role of Mitochondrial Dysfunction. Int J Mol Sci 2019; 20:ijms20143523. [PMID: 31323783 PMCID: PMC6679204 DOI: 10.3390/ijms20143523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial dysfunction is common in septic shock and post-cardiac arrest but manifests differently in pediatric and adult patients. By conventional echocardiographic parameters, biventricular systolic dysfunction is more prevalent in children with septic shock, though strain imaging reveals that myocardial injury may be more common in adults than previously thought. In contrast, diastolic dysfunction in general and post-arrest myocardial systolic dysfunction appear to be more widespread in the adult population. A growing body of evidence suggests that mitochondrial dysfunction mediates myocardial depression in critical illness; alterations in mitochondrial electron transport system function, bioenergetic production, oxidative and nitrosative stress, uncoupling, mitochondrial permeability transition, fusion, fission, biogenesis, and autophagy all may play key pathophysiologic roles. In this review we summarize the epidemiologic and clinical phenotypes of myocardial dysfunction in septic shock and post-cardiac arrest and the multifaceted manifestations of mitochondrial injury in these disease processes. Since neonatal and pediatric-specific data for mitochondrial dysfunction remain sparse, conclusive age-dependent differences are not clear; instead, we highlight what evidence exists and identify gaps in knowledge to guide future research. Finally, since focal ischemic injury (with or without reperfusion) leading to myocardial infarction is predominantly an atherosclerotic disease of the elderly, this review focuses specifically on septic shock and global ischemia-reperfusion injury occurring after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Andrew J Lautz
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
30
|
Reitsema VA, Star BS, de Jager VD, van Meurs M, Henning RH, Bouma HR. Metabolic Resuscitation Strategies to Prevent Organ Dysfunction in Sepsis. Antioxid Redox Signal 2019; 31:134-152. [PMID: 30403161 DOI: 10.1089/ars.2018.7537] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.
Collapse
Affiliation(s)
- Vera A Reitsema
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bastiaan S Star
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent D de Jager
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Matijs van Meurs
- 2 Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,3 Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Sepsis leads to a complex intramyocardial inflammatory response that results in sepsis-induced myocardial dysfunction. Here, recent findings are reviewed in a physiologic context. RECENT FINDINGS Decreased systolic contractility during sepsis limits ventricular ejection and stroke volume. Initially, this effect is compensated for by increased diastolic filling during volume resuscitation. Reduced afterload due to arterial vasodilation also compensates so that cardiac output can be maintained or increased. Recent results recognize the importance of diastolic dysfunction, reduced ventricular diastolic compliance that impedes ventricular filling. Diastolic dysfunction becomes increasingly important as severity of septic shock increases. When impaired ventricular ejection is coupled with limited diastolic filling, stroke volume must decrease. Accordingly, diastolic dysfunction is more closely related to mortality than systolic dysfunction. Recent trials of beta-adrenergic agonists and levosimendan have been disappointing, while approaches to modulating the intramyocardial inflammatory response show promise. SUMMARY Sepsis-induced myocardial dysfunction is increasingly recognized as a major contributor to outcome of septic shock. Significant strides have been made in understanding the intramyocardial inflammatory response that causes myocardial dysfunction. A number of novel approaches show promise by modulating the intramyocardial inflammatory response.
Collapse
|
32
|
The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:759-773. [PMID: 30342158 DOI: 10.1016/j.bbadis.2018.10.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.
Collapse
|
33
|
TLR4 Activation Promotes the Progression of Experimental Autoimmune Myocarditis to Dilated Cardiomyopathy by Inducing Mitochondrial Dynamic Imbalance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3181278. [PMID: 30046376 PMCID: PMC6038665 DOI: 10.1155/2018/3181278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/11/2018] [Accepted: 04/02/2018] [Indexed: 11/17/2022]
Abstract
Mitochondrial dynamic imbalance associates with several cardiovascular diseases. However, the role of mitochondrial dynamics in TLR4 activation-mediated dilated cardiomyopathy (DCM) progress remains unknown. A model of experimental autoimmune myocarditis (EAM) was established in BALB/c mice on which TLR4 activation by LPS-EB or TLR4 inhibition by LPS-RS was performed to induce chronic inflammation for 5 weeks. TLR4 activation promoted the transition of EAM to DCM as demonstrated by increased cardiomyocyte apoptosis, myocardial fibrosis, ventricular dilatation, and declined heart function. TLR4 inhibition mitigated the above DCM changes. Transmission electron microscope study showed that mitochondria became fragmented, also with damaged crista in ultrastructure in EAM mice. TLR4 activation aggravated the above mitochondrial aberration, and TLR4 inhibition alleviated it. The mitochondrial dynamic imbalance and damage in DCM development were mainly associated with OPA1 downregulation, which may be caused by elevated TNF-α level and ROS stress after TLR4 activation. Furthermore, OMA1/YME1L abnormal degradation was involved in the OPA1 dysfunction, and intervening OMA1/YME1L in H9C2 significantly alleviated mitochondrial fission, ultrastructure damage, and cell apoptosis induced by TNF-α and ROS. These data indicate that TLR4 activation resulted in OPA1 dysfunction, promoting mitochondrial dynamic imbalance and damage, which may involve in the progress of EAM to DCM.
Collapse
|
34
|
Li F, Lang F, Wang Y, Zhai C, Zhang C, Zhang L, Hao E. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem Toxicol 2018; 120:104-111. [PMID: 29803697 DOI: 10.1016/j.fct.2018.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Cyanidin, an anthocyanin pigment, demonstrates anti-oxidant and anti-inflammatory properties. Here, we examined the mechanistic role of cyanidin in endotoxin induced myocardial injury in inflammation and oxidative stress. In lipopolysaccharide (LPS) induced myocardial injury model, cyanidin ameliorated cardiac injury (Lactate dehydrogenase or LDH, Creatine Kinase or CK, cardiac troponin I or cTnI and cardiac myosin light chains 1 or cMLC1), cell death (caspase 3 activity and PARP activity), and improved cardiac function (ejection fraction or EF and end diastolic left ventricular inner dimension or LVID). Cyanidin also attenuated endotoxin induced myocardial injury by modulating inflammatory cytokines (Tumor necrosis factor alpha or TNFα, Interleukin-1 beta or IL-1β, macrophage inflammatory protein 2 or MIP-2 and chemokine (C-C motif) ligand 2 also known as monocyte chemoattractant protein 1 or MCP1) and oxidative stress (protein nitration). Cyanidin modulated redox homeostasis through intracellular oxidized/reduced glutathione. The most striking properties of cyanidin in endotoxin induced mediated myocardial injury was the modulation of mitochondria, its oxidative damage and associated factor Opa1 and Trx1. Thus, our study demonstrated that cyanidin as a constituent of our food chain may be beneficial and has therapeutic potential in sepsis treatment or other myocardial oxidative and/or inflammation induced injuries.
Collapse
Affiliation(s)
- Fang Li
- Department of Health, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Fangfang Lang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, China
| | - Yidan Wang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chunxiao Zhai
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chuanbei Zhang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Liping Zhang
- Intensive Care Unit of Neurosurgery Linyi People's Hospital, China
| | - Enkui Hao
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China.
| |
Collapse
|
35
|
Pan P, Wang X, Liu D. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. J Int Med Res 2018; 46:2157-2169. [PMID: 29637807 PMCID: PMC6023059 DOI: 10.1177/0300060518765896] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Septic cardiomyopathy is one of the most serious complications of sepsis or septic shock. Basic and clinical research has studied the mechanism of cardiac dysfunction for more than five decades. It has become clear that myocardial depression is not related to hypoperfusion. As the heart is highly dependent on abundant adenosine triphosphate (ATP) levels to maintain its contraction and diastolic function, impaired mitochondrial function is lethally detrimental to the heart. Research has shown that mitochondria play an important role in organ damage during sepsis. The mitochondria-related mechanisms in septic cardiomyopathy have been discussed in terms of restoring mitochondrial function. Mitochondrial uncoupling proteins located in the mitochondrial inner membrane can promote proton leakage across the mitochondrial inner membrane. Recent studies have demonstrated that proton leakage is the essential regulator of mitochondrial membrane potential and the generation of reactive oxygen species (ROS) and ATP. Other mechanisms involved in septic cardiomyopathy include mitochondrial ROS production and oxidative stress, mitochondria Ca2+ handling, mitochondrial DNA in sepsis, mitochondrial fission and fusion, mitochondrial biogenesis, mitochondrial gene regulation and mitochondria autophagy. This review will provide an overview of recent insights into the factors contributing to septic cardiomyopathy.
Collapse
Affiliation(s)
- Pan Pan
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Edaravone Improves Septic Cardiac Function by Inducing an HIF-1 α/HO-1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5216383. [PMID: 29765498 PMCID: PMC5885492 DOI: 10.1155/2018/5216383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/20/2017] [Accepted: 02/06/2018] [Indexed: 01/21/2023]
Abstract
Septic myocardial dysfunction remains prevalent and raises mortality rate in patients with sepsis. During sepsis, tissues undergo tremendous oxidative stress which contributes critically to organ dysfunction. Edaravone, a potent radical scavenger, has been proved beneficial in ischemic injuries involving hypoxia-inducible factor- (HIF-) 1, a key regulator of a prominent antioxidative protein heme oxygenase- (HO-) 1. However, its effect in septic myocardial dysfunction remains unclarified. We hypothesized that edaravone may prevent septic myocardial dysfunction by inducing the HIF-1/HO-1 pathway. Rats were subjected to cecal ligation and puncture (CLP) with or without edaravone infusion at three doses (50, 100, or 200 mg/kg, resp.) before CLP and intraperitoneal injection of the HIF-1α antagonist, ME (15 mg/kg), after CLP. After CLP, rats had cardiac dysfunction, which was associated with deformed myocardium, augmented lipid peroxidation, and increased myocardial apoptosis and inflammation, along with decreased activities of catalase, HIF-1α, and HO-1 in the myocardium. Edaravone pretreatment dose-dependently reversed the changes, of which high dose most effectively improved cardiac function and survival rate of septic rats. However, inhibition of HIF-1α by ME demolished the beneficial effects of edaravone at high dose, reducing the survival rate of the septic rats without treatments. Taken together, edaravone, by inducing the HIF-1α/HO-1 pathway, suppressed oxidative stress and protected the heart against septic myocardial injury and dysfunction.
Collapse
|
37
|
Pérez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC. p66 Shc Inactivation Modifies RNS Production, Regulates Sirt3 Activity, and Improves Mitochondrial Homeostasis, Delaying the Aging Process in Mouse Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8561892. [PMID: 29721150 PMCID: PMC5867558 DOI: 10.1155/2018/8561892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 01/17/2023]
Abstract
Programmed and damage aging theories have traditionally been conceived as stand-alone schools of thought. However, the p66Shc adaptor protein has demonstrated that aging-regulating genes and reactive oxygen species (ROS) are closely interconnected, since its absence modifies metabolic homeostasis by providing oxidative stress resistance and promoting longevity. p66Shc(-/-) mice are a unique opportunity to further comprehend the bidirectional relationship between redox homeostasis and the imbalance of mitochondrial biogenesis and dynamics during aging. This study shows that brain mitochondria of p66Shc(-/-) aged mice exhibit a reduced alteration of redox balance with a decrease in both ROS generation and its detoxification activity. We also demonstrate a strong link between reactive nitrogen species (RNS) and mitochondrial function, morphology, and biogenesis, where low levels of ONOO- formation present in aged p66Shc(-/-) mouse brain prevent protein nitration, delaying the loss of biological functions characteristic of the aging process. Sirt3 modulates age-associated mitochondrial biology and function via lysine deacetylation of target proteins, and we show that its regulation depends on its nitration status and is benefited by the improved NAD+/NADH ratio in aged p66Shc(-/-) brain mitochondria. Low levels of protein nitration and acetylation could cause the metabolic homeostasis maintenance observed during aging in this group, thus increasing its lifespan.
Collapse
Affiliation(s)
- Hernán Pérez
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Paola Vanesa Finocchietto
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
- Departamento de Medicina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yael Alippe
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Inés Rebagliati
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | | | - Nerina Villalba
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
38
|
Han D, Li X, Li S, Su T, Fan L, Fan WS, Qiao HY, Chen JW, Fan MM, Li XJ, Wang YB, Ma S, Qiu Y, Tian ZH, Cao F. Reduced silent information regulator 1 signaling exacerbates sepsis-induced myocardial injury and mitigates the protective effect of a liver X receptor agonist. Free Radic Biol Med 2017; 113:291-303. [PMID: 28993270 DOI: 10.1016/j.freeradbiomed.2017.10.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022]
Abstract
Myocardial injury and dysfunction are critical manifestations of sepsis. Previous studies have reported that liver X receptor (LXR) activation is protective during sepsis. However, whether LXR activation protects against septic heart injury and its underlying mechanisms remain elusive. This study was designed to determine the role of LXR activation in the septic heart with a focus on SIRT1 (silent information regulator 1) signaling. Male cardiac-specific SIRT1 knockout mice (SIRT1-/-) and their wild-type littermates were subjected to sepsis by cecal ligation and puncture (CLP) in the presence or absence of LXR agonist T0901317. The survival rate of mice was recorded during the 7-day period post CLP. Our results demonstrated that SIRT1-/- mice suffered from exacerbated mortality and myocardial injury in comparison with their wild-type littermates. Meanwhile, T0901317 treatment improved mice survival, accompanied by significant ameliorations of myocardial injury and dysfunction in wild-type mice but not in SIRT1-/- mice. Furthermore, the levels of myocardial inflammatory cytokines (TNF-α, IL-6, IL-1β, MCP-1, MPO and HMGB1), oxidative stress (ROS generation, MDA), endoplasmic-reticulum (ER) stress (protein levels of CHOP, GRP78, GRP94, IRE1α, and ATF6), and cardiac apoptosis following CLP were inhibited by T0901317 treatment in wild-type mice but not in SIRT1-/- mice. Mechanistically, T0901317 enhanced SIRT1 signaling and the subsequent deacetylation and activation of antioxidative FoxO1 and anti-ER stress HSF1, as well as the deacetylation and inhibition of pro-inflammatory NF-ΚB and pro-apoptotic P53, thereby alleviating sepsis-induced myocardial injury and dysfunction. Our data support the promise of LXR activation as an effective strategy for relieving heart septic injury.
Collapse
Affiliation(s)
- Dong Han
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiang Li
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shuang Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Cardiology, Chengdu Military General Hospital, Chengdu, China, 610083
| | - Tao Su
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li Fan
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Si Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong-Yu Qiao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jiang-Wei Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Miao-Miao Fan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiu-Juan Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ya-Bin Wang
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sai Ma
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ya Qiu
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zu-Hong Tian
- Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases & Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
39
|
Oka SI, Hirata T, Suzuki W, Naito D, Chen Y, Chin A, Yaginuma H, Saito T, Nagarajan N, Zhai P, Bhat S, Schesing K, Shao D, Hirabayashi Y, Yodoi J, Sciarretta S, Sadoshima J. Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes. J Biol Chem 2017; 292:18988-19000. [PMID: 28939765 DOI: 10.1074/jbc.m117.807735] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/06/2017] [Indexed: 12/19/2022] Open
Abstract
Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Tsuyoshi Hirata
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Wataru Suzuki
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Daichi Naito
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Yanbin Chen
- the Department of Respiratory Medicine, First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215000, China
| | - Adave Chin
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Hiroaki Yaginuma
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Toshiro Saito
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Narayani Nagarajan
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Peiyong Zhai
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Santosh Bhat
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Kevin Schesing
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Dan Shao
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101
| | - Yoko Hirabayashi
- the Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Junji Yodoi
- the Department of Biological Responses, Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8397, Japan, and
| | - Sebastiano Sciarretta
- the Department of Medical-Surgical Science and Biotechnologies, University of Rome, Latina 04100, Italy
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07101,
| |
Collapse
|
40
|
Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress. Nutrients 2017; 9:nu9090966. [PMID: 28862654 PMCID: PMC5622726 DOI: 10.3390/nu9090966] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.
Collapse
Affiliation(s)
- Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Víctor M Molina
- Unidad de Cuidados Intensivos, Hospital de Niños Roberto del Río, Santiago 7500922, Chile.
- Unidad de Cuidados Intensivos Pediátricos, Hospital Clínico Pontificia Universidad Católica de Chile, Santiago 7500922, Chile.
| | - Rodrigo A Carrasco
- Laboratorio de Investigación Biomédica, Departamento de Medicina Interna, Hospital del Salvador, Santiago 7500922, Chile.
- Departamento de Cardiología, Clínica Alemana, Santiago 7500922, Chile.
| | - Andrea B Zepeda
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Elías Figueroa
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
- Núcleo de Investigación en Producción Alimentaria, BIOACUI, Escuela de Acuicultura, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Pablo Letelier
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
- School of Health Sciences, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Rodrigo L Castillo
- Laboratorio de Investigación Biomédica, Departamento de Medicina Interna, Hospital del Salvador, Santiago 7500922, Chile.
- Programa de Fisiopatología Oriente, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| |
Collapse
|
41
|
Nagarajan N, Oka S, Sadoshima J. Modulation of signaling mechanisms in the heart by thioredoxin 1. Free Radic Biol Med 2017; 109:125-131. [PMID: 27993729 PMCID: PMC5462876 DOI: 10.1016/j.freeradbiomed.2016.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/15/2023]
Abstract
Myocardial ischemia/reperfusion and heart failure are the major cardiac conditions in which an imbalance between oxidative stress and anti-oxidant mechanisms is observed. The myocardium has endogenous reducing mechanisms, including the thioredoxin (Trx) and glutathione systems, that act to scavenge reactive oxygen species (ROS) and reduce oxidized proteins. The Trx system consists of Trx, Trx reductase (TrxR), and an electron donor, NADPH, where Trx is maintained in a reduced state in the presence of TrxR and NADPH. Trx1, a major isoform of Trx, is abundantly expressed in the heart and exerts its oxidoreductase activity through conserved Cys32 and Cys35, reducing oxidized proteins through thiol disulfide exchange reactions. In this review, we will focus on molecular targets of Trx1 in the heart, including transcription factors, microRNAs, histone deactylases, and protein kinases. We will then discuss how Trx1 regulates the functions of its targets, thereby affecting the extent of myocardial injury caused by myocardial ischemia/reperfusion and the progression of heart failure.
Collapse
Affiliation(s)
- Narayani Nagarajan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G609, Newark, NJ 07103, USA
| | - Shinichi Oka
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G609, Newark, NJ 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G609, Newark, NJ 07103, USA.
| |
Collapse
|
42
|
Brain-Derived Neurotrophic Factor Attenuates Septic Myocardial Dysfunction via eNOS/NO Pathway in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1721434. [PMID: 28770018 PMCID: PMC5523440 DOI: 10.1155/2017/1721434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022]
Abstract
Sepsis-induced myocardial dysfunction increases mortality in sepsis, yet the underlying mechanism is unclear. Brain-derived neurotrophic factor (BDNF) has been found to enhance cardiomyocyte function, but whether BDNF has a beneficial effect against septic myocardial dysfunction is unknown. Septic shock was induced by cecal ligation and puncture (CLP). BDNF was expressed in primary cardiomyocytes, and its expression was significantly reduced after sepsis. In rats with sepsis, a sharp decline in survival was observed after CLP, with significantly reduced cardiac BDNF expression, enhanced myocardial fibrosis, elevated oxidative stress, increased myocardial apoptosis, and decreased endothelial nitric oxide (NO) synthase (eNOS) and NO. Supplementation with recombined BDNF protein (rhBDNF) enhanced myocardial BDNF and increased survival rate with improved cardiac function, reduced oxidative stress, and myocardial apoptosis, which were associated with increased eNOS expression, NO production, and Trk-B, a BDNF receptor. Pretreatment with NOS inhibitor, N (omega)-nitro-L-arginine methyl ester, abolished the abovementioned BDNF cardioprotective effects without affecting BDNF and Trk-B. It is concluded that BDNF protects the heart against septic cardiac dysfunction by reducing oxidative stress and apoptosis via Trk-B, and it does so through activation of eNOS/NO pathway. These findings provide a new treatment strategy for sepsis-induced myocardial dysfunction.
Collapse
|
43
|
Diao X, Sun S. PMicroRNA-124a regulates LPS-induced septic cardiac dysfunction by targeting STX2. Biotechnol Lett 2017; 39:1335-1342. [PMID: 28560580 DOI: 10.1007/s10529-017-2368-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/25/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To examine the role of miR-124a in LPS-induced septic cardiac insufficiency where underlying mechanism is unclear. RESULTS Expression of miR-124a was decreased in myocardium of LPS-induced septic cardiac dysfunction model. miR-124a antagomiR or agomiR were injected via tail vein to induce miR-124a-dysregulated model. miR-124a antagomiR aggravated LPS-induced cardiac dysfunction and apoptosis, while miR-124a agomiR had the opposite effect. Syntaxin-2 (STX2) was indicated as a candidate target gene by bioinformatic software. Further experiments confirmed that STX2 was downregulated in miR-124a agomiR-treated rats but upregulated in miR-124a antagomiR-treated rats, and STX2 inhibition could strongly block the miR-124a antagomiR-associated increase in cell apoptosis. Luciferase reporter activity assay indicated that STX2 was a direct target of miR-124a. Serological detection reveled that miR-124a was down-regulated in the plasma of septic cardiac dysfunction rats. CONCLUSIONS miR-124a aggravates LPS-induced cardiac dysfunction and the miR-124a/STX2 pathway might serve as the potential diagnostic and therapeutic targets for septic cardiac dysfunction.
Collapse
Affiliation(s)
- Xiufang Diao
- Department of Intensive Care Units, Weifang People's Hospital, Guangwen Road, Kuiwen District, Weifang City, Shandong Province, 261041, China
| | - Shuqing Sun
- Department of Intensive Care Units, Weifang People's Hospital, Guangwen Road, Kuiwen District, Weifang City, Shandong Province, 261041, China.
| |
Collapse
|