1
|
Wang Y, Wang M, Kang J, Zhang Y. Role of fibrinogen-like 2 (FGL2) proteins in implantation: Potential implications and mechanism. Gene 2025; 946:149284. [PMID: 39884406 DOI: 10.1016/j.gene.2025.149284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/25/2025] [Indexed: 02/01/2025]
Abstract
Fibrinogen-like (Fgl2) protein belongs to fibrinogen super family, which catalyzes the conversion of prothrombin to thrombin and is involved in the coagulation process. There are two different forms of functional Fgl2 protein: membrane associated Fgl2 (mFgl2) and soluble Fgl2 (sFgl2). mFgl2, as a type II transmembrane protein with property with prothrombinase activity from its N-terminal fragment, was extensively secreted or expressed by inflammatory macrophages, dendritic cells (DCs), Th1 cells and endothelial cells. While sFgl2 was mainly produced by regulatory T cells (Tregs) and then secreted into the vasculature, which contributes to autoimmune disease by regulating maturation of (DCs), polarization of macrophage, inhibiting T cell proliferation and differentiation and inducing apoptosis of B cells. In particular, emerging evidence has shown that Fgl2 is implicated in female reproductive system that contributes to embryo development, ovarian granulosa cells differentiation and implantation failure. This article summarizes the role and potential mechanisms of Fgl2 in reproduction and identifies research gaps along with the future directions.
Collapse
Affiliation(s)
- Yueying Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China; Department of Reproductive Medicine, Jining No.1 People's Hospital, Jining 272002, China; Key Laboratory of Pregnancy Disorder Research of Jining, 272002, China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China
| | - Jiawei Kang
- Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China; Department of Obstetrical, Zhongnan Hospital of Wuhan University, Wuhan 430062, China
| | - Yuanzhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430062, China; Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei 430062, China.
| |
Collapse
|
2
|
Mariuzza RA, Shahid S, Karade SS. The immune checkpoint receptor LAG3: Structure, function, and target for cancer immunotherapy. J Biol Chem 2024; 300:107241. [PMID: 38556085 PMCID: PMC11061240 DOI: 10.1016/j.jbc.2024.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Lymphocyte activation gene 3 protein (LAG3) is an immune checkpoint receptor that is highly upregulated on exhausted T cells in the tumor microenvironment. LAG3 transmits inhibitory signals to T cells upon binding to MHC class II and other ligands, rendering T cells dysfunctional. Consequently, LAG3 is a major target for cancer immunotherapy with many anti-LAG3 monoclonal antibodies (mAbs) that block LAG3 inhibitory activity in clinical trials. In this review, we examine the molecular basis for LAG3 function in light of recently determined crystal and cryoEM structures of this inhibitory receptor. We review what is known about LAG3 interactions with MHC class II, its canonical ligand, and the newly discovered ligands FGL1 and the T cell receptor (TCR)-CD3 complex, including current controversies over the relative importance of these ligands. We then address the development and mechanisms of action of anti-LAG3 mAbs in clinical trials for cancer immunotherapy. We discuss new strategies to therapeutically target LAG3 using mAbs that not only block the LAG3-MHC class II interaction, but also LAG3 interactions with FGL1 or TCR-CD3, or that disrupt LAG3 dimerization. Finally, we assess the possibility of developing mAbs that enhance, rather than block, LAG3 inhibitory activity as treatments for autoimmune diseases.
Collapse
Affiliation(s)
- Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| | - Salman Shahid
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Sharanbasappa S Karade
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Zhang Y, Zhang K, Wen H, Ge D, Gu J, Zhang C. FGL1 in plasma extracellular vesicles is correlated with clinical stage of lung adenocarcinoma and anti-PD-L1 response. Clin Exp Immunol 2024; 216:68-79. [PMID: 38146642 PMCID: PMC10929704 DOI: 10.1093/cei/uxad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
Fibrinogen-like protein-1 (FGL1) is confirmed a major ligand of lymphocyte activation gene-3 which could inhibit antigen-mediated T-cell response and evade immune supervision. Although hepatocytes secrete large amounts of FGL1, its high expression also be detected in solid tumors such as lung cancer, leading to a poor efficacy of immune checkpoint inhibitors therapy. Here we reported that FGL1 was overexpressed in lung adenocarcinoma (LUAD) but not in lung squamous cell carcinoma. However, FGL1 in tissue and plasma can only distinguish LUAD patients from healthy donors and cannot correlate with clinical Tumor Node Metastasis (TNM) stage. Using lung cancer cell lines, we confirmed that FGL1 can be detected on extracellular vesicles (EVs) and we established a method using flow cytometry to detect FGL1 on the surface of EVs, which revealed that FGL1 could be secreted via EVs. Both animal model and clinical samples proved that plasma FGL1 in EVs would increase when the tumor was loaded. The level of FGL1 in plasma EVs was correlated with clinical TNM stage and tumor size, and a higher level indicated non-responsiveness to anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy. Its effect on tumor progression and immune evasion may be achieved by impairing the killing and proliferating capacities of CD8+ T cells. Our result demonstrates that FGL1 levels in plasma EVs, but not total plasma FGL1, could be a promising biomarker that plays an important role in predicting anti-PD-L1 immune therapy in LUAD and suggests a new strategy in LUAD immunotherapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People’s Republic of China
| | - Haoyu Wen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chunyi Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Thudium K, Selby M, Zorn JA, Rak G, Wang XT, Bunch RT, Hogan JM, Strop P, Korman AJ. Preclinical Characterization of Relatlimab, a Human LAG-3-Blocking Antibody, Alone or in Combination with Nivolumab. Cancer Immunol Res 2022; 10:1175-1189. [PMID: 35981087 PMCID: PMC9530649 DOI: 10.1158/2326-6066.cir-22-0057] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/25/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Novel therapeutic approaches combining immune-checkpoint inhibitors are needed to improve clinical outcomes for patients with cancer. Lymphocyte-activation gene 3 (LAG-3) is an immune-checkpoint molecule that inhibits T-cell activity and antitumor immune responses, acting through an independent mechanism from that of programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Here, we describe the development and preclinical characterization of relatlimab, a human antibody that binds to human LAG-3 with high affinity and specificity to block the interaction of LAG-3 with the ligands MHC II and fibrinogen-like protein-1, and to reverse LAG-3-mediated inhibition of T-cell function in vitro. Consistent with previous reports, in mouse models, the combined blockade of LAG-3 and PD-1 with surrogate antibodies resulted in enhanced antitumor activity greater than the individual blockade of either receptor. In toxicity studies in cynomolgus monkeys, relatlimab was generally well tolerated when combined with nivolumab. These results are consistent with findings from the RELATIVITY-047 phase II/III trial showing that relatlimab combined with nivolumab is a well-tolerated regimen that demonstrates superior progression-free survival compared with nivolumab monotherapy in patients with unresectable or metastatic melanoma.
Collapse
Affiliation(s)
| | - Mark Selby
- Walking Fish Therapeutics Inc, South San Francisco, California
| | | | | | | | | | | | | | | |
Collapse
|
5
|
LAG3 ectodomain structure reveals functional interfaces for ligand and antibody recognition. Nat Immunol 2022; 23:1031-1041. [PMID: 35761082 DOI: 10.1038/s41590-022-01238-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/11/2022] [Indexed: 01/05/2023]
Abstract
The immune checkpoint receptor lymphocyte activation gene 3 protein (LAG3) inhibits T cell function upon binding to major histocompatibility complex class II (MHC class II) or fibrinogen-like protein 1 (FGL1). Despite the emergence of LAG3 as a target for next-generation immunotherapies, we have little information describing the molecular structure of the LAG3 protein or how it engages cellular ligands. Here we determined the structures of human and murine LAG3 ectodomains, revealing a dimeric assembly mediated by Ig domain 2. Epitope mapping indicates that a potent LAG3 antagonist antibody blocks interactions with MHC class II and FGL1 by binding to a flexible 'loop 2' region in LAG3 domain 1. We also defined the LAG3-FGL1 interface by mapping mutations onto structures of LAG3 and FGL1 and established that FGL1 cross-linking induces the formation of higher-order LAG3 oligomers. These insights can guide LAG3-based drug development and implicate ligand-mediated LAG3 clustering as a mechanism for disrupting T cell activation.
Collapse
|
6
|
Nagdas SK, Wallace S, Eaford D, Baker R, Carr K, Raychoudhuri SS. Fibrinogen-related protein, FGL2, of hamster cauda epididymal fluid: Purification, kinetic analysis of its prothrombinase activity, and its role in segregation of nonviable spermatozoa. Mol Reprod Dev 2020; 87:1206-1218. [PMID: 33216420 DOI: 10.1002/mrd.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022]
Abstract
Although the epididymal environment promotes the maturation and survival of spermatozoa, not all spermatozoa remain viable during passage through the epididymis. Does the epididymis has a protective mechanism(s) to segregate the viable sperm from defective spermatozoa? Previously, we identified 260/280 kDa oligomers (termed eFGL-Epididymal Fibrinogen-Like oligomer) are composed of two disulfide-linked subunits: a 64 kDa polypeptide identified as fibrinogen-like protein-2 (FGL2) and a 33 kDa polypeptide identified as fibrinogen-like protein-1 (FGL1). Our morphological studies demonstrated that the eFGL, secreted from the principal cells of the cauda epididymis, is polymerized into a death cocoon-like complex (DCF), masking defective luminal spermatozoa but, not the viable sperm population. In the present study, we purified FGL2 from hamster cauda epididymal fluid toward homogeneity and its prothrombinase catalytic activity was examined. Time-course conversion studies revealed that all prothrombin was converted to thrombin by purified hamster FGL2. Our biochemical studies demonstrate that FGL2 is a lipid-activated serine protease and functions as a lectin by binding specific carbohydrate residues. Co-immunoprecipitation analysis demonstrated that FGL2 of cauda epididymal fluid is ubiquitinated but not the FGL1. We propose that FGL2/FGL1 oligomers represent a novel and unique mechanism to shield the viable sperm population from degenerating spermatozoa contained within the tubule lumen.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Shamar Wallace
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Don Eaford
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Rashad Baker
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Ky'ara Carr
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Samir S Raychoudhuri
- Department of Biology, Chemistry and Environmental Health Science, Benedict College, Columbia, South Carolina, USA
| |
Collapse
|
7
|
Feng Y, Guo C, Wang H, Zhao L, Wang W, Wang T, Feng Y, Yuan K, Huang G. Fibrinogen-Like Protein 2 (FGL2) is a Novel Biomarker for Clinical Prediction of Human Breast Cancer. Med Sci Monit 2020; 26:e923531. [PMID: 32716910 PMCID: PMC7409386 DOI: 10.12659/msm.923531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2) is a member of the fibrinogen-like protein family and possesses important regulatory functions in both innate and adaptive immune responses. FGL2 is overexpressed in glioma, and its expression level is negatively associated with the prognosis of glioma patients. However, the diagnostic value of FGL2 is unknown in breast carcinoma. MATERIAL AND METHODS We comprehensively analyzed the expression pattern of FGL2 in breast cancer. Several online databases - TCGA, Oncomine, GEPIA, Kaplan-Meier plotter, and PrognoScan - were used in this study. RESULTS Based on the TCGA dataset and Oncomine database, we found that the expression level of FGL2 was remarkably lower in breast cancer compared with adjacent normal tissues. Clinical data showed that the expression level of FGL2 was significantly associated with radiation therapy, PR status, and tumor stage. Bioinformatics analysis of the GEPIA, Kaplan-Meier plotter, and PrognoScan databases showed that lower FGL2 expression levels were associated with a worse prognosis in breast cancer patients. Furthermore, the expression level of FGL2 was positively correlated with the immune cell infiltrations in breast cancer, especially those cells with high antitumor activities. GO, KEGG, and GSEA analyses also validated that FGL2 was closely related to genes involved in the immune response, signal transduction, and T cell receptor signaling pathway in breast cancer. CONCLUSIONS The results demonstrated that high expression of FGL2 is a useful marker for breast cancer treatment and appears to be correlated with enhanced antitumor activities in breast cancer patients.
Collapse
Affiliation(s)
- Yanyan Feng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Chunguang Guo
- Department of Abdominal Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Hesong Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Lu Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wei Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Ting Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yuyin Feng
- Department of Biochemistry, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Kai Yuan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Guangrui Huang
- Department of Biochemistry, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
8
|
Elesawy FM, Abdel Hafeez NA, Abdelsalam OH, Akl EM. Soluble Fibrinogen-like protein 2 plays a role in varicocele induced male infertility. Andrologia 2020; 52:e13626. [PMID: 32350910 DOI: 10.1111/and.13626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 12/24/2022] Open
Abstract
Varicocele is the most common cause of male infertility. Several theories have been proposed to explain how varicocele induces infertility. The role of epididymis in male infertility is not fully well established. Fibrinogen-like protein 2 is one of serine proteases and is a potent coagulant in membranous form and immune-modulator in soluble form (sFGL-2) and expressed in the epididymis. There are no previous reports about its possible role in varicocele. This case-controlled study aimed to evaluate the seminal level of sFGL-2 in infertile men with varicocele and in men with idiopathic infertility. This study included 85 participants divided into three groups; 25 normal fertile men, 30 infertile men with varicocele and 30 infertile men of idiopathic cause. Clinical examination, Doppler ultrasound, semen analysis and measurement of seminal level of sFGL-2 were done to all participants. Seminal level of sFGL-2 was significantly elevated in infertile than normal fertile men. Seminal level of sFGL-2 showed negative correlations with sperm concentration, motility and normal morphology. Seminal level of sFGL-2 had a positive correlation with seminal liquefaction time. This study concluded that seminal level of sFGL-2 is increased in infertile men with idiopathic cause and with varicocele induced infertility and affects seminal liquefaction.
Collapse
Affiliation(s)
- Fatma M Elesawy
- Department of Dermatology & Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Neveen A Abdel Hafeez
- Department of Clinical Pathology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Osama H Abdelsalam
- Department of Dermatology & Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Essam M Akl
- Department of Dermatology & Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
9
|
Zuliani-Alvarez L, Marzeda AM, Deligne C, Schwenzer A, McCann FE, Marsden BD, Piccinini AM, Midwood KS. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat Commun 2017; 8:1595. [PMID: 29150600 PMCID: PMC5693923 DOI: 10.1038/s41467-017-01718-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Claire Deligne
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Fiona E McCann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Brian D Marsden
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.,Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.,School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
| |
Collapse
|