1
|
Schwabe RF, Brenner DA. Hepatic stellate cells: balancing homeostasis, hepatoprotection and fibrogenesis in health and disease. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01068-6. [PMID: 40404839 DOI: 10.1038/s41575-025-01068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/24/2025]
Abstract
In the past decades, the pathogenic role of hepatic stellate cells (HSCs) in the development of liver fibrosis and its complications has been deeply characterized, rendering HSCs a primary target for antifibrotic therapies. By contrast, the beneficial roles of HSCs in liver homeostasis and liver disease are only beginning to emerge, revealing critical regulatory and fibrosis-independent functions in hepatic zonation, metabolism, injury, regeneration and non-parenchymal cell identity. Here, we review how HSC mediators, such as R-spondin 3, hepatocyte growth factor and bone morphogenetic proteins, regulate critical and homeostatic liver functions in health and disease via cognate receptors in hepatocytes, Kupffer cells and endothelial cells. We highlight how the balance shifts from protective towards fibropathogenic HSC mediators during the progression of chronic liver disease (CLD) and the impact of this shifted balance on patient outcomes. Notably, the protective roles of HSCs are not accounted for in current therapeutic concepts for CLD. We discuss the concept that reverting the HSC balance from fibrogenesis towards hepatoprotection might represent a novel holistic treatment approach to inhibit fibrogenesis and restore epithelial health in CLD simultaneously.
Collapse
Affiliation(s)
- Robert F Schwabe
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA.
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
- Institute of Human Nutrition, New York, NY, USA.
| | - David A Brenner
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Gajos-Michniewicz A, Czyz M. Therapeutic Potential of Natural Compounds to Modulate WNT/β-Catenin Signaling in Cancer: Current State of Art and Challenges. Int J Mol Sci 2024; 25:12804. [PMID: 39684513 DOI: 10.3390/ijms252312804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Targeted therapies and immunotherapies have improved the clinical outcome of cancer patients; however, the efficacy of treatment remains frequently limited due to low predictability of response and development of drug resistance. Therefore, novel therapeutic strategies for various cancer types are needed. Current research emphasizes the potential therapeutic value of targeting WNT/β-catenin dependent signaling that is deregulated in various cancer types. Targeting the WNT/β-catenin signaling pathway with diverse synthetic and natural agents is the subject of a number of preclinical studies and clinical trials for cancer patients. The usage of nature-derived agents is attributed to their health benefits, reduced toxicity and side effects compared to synthetic agents. The review summarizes preclinical studies and ongoing clinical trials that aim to target components of the WNT/β-catenin pathway across a diverse spectrum of cancer types, highlighting their potential to improve cancer treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Olczak A, Pieczonka TD, Ławicki S, Łukaszyk K, Pulawska-Czub A, Cambier L, Kobielak K. The overexpression of R-spondin 3 affects hair morphogenesis and hair development along with the formation and maturation of the hair follicle stem cells. Front Physiol 2024; 15:1424077. [PMID: 39351282 PMCID: PMC11439821 DOI: 10.3389/fphys.2024.1424077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Mice hair follicles (HFs) are a valuable model for studying various aspects of hair biology, including morphogenesis, development, and regeneration due to their easily observable phenotype and genetic manipulability. The initiation and progression of hair follicle morphogenesis, as well as the hair follicle cycle, are regulated by various signaling pathways, of which the main role is played by the Wingless-type MMTV integration site family (Wnt) and the Bone Morphogenic Protein (BMP). During the hair follicle cycle, the BMP pathway maintains hair follicle stem cells (HFSCs) in a dormant state while the Wnt pathway activates them for hair growth. Given the pivotal role of the Wnt pathway in hair biology and HFSCs regulation, we investigated the influence of the Wnt modulator - R-spondin 3 (Rspo3), in these processes. For this purpose, we developed a transgenic mice model with the overexpression of Rspo3 (Rspo3GOF) in the whole ectoderm and its derivatives, starting from early morphogenesis. Rspo3GOF mice exhibited a distinct phenotype with sparse hair and visible bald areas, caused by reduced proliferation and increased apoptosis of hair matrix progenitor cells, which resulted in a premature anagen-to-catagen transition with a shortened growth phase and decreased overall length of all hair types. In addition, Rspo3GOF promoted induction of auchene and awl, canonical Wnt-dependent hair type during morphogenesis, but the overall hair amount remained reduced. We also discovered a delay in the pre-bulge formation during morphogenesis and prolonged immaturity of the HFSC population in the bulge region postnatally, which further impaired proper hair regeneration throughout the mice's lifespan. Our data supported that Rspo3 function observed in our model works in HFSCs' formation of pre-bulge during morphogenesis via enhancing activation of the canonical Wnt pathway, whereas in contrast, in the postnatal immature bulge, activation of canonical Wnt signaling was attenuated. In vitro studies on keratinocytes revealed changes in proliferation, migration, and colony formation, highlighting the inhibitory effect of constitutive overexpression of Rspo3 on these cellular processes. Our research provides novel insights into the role of Rspo3 in the regulation of hair morphogenesis and development, along with the formation and maturation of the HFSCs, which affect hair regeneration.
Collapse
Affiliation(s)
- Alicja Olczak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Tomasz D. Pieczonka
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Szymon Ławicki
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Konrad Łukaszyk
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Anna Pulawska-Czub
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| | - Linda Cambier
- The Vision Center and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Krzysztof Kobielak
- Centre of New Technologies (CeNT), University of Warsaw (UW), Warsaw, Poland
| |
Collapse
|
4
|
Abdulaal WH, Omar UM, Zeyadi M, El-Agamy DS, Alhakamy NA, Ibrahim SRM, Almalki NAR, Asfour HZ, Al-Rabia MW, Mohamed GA, Elshal M. Pirfenidone ameliorates ANIT-induced cholestatic liver injury via modulation of FXR, NF-кB/TNF-α, and Wnt/GSK-3β/β-catenin signaling pathways. Toxicol Appl Pharmacol 2024; 490:117038. [PMID: 39019095 DOI: 10.1016/j.taap.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3β/β-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Wesam H Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ulfat M Omar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mustafa Zeyadi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Naif A R Almalki
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
5
|
Teder-Laving M, Kals M, Reigo A, Ehin R, Objärtel T, Vaht M, Nikopensius T, Metspalu A, Kingo K. Genome-wide meta-analysis identifies novel loci conferring risk of acne vulgaris. Eur J Hum Genet 2024; 32:1136-1143. [PMID: 36922633 PMCID: PMC11368920 DOI: 10.1038/s41431-023-01326-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Acne vulgaris is a common chronic skin disorder presenting with comedones, cystic structures forming within the distal hair follicle, and in most cases additionally with inflammatory skin lesions on the face and upper torso. We performed a genome-wide association study and meta-analysis of data from 34,422 individuals with acne and 364,991 controls from three independent European-ancestry cohorts. We replicated 19 previously implicated genome-wide significant risk loci and identified four novel loci [11q12.2 (FADS2), 12q21.1 (LGR5), 17q25.3 (FASN), and 22q12.1 (ZNRF3-KREMEN1)], bringing the total number of reported acne risk loci to 50. Our meta-analysis results explain 9.4% of the phenotypic variance of acne. A polygenic model of acne risk variants showed that individuals in the top 5% of the risk percentiles had a 1.62-fold (95% CI 1.47-1.78) increased acne risk relative to individuals with average risk (20-80% on the polygenic risk score distribution). Our findings highlight the Wnt and MAPK pathways as key factors in the genetic predisposition to acne vulgaris, together with the effects of genetic variation on the structure and maintenance of the hair follicle and pilosebaceous unit. Two novel loci, 11q12.2 and 17q25.3, contain genes encoding key enzymes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Maris Teder-Laving
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Mart Kals
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anu Reigo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Riin Ehin
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
- BioCC Ltd, Tartu, Estonia
| | - Telver Objärtel
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tiit Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
6
|
Marečková M, Garcia-Alonso L, Moullet M, Lorenzi V, Petryszak R, Sancho-Serra C, Oszlanczi A, Icoresi Mazzeo C, Wong FCK, Kelava I, Hoffman S, Krassowski M, Garbutt K, Gaitskell K, Yancheva S, Woon EV, Male V, Granne I, Hellner K, Mahbubani KT, Saeb-Parsy K, Lotfollahi M, Prigmore E, Southcombe J, Dragovic RA, Becker CM, Zondervan KT, Vento-Tormo R. An integrated single-cell reference atlas of the human endometrium. Nat Genet 2024; 56:1925-1937. [PMID: 39198675 PMCID: PMC11387200 DOI: 10.1038/s41588-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
The complex and dynamic cellular composition of the human endometrium remains poorly understood. Previous endometrial single-cell atlases profiled few donors and lacked consensus in defining cell types. We introduce the Human Endometrial Cell Atlas (HECA), a high-resolution single-cell reference atlas (313,527 cells) combining published and new endometrial single-cell transcriptomics datasets of 63 women with and without endometriosis. HECA assigns consensus and identifies previously unreported cell types, mapped in situ using spatial transcriptomics and validated using a new independent single-nuclei dataset (312,246 nuclei, 63 donors). In the functionalis, we identify intricate stromal-epithelial cell coordination via transforming growth factor beta (TGFβ) signaling. In the basalis, we define signaling between fibroblasts and an epithelial population expressing progenitor markers. Integration of HECA with large-scale endometriosis genome-wide association study data pinpoints decidualized stromal cells and macrophages as most likely dysregulated in endometriosis. The HECA is a valuable resource for studying endometrial physiology and disorders, and for guiding microphysiological in vitro systems development.
Collapse
Affiliation(s)
- Magda Marečková
- Wellcome Sanger Institute, Cambridge, UK
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | | | | | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Bioinformatics Institute-European Molecular Biology Laboratory, Cambridge, UK
| | | | | | | | | | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | | | - Michał Krassowski
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kurtis Garbutt
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Kezia Gaitskell
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Slaveya Yancheva
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford, UK
| | - Ee Von Woon
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
- The Fertility Centre, Chelsea and Westminster Hospital, London, UK
| | - Victoria Male
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Ingrid Granne
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Karin Hellner
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Krishnaa T Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Cambridge Biorepository for Translational Medicine (CBTM), NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mohammad Lotfollahi
- Wellcome Sanger Institute, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Jennifer Southcombe
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rebecca A Dragovic
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Christian M Becker
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Krina T Zondervan
- Oxford Endometriosis Care Centre, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
- Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | |
Collapse
|
7
|
Zhang J, Jiang J, Liu H, Wang S, Ke K, Liu S, Jiang Y, Liu L, Gao X, He B, Su Y. BMP9 induces osteogenic differentiation through up-regulating LGR4 via the mTORC1/Stat3 pathway in mesenchymal stem cells. Genes Dis 2024; 11:101075. [PMID: 38292169 PMCID: PMC10825279 DOI: 10.1016/j.gendis.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 02/01/2024] Open
Abstract
Bone defects and non-union are prevalent in clinical orthopedy, and the outcomes of current treatments are often suboptimal. Bone tissue engineering offers a promising approach to treating these conditions effectively. Bone morphogenetic protein 9 (BMP9) can commit mesenchymal stem cells to osteogenic lineage, and a knowledge of the underlying mechanisms may help advance the field of bone tissue engineering. Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4), a member of G protein-coupled receptors, is essential for modulating bone development. This study is aimed at investigating the impact of LGR4 on BMP9-induced osteogenesis in mesenchymal stem cells as well as the underlying mechanisms. Bone marrow stromal cells from BMP9-knockout mice exhibited diminished LGR4 expression, and exogenous LGR4 clearly restored the impaired osteogenic potency of the bone marrow stromal cells. Furthermore, LGR4 expression was increased by BMP9 in C3H10T1/2 cells. LGR4 augmented the benefits of BMP9-induced osteogenic markers and bone formation, whereas LGR4 inhibition restricted these effects. Meanwhile, the BMP9-induced lipogenic markers were increased by LGR4 inhibition. The protein levels of Raptor and p-Stat3 were elevated by BMP9. Raptor knockdown or p-Stat3 suppression attenuated the osteoblastic markers and LGR4 expression brought on by BMP9. LGR4 significantly reversed the blocking effect of Raptor knockdown or p-Stat3 suppression on the BMP9-induced osteoblastic markers. Raptor interacts with p-Stat3, and p-Stat3 activates the LGR4 promoter activity. In conclusion, LGR4 boosts BMP9 osteoblastic potency in mesenchymal stem cells, and BMP9 may up-regulate LGR4 via the mTORC1/Stat3 signal activation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Jinhai Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Hang Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shiyu Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Kaixin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Siyuan Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Orthopedics, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Su
- Orthopedics Department, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Jiangxi Hospital Affiliated Children’s Hospital of Chongqing Medical University, Jiangxi 330000, China
- National Clinical Research Center for Child Health and Disorders, China
| |
Collapse
|
8
|
Eltorky H, AbdelMageed M, Ismail H, Zahran F, Guirgis A, Olsson L, Lindmark G, Hammarström ML, Hammarström S, Sitohy B. LGR6 is a prognostic biomarker for less differentiated tumors in lymph nodes of colon cancer patients. Front Oncol 2024; 14:1393075. [PMID: 38715790 PMCID: PMC11074358 DOI: 10.3389/fonc.2024.1393075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION The aim was to investigate whether the stem cell marker LGR6 has prognostic value in colon cancer, alone or in combination with the prognostic biomarkers CEA and CXCL16. METHODS LGR6 mRNA levels were determined in 370 half lymph nodes of 121 colon cancer patients. Ability to predict relapse after curative surgery was estimated by Kaplan-Meier survival model and Cox regression analyses. RESULTS Patients with high LGR6 levels [LGR6(+)] had a decreased mean survival time of 11 months at 5-year follow-up and 47 months at 12-year follow-up, respectively, with hazard ratios of 3.2 and 2.8. LGR6 mRNA analysis added prognostic value to CEA and CXCL16 mRNA analysis. In the poor prognosis groups CEA(+) and CXCL16(+), further division was achieved by LGR6 analysis. LGR6(+) patients had a very poor prognosis. LGR6 also identified a small number of CEA(-), TNM stage I patients who relapsed suggesting stem cell origin of these tumors. LGR6 and LGR5 levels correlated strongly in lymph nodes of stage I and IV patients but not in stage II patients, suggesting that these stem cell markers are differentially regulated. CONCLUSION This study highlights LGR6 as a useful prognostic biomarker independently and in combination with CEA, CXCL16 or LGR5 identifying different risk groups.
Collapse
Affiliation(s)
- Hagar Eltorky
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Manar AbdelMageed
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hager Ismail
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Faten Zahran
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adel Guirgis
- Department of Molecular Biology, Genetic Engineering, and Biotechnology Research Institute, University of Sadat City, Sadat, Menoufia, Egypt
| | - Lina Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Gudrun Lindmark
- Institution of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Sten Hammarström
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Basel Sitohy
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Shinozuka T, Aoki M, Hatakeyama Y, Sasai N, Okamoto H, Takada S. Rspo1 and Rspo3 are required for sensory lineage neural crest formation in mouse embryos. Dev Dyn 2024; 253:435-446. [PMID: 37767857 DOI: 10.1002/dvdy.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND R-spondins (Rspos) are secreted proteins that modulate Wnt/β-catenin signaling. At the early stages of spinal cord development, Wnts (Wnt1, Wnt3a) and Rspos (Rspo1, Rspo3) are co-expressed in the roof plate, suggesting that Rspos are involved in development of dorsal spinal cord and neural crest cells in cooperation with Wnt ligands. RESULTS Here, we found that Rspo1 and Rspo3, as well as Wnt1 and Wnt3a, maintained roof-plate-specific expression until late embryonic stages. Rspo1- and Rspo3-double-knock-out (dKO) embryos partially exhibited the phenotype of Wnt1 and Wnt3a dKO embryos. While the number of Ngn2-positive sensory lineage neural crest cells is reduced in Rspo-dKO embryos, development of dorsal spinal cord, including its size and dorso-ventral patterning in early development, elongation of the roof plate, and proliferation of ependymal cells, proceeded normally. Consistent with these slight defects, Wnt/β-catenin signaling was not obviously changed in developing spinal cord of dKO embryos. CONCLUSIONS Our results show that Rspo1 and Rspo3 are dispensable for most developmental processes involving roof plate-derived Wnt ligands, except for specification of a subtype of neural crest cells. Thus, Rspos may modulate Wnt/β-catenin signaling in a context-dependent manner.
Collapse
Affiliation(s)
- Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Motoko Aoki
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Yudai Hatakeyama
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| | - Noriaki Sasai
- Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
10
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
11
|
Kitakaze T, Tatsumi R, Yamaguchi M, Kubota M, Nakatsuji A, Harada N, Yamaji R. All- Trans Retinoic Acid-Responsive LGR6 Is Transiently Expressed during Myogenic Differentiation and Is Required for Myoblast Differentiation and Fusion. Int J Mol Sci 2023; 24:9035. [PMID: 37240382 PMCID: PMC10219391 DOI: 10.3390/ijms24109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
All-trans retinoic acid (ATRA) promotes myoblast differentiation into myotubes. Leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) is a candidate ATRA-responsive gene; however, its role in skeletal muscles remains unclear. Here, we demonstrated that during the differentiation of murine C2C12 myoblasts into myotubes, Lgr6 mRNA expression transiently increased before the increase in the expression of the mRNAs encoding myogenic regulatory factors, such as myogenin, myomaker, and myomerger. The loss of LGR6 decreased the differentiation and fusion indices. The exogenous expression of LGR6 up to 3 and 24 h after the induction of differentiation increased and decreased the mRNA levels of myogenin, myomaker, and myomerger, respectively. Lgr6 mRNA was transiently expressed after myogenic differentiation in the presence of a retinoic acid receptor α (RARα) agonist and an RARγ agonist in addition to ATRA, but not in the absence of ATRA. Furthermore, a proteasome inhibitor or Znrf3 knockdown increased exogenous LGR6 expression. The loss of LGR6 attenuated the Wnt/β-catenin signaling activity induced by Wnt3a alone or in combination with Wnt3a and R-spondin 2. These results indicate that LGR6 promotes myogenic differentiation and that ATRA is required for the transient expression of LGR6 during differentiation. Furthermore, LGR6 expression appeared to be downregulated by the ubiquitin-proteasome system involving ZNRF3.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 5998531, Osaka, Japan; (T.K.); (N.H.)
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 5998531, Osaka, Japan
| | - Rina Tatsumi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 5998531, Osaka, Japan; (T.K.); (N.H.)
| | - Mayu Yamaguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 5998531, Osaka, Japan; (T.K.); (N.H.)
| | - Mai Kubota
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 5998531, Osaka, Japan
| | - Aino Nakatsuji
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 5998531, Osaka, Japan
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 5998531, Osaka, Japan; (T.K.); (N.H.)
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 5998531, Osaka, Japan
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 5998531, Osaka, Japan; (T.K.); (N.H.)
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai 5998531, Osaka, Japan
- Center for Research and Development of Bioresources, Osaka Metropolitan University, Sakai 5998531, Osaka, Japan
| |
Collapse
|
12
|
Wong C, Mulero MC, Barth EI, Wang K, Shang X, Tikle S, Rice C, Gately D, Howell SB. Exploiting the Receptor-Binding Domains of R-Spondin 1 to Target Leucine-Rich Repeat-Containin G-Coupled Protein Receptor 5-Expressing Stem Cells in Ovarian Cancer. J Pharmacol Exp Ther 2023; 385:95-105. [PMID: 36849411 PMCID: PMC10108443 DOI: 10.1124/jpet.122.001495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor (LGR5) and LGR6 mark epithelial stem cells in normal tissues and tumors. They are expressed by stem cells in the ovarian surface and fallopian tube epithelia from which ovarian cancer arises. High-grade serous ovarian cancer is unique in expressing unusually high levels of LGR5 and LGR6 mRNA. R-spondins are the natural ligands for LGR5 and LGR6 to which they bind with nanomolar affinity. To target stem cells in ovarian cancer, we used the sortase reaction to site-specifically conjugate the potent cytotoxin monomethyl auristatin E (MMAE) via a protease sensitive linker to the two furin-like domains of RSPO1 (Fu1-Fu2) that mediate its binding to LGR5 and LGR6 and their co-receptors Zinc And Ring Finger 3 and Ring Finger Protein 43 via a protease-cleavable linker. An immunoglobulin Fc domain added to the N-terminal end served to dimerize the receptor-binding domains so that each molecule carries two MMAE. The resulting molecule, FcF2-MMAE, demonstrated: 1) selective LGR5-dependent low nanomolar cytotoxicity against ovarian cancer cells in vitro; 2) selectivity that was dependent on binding to both the LGR receptors and ubiquitin ligase co-receptors; 3) favorable stability and plasma pharmacokinetic properties when administered intravenously with an elimination half-life of 29.7 hours; 4) selective inhibition of LGR5-rich as opposed to isogenic LGR5-poor tumors in vivo; and, 5) therapeutic efficacy in three aggressive wild-type human ovarian cancer xenograft models. These results demonstrate the successful use of the Fu1-Fu2 domain of RSPO1 as a drug carrier and the ability of FcF2-MMAE to target cells in tumors that express stem cell markers. SIGNIFICANCE STATEMENT: FcF2-MMAE is a novel cancer therapeutic that exploits the high-affinity binding domains of RSPO1 to target monomethyl auristatin E to tumor stem cells that express LGR5. FcF2-MMAE has low nanomolar LGR5-dependent cytotoxicity in vitro, favorable pharmacokinetics, and differential efficacy in an isogenic LGR5-poor versus LGR5-rich ovarian cancer xenograft model when given on a weekly schedule.
Collapse
Affiliation(s)
- Clara Wong
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Maria Carmen Mulero
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Erika I Barth
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Katherine Wang
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Xiying Shang
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Sanika Tikle
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Catherine Rice
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Dennis Gately
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Stephen B Howell
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| |
Collapse
|
13
|
Gamit N, Dharmarajan A, Sethi G, Warrier S. Want of Wnt in Parkinson's disease: Could sFRP disrupt interplay between Nurr1 and Wnt signaling? Biochem Pharmacol 2023; 212:115566. [PMID: 37088155 DOI: 10.1016/j.bcp.2023.115566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor known to regulate the development and maintenance of midbrain dopaminergic (mDA) neurons. Reports have confirmed that defect or obliteration of Nurr1 results in neurodegeneration and motor function impairment leading to Parkinson's disease (PD). Studies have also indicated that Nurr1 regulates the expression of alpha-synuclein (α-SYN) and mutations in Nurr1 cause α-SYN overexpression, thereby increasing the risk of PD. Nurr1 is modulated via various pathways including Wnt signaling pathway which is known to play an important role in neurogenesis and deregulation of it contributes to PD pathogenesis. Both Wnt/β-catenin dependent and independent pathways are implicated in the activation of Nurr1 and subsequent downregulation of α-SYN. This review highlights the interaction between Nurr1 and Wnt signaling pathways in mDA neuronal development. We further hypothesize how modulation of Wnt signaling pathway by its antagonist, secreted frizzled related proteins (sFRPs) could be a potential route to treat PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India; School of Pharmacy and Biomedical Sciences, Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117 600, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
14
|
Napolitano T, Silvano S, Ayachi C, Plaisant M, Sousa-Da-Veiga A, Fofo H, Charles B, Collombat P. Wnt Pathway in Pancreatic Development and Pathophysiology. Cells 2023; 12:cells12040565. [PMID: 36831232 PMCID: PMC9954665 DOI: 10.3390/cells12040565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
The pancreas is an abdominal gland that serves 2 vital purposes: assist food processing by secreting digestive enzymes and regulate blood glucose levels by releasing endocrine hormones. During embryonic development, this gland originates from epithelial buds located on opposite sites of the foregut endoderm. Pancreatic cell specification and maturation are coordinated by a complex interplay of extrinsic and intrinsic signaling events. In the recent years, the canonical Wnt/β-catenin pathway has emerged as an important player of pancreas organogenesis, regulating pancreatic epithelium specification, compartmentalization and expansion. Importantly, it has been suggested to regulate proliferation, survival and function of adult pancreatic cells, including insulin-secreting β-cells. This review summarizes recent work on the role of Wnt/β-catenin signaling in pancreas biology from early development to adulthood, emphasizing on its relevance for the development of new therapies for pancreatic diseases.
Collapse
Affiliation(s)
| | | | - Chaïma Ayachi
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | | | - Hugo Fofo
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
| | | | - Patrick Collombat
- DiogenX, 180 Avenue du Prado, 13008 Marseille, France
- Université Côte d’Azur, CNRS, Inserm, iBV, 06000 Nice, France
- Correspondence:
| |
Collapse
|
15
|
Chaves-Pérez A, Santos-de-Frutos K, de la Rosa S, Herranz-Montoya I, Perna C, Djouder N. Transit-amplifying cells control R-spondins in the mouse crypt to modulate intestinal stem cell proliferation. J Exp Med 2022; 219:213460. [PMID: 36098959 PMCID: PMC9475298 DOI: 10.1084/jem.20212405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022] Open
Abstract
Intestinal epithelium regenerates rapidly through proliferation of intestinal stem cells (ISCs), orchestrated by potent mitogens secreted within the crypt niche. However, mechanisms regulating these mitogenic factors remain largely unknown. Here, we demonstrate that transit-amplifying (TA) cells, marked by unconventional prefoldin RPB5 interactor (URI), control R-spondin production to guide ISC proliferation. Genetic intestinal URI ablation in mice injures TA cells, reducing their survival capacity, leading to an inflamed tissue and subsequently decreasing R-spondin levels, thereby causing ISC quiescence and disruption of intestinal structure. R-spondin supplementation or restoration of R-spondin levels via cell death inhibition by c-MYC elimination or the suppression of inflammation reinstates ISC proliferation in URI-depleted mice. However, selective c-MYC and p53 suppression are required to fully restore TA cell survival and differentiation capacity and preserve complete intestinal architecture. Our data reveal an unexpected role of TA cells, which represent a signaling platform instrumental for controlling inflammatory cues and R-spondin production, essential for maintaining ISC proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Almudena Chaves-Pérez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Karla Santos-de-Frutos
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Sergio de la Rosa
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Irene Herranz-Montoya
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| | - Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
16
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Li JY, Gillilland M, Lee AA, Wu X, Zhou SY, Owyang C. Secondary bile acids mediate high-fat diet-induced upregulation of R-spondin 3 and intestinal epithelial proliferation. JCI Insight 2022; 7:e148309. [PMID: 36099053 PMCID: PMC9675439 DOI: 10.1172/jci.insight.148309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A high-fat diet (HFD) contributes to the increased incidence of colorectal cancer, but the mechanisms are unclear. We found that R-spondin 3 (Rspo3), a ligand for leucine-rich, repeat-containing GPCR 4 and 5 (LGR4 and LGR5), was the main subtype of R-spondins and was produced by myofibroblasts beneath the crypts in the intestine. HFD upregulated colonic Rspo3, LGR4, LGR5, and β-catenin gene expression in specific pathogen-free rodents, but not in germ-free mice, and the upregulations were prevented by the bile acid (BA) binder cholestyramine or antibiotic treatment, indicating mediation by both BA and gut microbiota. Cholestyramine or antibiotic treatments prevented HFD-induced enrichment of members of the Lachnospiraceae and Rumincoccaceae, which can transform primary BA into secondary BA. Oral administration of deoxycholic acid (DCA), or inoculation of a combination of the BA deconjugator Lactobacillus plantarum and 7α-dehydroxylase-containing Clostridium scindens with an HFD to germ-free mice increased serum DCA and colonic Rspo3 mRNA levels, indicating that formation of secondary BA by gut microbiota is responsible for HFD-induced upregulation of Rspo3. In primary myofibroblasts, DCA increased Rspo3 mRNA via TGR5. Finally, we showed that cholestyramine or conditional deletion of Rspo3 prevented HFD- or DCA-induced intestinal proliferation. We conclude that secondary BA is responsible for HFD-induced upregulation of Rspo3, which, in turn, mediates HFD-induced intestinal epithelial proliferation.
Collapse
|
18
|
Tachibana N, Chijimatsu R, Okada H, Oichi T, Taniguchi Y, Maenohara Y, Miyahara J, Ishikura H, Iwanaga Y, Arino Y, Nagata K, Nakamoto H, Kato S, Doi T, Matsubayashi Y, Oshima Y, Terashima A, Omata Y, Yano F, Maeda S, Ikegawa S, Seki M, Suzuki Y, Tanaka S, Saito T. RSPO2 defines a distinct undifferentiated progenitor in the tendon/ligament and suppresses ectopic ossification. SCIENCE ADVANCES 2022; 8:eabn2138. [PMID: 35984875 PMCID: PMC9390986 DOI: 10.1126/sciadv.abn2138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Ectopic endochondral ossification in the tendon/ligament is caused by repetitive mechanical overload or inflammation. Tendon stem/progenitor cells (TSPCs) contribute to tissue repair, and some express lubricin [proteoglycan 4 (PRG4)]. However, the mechanisms of ectopic ossification and association of TSPCs are not yet known. Here, we investigated the characteristics of Prg4-positive (+) cells and identified that R-spondin 2 (RSPO2), a WNT activator, is specifically expressed in a distinct Prg4+ TSPC cluster. The Rspo2+ cluster was characterized as mostly undifferentiated, and RSPO2 overexpression suppressed ectopic ossification in a mouse Achilles tendon puncture model via chondrogenic differentiation suppression. RSPO2 expression levels in patients with ossification of the posterior longitudinal ligament were lower than those in spondylosis patients, and RSPO2 protein suppressed chondrogenic differentiation of human ligament cells. RSPO2 was induced by inflammatory stimulation and mechanical loading via nuclear factor κB. Rspo2+ cells may contribute to tendon/ligament homeostasis under pathogenic conditions.
Collapse
Affiliation(s)
- Naohiro Tachibana
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Oichi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Taniguchi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Maenohara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junya Miyahara
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisatoshi Ishikura
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhide Iwanaga
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yusuke Arino
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosei Nagata
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Nakamoto
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - So Kato
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Doi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Matsubayashi
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Oshima
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Asuka Terashima
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasunori Omata
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Masahide Seki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, The University of Tokyo, Kashiwa, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Raslan AA, Oh YJ, Jin YR, Yoon JK. R-Spondin2, a Positive Canonical WNT Signaling Regulator, Controls the Expansion and Differentiation of Distal Lung Epithelial Stem/Progenitor Cells in Mice. Int J Mol Sci 2022; 23:ijms23063089. [PMID: 35328508 PMCID: PMC8954098 DOI: 10.3390/ijms23063089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The lungs have a remarkable ability to regenerate damaged tissues caused by acute injury. Many lung diseases, especially chronic lung diseases, are associated with a reduced or disrupted regeneration potential of the lungs. Therefore, understanding the underlying mechanisms of the regenerative capacity of the lungs offers the potential to identify novel therapeutic targets for these diseases. R-spondin2, a co-activator of WNT/β-catenin signaling, plays an important role in embryonic murine lung development. However, the role of Rspo2 in adult lung homeostasis and regeneration remains unknown. The aim of this study is to determine Rspo2 function in distal lung stem/progenitor cells and adult lung regeneration. In this study, we found that robust Rspo2 expression was detected in different epithelial cells, including airway club cells and alveolar type 2 (AT2) cells in the adult lungs. However, Rspo2 expression significantly decreased during the first week after naphthalene-induced airway injury and was restored by day 14 post-injury. In ex vivo 3D organoid culture, recombinant RSPO2 promoted the colony formation and differentiation of both club and AT2 cells through the activation of canonical WNT signaling. In contrast, Rspo2 ablation in club and AT2 cells significantly disrupted their expansion capacity in the ex vivo 3D organoid culture. Furthermore, mice lacking Rspo2 showed significant defects in airway regeneration after naphthalene-induced injury. Our results strongly suggest that RSPO2 plays a key role in the adult lung epithelial stem/progenitor cells during homeostasis and regeneration, and therefore, it may be a potential therapeutic target for chronic lung diseases with reduced regenerative capability.
Collapse
Affiliation(s)
- Ahmed A. Raslan
- Department of Integrated Biomedical Science, Graduate School, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
| | - Youn Jeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
| | - Yong Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Jeong Kyo Yoon
- Department of Integrated Biomedical Science, Graduate School, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, 25 Bongjeong-ro, Dongnam-gu, Cheonan 31151, Korea;
- Correspondence:
| |
Collapse
|
21
|
Cesario J, Ha S, Kim J, Kataria N, Jeong J. Candidate positive targets of LHX6 and LHX8 transcription factors in the developing upper jaw. Gene Expr Patterns 2022; 43:119227. [PMID: 34861428 PMCID: PMC8930537 DOI: 10.1016/j.gep.2021.119227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Craniofacial development is controlled by a large number of genes, which interact with one another to form a complex gene regulatory network (GRN). Key components of GRN are signaling molecules and transcription factors. Therefore, identifying targets of core transcription factors is an important part of the overall efforts toward building a comprehensive and accurate model of GRN. LHX6 and LHX8 are transcription factors expressed in the oral mesenchyme of the first pharyngeal arch (PA1), and they are crucial regulators of palate and tooth development. Previously, we performed genome-wide transcriptional profiling and chromatin immunoprecipitation to identify target genes of LHX6 and LHX8 in PA1, and described a set of genes repressed by LHX. However, there has not been any discussion of the genes positively regulated by LHX6 and LHX8. In this paper, we revisited the above datasets to identify candidate positive targets of LHX in PA1. Focusing on those with known connections to craniofacial development, we performed RNA in situ hybridization to confirm the changes in expression in Lhx6;Lhx8 mutant. We also confirmed the binding of LHX6 to several putative enhancers near the candidate target genes. Together, we have uncovered novel connections between Lhx and other important regulators of craniofacial development, including Eya1, Barx1, Rspo2, Rspo3, and Wnt11.
Collapse
Affiliation(s)
| | | | | | | | - Juhee Jeong
- Department of Molecular Pathobiology, New York University College of Dentistry, 345 E. 24th Street, New York, NY, 10010, USA.
| |
Collapse
|
22
|
Lebensohn AM, Bazan JF, Rohatgi R. Receptor control by membrane-tethered ubiquitin ligases in development and tissue homeostasis. Curr Top Dev Biol 2022; 150:25-89. [PMID: 35817504 DOI: 10.1016/bs.ctdb.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.
Collapse
|
23
|
Cannavino J, Gupta RK. Cellular and molecular brakes on adipogenesis. Nat Metab 2022; 4:13-14. [PMID: 35027769 DOI: 10.1038/s42255-021-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jessica Cannavino
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
24
|
Nagano K, Yamana K, Saito H, Kiviranta R, Pedroni AC, Raval D, Niehrs C, Gori F, Baron R. R-spondin 3 deletion induces Erk phosphorylation to enhance Wnt signaling and promote bone formation in the appendicular skeleton. eLife 2022; 11:84171. [PMID: 36321691 PMCID: PMC9681208 DOI: 10.7554/elife.84171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of Wnt signaling leads to high bone density. The R-spondin family of four secreted glycoproteins (Rspo1-4) amplifies Wnt signaling. In humans, RSPO3 variants are strongly associated with bone density. Here, we investigated the role of Rspo3 in skeletal homeostasis in mice. Using a comprehensive set of mouse genetic and mechanistic studies, we show that in the appendicular skeleton, Rspo3 haplo-insufficiency and Rspo3 targeted deletion in Runx2+ osteoprogenitors lead to an increase in trabecular bone mass, with increased number of osteoblasts and bone formation. In contrast and highlighting the complexity of Wnt signaling in the regulation of skeletal homeostasis, we show that Rspo3 deletion in osteoprogenitors results in the opposite phenotype in the axial skeleton, i.e., low vertebral trabecular bone mass. Mechanistically, Rspo3 deficiency impairs the inhibitory effect of Dkk1 on Wnt signaling activation and bone mass. We demonstrate that Rspo3 deficiency leads to activation of Erk signaling which in turn, stabilizes β-catenin and Wnt signaling activation. Our data demonstrate that Rspo3 haplo-insufficiency/deficiency boosts canonical Wnt signaling by activating Erk signaling, to favor osteoblastogenesis, bone formation, and bone mass.
Collapse
Affiliation(s)
- Kenichi Nagano
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Kei Yamana
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Hiroaki Saito
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Riku Kiviranta
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | | | - Dhairya Raval
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Christof Niehrs
- German Cancer Research Center, DKFZ-ZMBH AllianceHeidelbergGermany,Institute of Molecular Biology (IMB)MainzGermany
| | - Francesca Gori
- School of Dental Medicine, Harvard UniversityBostonUnited States
| | - Roland Baron
- School of Dental Medicine, Harvard UniversityBostonUnited States,Department of Medicine, Harvard Medical SchoolBostonUnited States,Endocrine Unit, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
25
|
Eades W, Liu W, Shen Y, Shi Z, Yan B. Covalent CES2 Inhibitors Protect against Reduced Formation of Intestinal Organoids by the Anticancer Drug Irinotecan. Curr Drug Metab 2022; 23:1000-1010. [PMID: 36515038 PMCID: PMC10258227 DOI: 10.2174/1389200224666221212143904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Irinotecan is widely used to treat various types of solid and metastatic cancer. It is an ester prodrug and its hydrolytic metabolite (SN-38) exerts potent anticancer activity. Irinotecan is hydrolyzed primarily by carboxylesterase-2 (CES2), a hydrolase abundantly present in the intestine such as the duodenum. We have identified several potent and covalent CES2 inhibitors such as remdesivir and sofosbuvir. Remdesivir is the first small molecule drug approved for COVID-19, whereas sofosbuvir is a paradigm-shift medicine for hepatitis C viral infection. Irinotecan is generally well-tolerated but associated with severe/life-threatening diarrhea due to intestinal accumulation of SN-38. OBJECTIVE This study was to test the hypothesis that remdesivir and sofosbuvir protect against irinotecan-induced epithelial injury associated with gastrointestinal toxicity. METHODS To test this hypothesis, formation of organoids derived from mouse duodenal crypts, a robust cellular model for intestinal regeneration, was induced in the presence or absence of irinotecan +/- pretreatment with a CES2 drug inhibitor. RESULTS Irinotecan profoundly inhibited the formation of intestinal organoids and the magnitude of the inhibition was greater with female crypts than their male counterparts. Consistently, crypts from female mice had significantly higher hydrolytic activity toward irinotecan. Critically, remdesivir and sofosbuvir both reduced irinotecan hydrolysis and reversed irinotecan-reduced formation of organoids. Human duodenal samples robustly hydrolyzed irinotecan, stable CES2 transfection induced cytotoxicity and the cytotoxicity was reduced by CES2 drug inhibitor. CONCLUSION These findings establish a therapeutic rationale to reduce irinotecan-gastrointestinal injury and serve as a cellular foundation to develop oral formulations of irinotecan with high safety.
Collapse
Affiliation(s)
- William Eades
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
- Equal contribution
| | - William Liu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
- Equal contribution
| | - Yue Shen
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
- Equal contribution
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
26
|
Recombinant Proteins-Based Strategies in Bone Tissue Engineering. Biomolecules 2021; 12:biom12010003. [PMID: 35053152 PMCID: PMC8773742 DOI: 10.3390/biom12010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
The increase in fracture rates and/or problems associated with missing bones due to accidents or various pathologies generates socio-health problems with a very high impact. Tissue engineering aims to offer some kind of strategy to promote the repair of damaged tissue or its restoration as close as possible to the original tissue. Among the alternatives proposed by this specialty, the development of scaffolds obtained from recombinant proteins is of special importance. Furthermore, science and technology have advanced to obtain recombinant chimera’s proteins. This review aims to offer a synthetic description of the latest and most outstanding advances made with these types of scaffolds, particularly emphasizing the main recombinant proteins that can be used to construct scaffolds in their own right, i.e., not only to impregnate them, but also to make scaffolds from their complex structure, with the purpose of being considered in bone regenerative medicine in the near future.
Collapse
|
27
|
Cheng YY, Yang X, Gao X, Song SX, Yang MF, Xie FM. LGR6 promotes glioblastoma malignancy and chemoresistance by activating the Akt signaling pathway. Exp Ther Med 2021; 22:1364. [PMID: 34659510 PMCID: PMC8515564 DOI: 10.3892/etm.2021.10798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance is the primary cause of the poor outcome of glioblastoma multiforme (GBM) therapy. Leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) is involved in the growth and proliferation of several types of cancer, including gastric cancer and ovarian cancer. Therefore, the aim of the present study was to investigate the role of LGR6 in GBM malignancy and chemoresistance. Cell counting kit-8 and Matrigel®-Transwell assays were conducted to assess GBM cell viability and invasion. The effect of LGR6 on cell cycle progression and activation of Akt signaling was analyzed by performing propidium iodide staining and western blotting, respectively. The results demonstrated that LGR6, a microRNA-1236-3p target candidate, promoted GBM cell viability and invasion, and mediated temozolomide sensitivity in SHG-44 and U251 GBM cells. In addition, LGR6 triggered the activation of the Akt signaling pathway during GBM progression. Collectively, the results of the present study suggested that LGR6 promoted GBM malignancy and chemoresistance, at least in part, by activating the Akt signaling pathway. The results may aid with the identification of a novel therapeutic target and strategy for GBM.
Collapse
Affiliation(s)
- Yuan Yuan Cheng
- Department of Oncology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xue Yang
- Department of Oncology, Tai'an Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xin Gao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China
| | - Si Xin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| | - Ming Feng Yang
- Institute of Basic Medicine of Shangdong, First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| | - Fang Min Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, Shandong 270000, P.R. China
| |
Collapse
|
28
|
Narvaes RF, Furini CRG. Role of Wnt signaling in synaptic plasticity and memory. Neurobiol Learn Mem 2021; 187:107558. [PMID: 34808336 DOI: 10.1016/j.nlm.2021.107558] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Ever since their discoveries, the Wnt pathways have been consistently associated with key features of cellular development, including metabolism, structure and cell fate. The three known pathways (the canonical Wnt/β-catenin and the two non-canonical Wnt/Ca++ and Wnt/JNK/PCP pathways) participate in complex networks of interaction with a wide range of regulators of cell function, such as GSK-3β, AKT, PKC and mTOR, among others. These proteins are known to be involved in the formation and maintenance of memory. Currently, studies with Wnt and memory have shown that the canonical and non-canonical pathways play key roles in different processes associated with memory. So, in this review we briefly summarize the different roles that Wnt signaling can play in neurons and in memory, as well as in Alzheimer's disease, focusing towards animal studies. We start with the molecular characterization of the family and its receptors, as well as the most commonly used drugs for pharmacological manipulations. Next, we describe its role in synaptic plasticity and memory, and how the regulations of these pathways affect crucial features of neuronal function. Furthermore, we succinctly present the current knowledge on how the Wnt pathways are implicated in Alzheimer's disease, and how studies are seeing them as a potential candidate for effective treatments. Lastly, we point toward challenges of Wnt research, and how knowledge on these pathways can lead towards a better understanding of neurobiological and pathological processes.
Collapse
Affiliation(s)
- Rodrigo F Narvaes
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
29
|
Tornillo L, Lehmann FS, Garofoli A, Paradiso V, Ng CKY, Piscuoglio S. The Genomic Landscape of Serrated Lesion of the Colorectum: Similarities and Differences With Tubular and Tubulovillous Adenomas. Front Oncol 2021; 11:668466. [PMID: 34712603 PMCID: PMC8546104 DOI: 10.3389/fonc.2021.668466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/15/2021] [Indexed: 01/06/2023] Open
Abstract
Serrated lesions of the colorectum are the precursors of 15-30% of colorectal cancers (CRCs). These lesions have a peculiar morphological appearance, and they are more difficult to detect than conventional adenomatous polyps. In this study, we sought to define the genomic landscape of these lesions using high-depth targeted sequencing. Eight sessile serrated lesions without dysplasia (SSL), three sessile serrated lesions with dysplasia (SSL/D), two traditional serrated adenomas (TSA), and three tubular adenomas (TA) were retrieved from the files of the Institute of Pathology of the University Hospital Basel and from the GILAB AG, Allschwil, Switzerland. Samples were microdissected together with the matched normal counterpart, and DNA was extracted for library preparation. Library preparation was performed using the Oncomine Comprehensive Assay targeting 161 common cancer driver genes. Somatic genetic alterations were defined using state-of-the-art bioinformatic analysis. Most SSLs, as well as all SSL/Ds and TSAs, showed the classical BRAF p.V600E mutation. The BRAF-mutant TSAs showed additional alterations in CTNNB1, NF1, TP53, NRAS, PIK3CA, while TA showed a consistently different profile, with mutations in ARID1A (two cases), SMAD4, CDK12, ERBB3, and KRAS. In conclusion, our results provide evidence that SSL/D and TSA are similar in somatic mutations with the BRAF hotspot somatic mutation as a major driver of the disease. On the other hand, TAs show a different constellation of somatic mutations such as ARID1A loss of function.
Collapse
Affiliation(s)
- Luigi Tornillo
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- GILAB AG, Labor für Gastrointestinale Pathologie, Allschwil, Switzerland
| | - Frank Serge Lehmann
- Division of Gastroenterology and Hepatology, University Hospital of Basel, Basel, Switzerland
| | - Andrea Garofoli
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery and Precision Medicine Research Laboratory, Basel, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Visceral Surgery and Precision Medicine Research Laboratory, Basel, Switzerland
| |
Collapse
|
30
|
Huang S, Kuri P, Aubert Y, Brewster M, Li N, Farrelly O, Rice G, Bae H, Prouty S, Dentchev T, Luo W, Capell BC, Rompolas P. Lgr6 marks epidermal stem cells with a nerve-dependent role in wound re-epithelialization. Cell Stem Cell 2021; 28:1582-1596.e6. [PMID: 34102139 PMCID: PMC8528178 DOI: 10.1016/j.stem.2021.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Stem cells support lifelong maintenance of adult organs, but their specific roles during injury are poorly understood. Here we demonstrate that Lgr6 marks a regionally restricted population of epidermal stem cells that interact with nerves and specialize in wound re-epithelialization. Diphtheria toxin-mediated ablation of Lgr6 stem cells delays wound healing, and skin denervation phenocopies this effect. Using intravital imaging to capture stem cell dynamics after injury, we show that wound re-epithelialization by Lgr6 stem cells is diminished following loss of nerves. This induces recruitment of other stem cell populations, including hair follicle stem cells, which partially compensate to mediate wound closure. Single-cell lineage tracing and gene expression analysis reveal that the fate of Lgr6 stem cells is shifted toward differentiation following loss of their niche. We conclude that Lgr6 epidermal stem cells are primed for injury response and interact with nerves to regulate their fate.
Collapse
Affiliation(s)
- Sixia Huang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paola Kuri
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yann Aubert
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Megan Brewster
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ning Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Olivia Farrelly
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gabriella Rice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hyunjin Bae
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
32
|
Dasgupta K, Cesario JM, Ha S, Asam K, Deacon LJ, Song AH, Kim J, Cobb J, Yoon JK, Jeong J. R-Spondin 3 Regulates Mammalian Dental and Craniofacial Development. J Dev Biol 2021; 9:jdb9030031. [PMID: 34449628 PMCID: PMC8395884 DOI: 10.3390/jdb9030031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
Development of the teeth requires complex signaling interactions between the mesenchyme and the epithelium mediated by multiple pathways. For example, canonical WNT signaling is essential to many aspects of odontogenesis, and inhibiting this pathway blocks tooth development at an early stage. R-spondins (RSPOs) are secreted proteins, and they mostly augment WNT signaling. Although RSPOs have been shown to play important roles in the development of many organs, their role in tooth development is unclear. A previous study reported that mutating Rspo2 in mice led to supernumerary lower molars, while teeth forming at the normal positions showed no significant anomalies. Because multiple Rspo genes are expressed in the orofacial region, it is possible that the relatively mild phenotype of Rspo2 mutants is due to functional compensation by other RSPO proteins. We found that inactivating Rspo3 in the craniofacial mesenchyme caused the loss of lower incisors, which did not progress beyond the bud stage. A simultaneous deletion of Rspo2 and Rspo3 caused severe disruption of craniofacial development from early stages, which was accompanied with impaired development of all teeth. Together, these results indicate that Rspo3 is an important regulator of mammalian dental and craniofacial development.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Jeffry M. Cesario
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Sara Ha
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Kesava Asam
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Lindsay J. Deacon
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Ana H. Song
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - Julie Kim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan 31151, Korea;
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Juhee Jeong
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; (K.D.); (J.M.C.); (S.H.); (K.A.); (L.J.D.); (A.H.S.); (J.K.)
- Correspondence:
| |
Collapse
|
33
|
Rossnerova A, Honkova K, Chvojkova I, Pelclova D, Zdimal V, Hubacek JA, Lischkova L, Vlckova S, Ondracek J, Dvorackova S, Topinka J, Rossner P. Individual DNA Methylation Pattern Shifts in Nanoparticles-Exposed Workers Analyzed in Four Consecutive Years. Int J Mol Sci 2021; 22:ijms22157834. [PMID: 34360600 PMCID: PMC8346047 DOI: 10.3390/ijms22157834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
A DNA methylation pattern represents an original plan of the function settings of individual cells and tissues. The basic strategies of its development and changes during the human lifetime are known, but the details related to its modification over the years on an individual basis have not yet been studied. Moreover, current evidence shows that environmental exposure could generate changes in DNA methylation settings and, subsequently, the function of genes. In this study, we analyzed the effect of chronic exposure to nanoparticles (NP) in occupationally exposed workers repeatedly sampled in four consecutive years (2016-2019). A detailed methylation pattern analysis of 14 persons (10 exposed and 4 controls) was performed on an individual basis. A microarray-based approach using chips, allowing the assessment of more than 850 K CpG loci, was used. Individual DNA methylation patterns were compared by principal component analysis (PCA). The results show the shift in DNA methylation patterns in individual years in all the exposed and control subjects. The overall range of differences varied between the years in individual persons. The differences between the first and last year of examination (a three-year time period) seem to be consistently greater in the NP-exposed subjects in comparison with the controls. The selected 14 most differently methylated cg loci were relatively stable in the chronically exposed subjects. In summary, the specific type of long-term exposure can contribute to the fixing of relevant epigenetic changes related to a specific environment as, e.g., NP inhalation.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
- Correspondence: ; Tel.: +420-241-062-053
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Irena Chvojkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.O.)
| | - Jaroslav A. Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague 4, Czech Republic;
| | - Lucie Lischkova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Stepanka Vlckova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Na Bojisti 1, 120 00 Prague 2, Czech Republic; (D.P.); (L.L.); (S.V.)
| | - Jakub Ondracek
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Rozvojova 1, 165 02 Prague 6, Czech Republic; (V.Z.); (J.O.)
| | - Stepanka Dvorackova
- Department of Machining and Assembly, Department of Engineering Technology, Department of Material Science, Faculty of Mechanical Engineering, Technical University in Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.H.); (I.C.); (J.T.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague 4, Czech Republic;
| |
Collapse
|
34
|
Reis AH, Sokol SY. Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification. Sci Rep 2021; 11:13433. [PMID: 34183732 PMCID: PMC8239024 DOI: 10.1038/s41598-021-92824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023] Open
Abstract
The Wnt pathway activates target genes by controlling the β-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.
Collapse
Affiliation(s)
- Alice H Reis
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
35
|
Expression of R-spondins/Lgrs in development of movable craniofacial organs. Gene Expr Patterns 2021; 41:119195. [PMID: 34126267 DOI: 10.1016/j.gep.2021.119195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023]
Abstract
Wnt signaling plays a critical role in the development of many organs, including the major movable craniofacial organs tongue, lip, and eyelid. Four members of the R-spondin family (Rspo1-4) bind to Lgr4/5/6 to regulate the activation of Wnt signaling. However, it is not fully understood how Rspos/Lgrs regulate Wnt signaling during the development of movable craniofacial organs. To address this question, we examined the expression of Rspos, Lgrs, and Axin2 (major mediator of canonical Wnt signaling) during tongue, lip, and eyelid development. The expression of Axin2, Rspos and Lgrs was observed in many similar regions, suggesting that Rspos likely activate canonical Wnt signaling through the Lgr-dependent pathway in these regions. Lgr expression was not detected in regions where Axin2 and Rspos were expressed, suggesting that Rspos might activate canonical Wnt signaling through the Lgr-independent pathway in these regions. In addition, the expression of Rspos and Lgrs were observed in some other regions where Axin2 was not expressed, suggesting the possibility that Rspos and/or Lgrs are involved in non-canonical Wnt signaling or the Wnt-independent pathway. Thus, we identified a dynamic spatiotemporal expression pattern of Rspos and Lgrs during the development of the eyelid, tongue, and lip.
Collapse
|
36
|
Berti FCB, Mathias C, Garcia LE, Gradia DF, de Araújo-Souza PS, Cipolla GA, de Oliveira JC, Malheiros D. Comprehensive analysis of ceRNA networks in HPV16- and HPV18-mediated cervical cancers reveals XIST as a pivotal competing endogenous RNA. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166172. [PMID: 34048924 DOI: 10.1016/j.bbadis.2021.166172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Cervical cancer (CC) is one of the most common cancers in women worldwide, being closely related to high-risk human papillomavirus (HR-HPVs). After a particular HR-HPV infects a cervical cell, transcriptional changes in the host cell are expected, including the regulation of lncRNAs, miRNAs, and mRNAs. Such transcripts may work independently or integrated in complex molecular networks - as in competing endogenous RNA (ceRNA) networks. In our research, we gathered transcriptome data from samples of HPV16/HPV18 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), from The Cancer Genome Atlas (TCGA) project. Using GDCRNATools, we identified ceRNA networks that differentiate HPV16- from HPV18-mediated CESC. For HPV16-CESC, three lncRNA-mRNA co-expressed pairs were reported, all led by the X-inactive specific transcript (XIST): XIST | DLG5, XIST | LGR4, and XIST | ZNF81. The XIST | LGR4 and XIST | ZNF81 pairs shared 11 miRNAs, suggesting an increased impact on their final biological effect. XIST also stood out as an important lncRNA in HPV18-CESC, leading 35 of the 42 co-expressed pairs. Some mRNAs, such as ADAM9 and SLC38A2, emerged as important players in the ceRNA regulatory networks due to sharing a considerable amount of miRNAs with XIST. Furthermore, some XIST-associated axes, namely XIST | miR-23a-3p | LGR4 and XIST | miR-30b-5p or miR-30c-5p or miR-30e-5p I ADAM9, had a significant impact on the overall survival of HPV16- and HPV18-CESC patients, respectively. Together, these data suggest that XIST has an important role in HPV-mediated tumorigenesis, which may implicate different molecular signatures between HPV16 and HPV18-associated tumors.
Collapse
Affiliation(s)
- Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Carolina Mathias
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Leandro Encarnação Garcia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Daniela Fiori Gradia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Patrícia Savio de Araújo-Souza
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Immunogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Jaqueline Carvalho de Oliveira
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil.
| |
Collapse
|
37
|
Christakoudi S, Evangelou E, Riboli E, Tsilidis KK. GWAS of allometric body-shape indices in UK Biobank identifies loci suggesting associations with morphogenesis, organogenesis, adrenal cell renewal and cancer. Sci Rep 2021; 11:10688. [PMID: 34021172 PMCID: PMC8139988 DOI: 10.1038/s41598-021-89176-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Genetic studies have examined body-shape measures adjusted for body mass index (BMI), while allometric indices are additionally adjusted for height. We performed the first genome-wide association study of A Body Shape Index (ABSI), Hip Index (HI) and the new Waist-to-Hip Index and compared these with traditional indices, using data from the UK Biobank Resource for 219,872 women and 186,825 men with white British ancestry and Bayesian linear mixed-models (BOLT-LMM). One to two thirds of the loci identified for allometric body-shape indices were novel. Most prominent was rs72959041 variant in RSPO3 gene, expressed in visceral adipose tissue and regulating adrenal cell renewal. Highly ranked were genes related to morphogenesis and organogenesis, previously additionally linked to cancer development and progression. Genetic associations were fewer in men compared to women. Prominent region-specific associations showed variants in loci VEGFA and HMGA1 for ABSI and KLF14 for HI in women, and C5orf67 and HOXC4/5 for ABSI and RSPO3, VEGFA and SLC30A10 for HI in men. Although more variants were associated with waist and hip circumference adjusted for BMI compared to ABSI and HI, associations with height had previously been reported for many of the additional variants, illustrating the importance of adjusting correctly for height.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK. .,MRC Centre for Transplantation, King's College London, Great Maze Pond, London, SE1 9RT, UK.
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.,Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.,Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| |
Collapse
|
38
|
Bando SY, Bertonha FB, Pimentel-Silva LR, de Oliveira JGM, Carneiro MAD, Oku MHM, Wen HT, Castro LHM, Moreira-Filho CA. Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients. Sci Rep 2021; 11:10257. [PMID: 33986407 PMCID: PMC8119682 DOI: 10.1038/s41598-021-89802-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 01/03/2023] Open
Abstract
In about a third of the patients with epilepsy the seizures are not drug-controlled. The current limitation of the antiepileptic drug therapy derives from an insufficient understanding of epilepsy pathophysiology. In order to overcome this situation, it is necessary to consider epilepsy as a disturbed network of interactions, instead of just looking for changes in single molecular components. Here, we studied CA3 transcriptional signatures and dentate gyrus histopathologic alterations in hippocampal explants surgically obtained from 57 RMTLE patients submitted to corticoamygdalohippocampectomy. By adopting a systems biology approach, integrating clinical, histopathological, and transcriptomic data (weighted gene co-expression network analysis), we were able to identify transcriptional modules highly correlated with age of disease onset, cognitive dysfunctions, and granule cell alterations. The enrichment analysis of transcriptional modules and the functional characterization of the highly connected genes in each trait-correlated module allowed us to unveil the modules’ main biological functions, paving the way for further investigations on their roles in RMTLE pathophysiology. Moreover, we found 15 genes with high gene significance values which have the potential to become novel biomarkers and/or therapeutic targets in RMTLE.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Fernanda Bernardi Bertonha
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Luciana Ramalho Pimentel-Silva
- Department of Neurology, Faculdade de Ciências Médicas da Universidade Estadual de Campinas, UNICAMP, Campinas, SP, 13083-887, Brazil
| | | | | | - Mariana Hiromi Manoel Oku
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, 05403-900, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da FMUSP, São Paulo, SP, 05403-900, Brazil
| | | | | |
Collapse
|
39
|
The Role of LGR4 (GPR48) in Normal and Cancer Processes. Int J Mol Sci 2021; 22:ijms22094690. [PMID: 33946652 PMCID: PMC8125670 DOI: 10.3390/ijms22094690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) is a receptor that belongs to the superfamily of G protein-coupled receptors that can be activated by R-spondins (RSPOs), Norrin, circLGR4, and the ligand of the receptor activator of nuclear factor kappa-B (RANKL) ligands to regulate signaling pathways in normal and pathological processes. LGR4 is widely expressed in different tissues where it has multiple functions such as tissue development and maintenance. LGR4 mainly acts through the Wnt/β-catenin pathway to regulate proliferation, survival, and differentiation. In cancer, LGR4 participates in tumor progression, invasion, and metastasis. Furthermore, recent evidence reveals that LGR4 is essential for the regulation of the cancer stem cell population by controlling self-renewal and regulating stem cell properties. This review summarizes the function of LGR4 and its ligands in normal and malignant processes.
Collapse
|
40
|
Oikonomakos I, Weerasinghe Arachchige LC, Schedl A. Developmental mechanisms of adrenal cortex formation and their links with adult progenitor populations. Mol Cell Endocrinol 2021; 524:111172. [PMID: 33484742 DOI: 10.1016/j.mce.2021.111172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The adrenal cortex is the main steroid producing organ of the human body. Studies on adrenal tissue renewal have been neglected for many years, but recent intensified research has seen tremendous progress in our understanding of the formation and homeostasis of this organ. However, cell turnover of the adrenal cortex appears to be complex and several cell populations have been identified that can differentiate into steroidogenic cells and contribute to adrenal cortex renewal. The purpose of this review is to provide an overview of how the adrenal cortex develops and how stem cell populations relate to its developmental progenitors. Finally, we will summarize present and future approaches to harvest the potential of progenitor/stem cells for future cell replacement therapies.
Collapse
Affiliation(s)
- Ioannis Oikonomakos
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108, Nice, France.
| |
Collapse
|
41
|
Yu S, Mulero MC, Chen W, Shang X, Tian S, Watanabe J, Watanabe A, Vorberg T, Wong C, Gately D, Howell SB. Therapeutic Targeting of Tumor Cells Rich in LGR Stem Cell Receptors. Bioconjug Chem 2021; 32:376-384. [PMID: 33492953 DOI: 10.1021/acs.bioconjchem.1c00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
LGR5 and LGR6 mark epithelial stem cells in many niches including the ovarian surface and fallopian tube epithelia from which ovarian cancer arises. Human ovarian cancers express these receptors at high levels and express one of their ligands, RSPO1, at levels uniquely higher than all other tumor types except mesothelioma. Reasoning that these receptors are also important to tumor stem cells, arming the LGR binding domain of RSPO1 with a cytotoxin may permit depletion of the tumor stem cells. The Fu1-Fu2 receptor binding domain of RSPO1 (R1FF), containing a sortase recognition sequence at the C-terminal end, was produced in bacteria and a single molecule of MMAE was attached to each R1FF through a val-cit-PAB linker using the sortase reaction, thus producing a homogeneous population of armed molecules. R1FF-MMAE demonstrated (1) selective LGR-dependent binding, uptake, and cytotoxicity; (2) low nM cytotoxicity to multiple types of human tumor cell lines in vitro; (3) favorable plasma pharmacokinetic properties when administered iv with an elimination half-life of 27.8 h; (4) favorable absorption from the peritoneal cavity; and (5) therapeutic activity in aggressive xenograft models of ovarian cancer in the absence of any weight loss or other adverse events. These results demonstrate that the Fu1-Fu2 domain of RSPO1 can be exploited to deliver a potent cytotoxin to tumor cells that express the LGR4-6 family of stem cell receptors.
Collapse
Affiliation(s)
- Songman Yu
- Department of Infectious Diseases, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Maria Carmen Mulero
- UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California 92093-0819, United States
| | - Wannan Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122, China
| | - Xiying Shang
- UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California 92093-0819, United States
| | - Songyu Tian
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Joji Watanabe
- Department of Surgery, Division of Surgical Oncology, Tottori University Hospital, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Arisa Watanabe
- Akasaki Medical Office, 1920-74 Akasaki, Kotoura, Tohaku, Tottori 689-2501, Japan
| | - Tim Vorberg
- Division of Cancer Stem Cells and Metastases, Heidelberg Institute for Stem Cell Technology and Experimental Medicine, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Clara Wong
- UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California 92093-0819, United States
| | - Dennis Gately
- UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California 92093-0819, United States
| | - Stephen B Howell
- UCSD Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California 92093-0819, United States
| |
Collapse
|
42
|
Liang F, Zhang H, Cheng D, Gao H, Wang J, Yue J, Zhang N, Wang J, Wang Z, Zhao B. Ablation of LGR4 signaling enhances radiation sensitivity of prostate cancer cells. Life Sci 2020; 265:118737. [PMID: 33171177 DOI: 10.1016/j.lfs.2020.118737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
AIM Our previous study has shown that leucine-rich repeat containing GPCR-4 (LGR4, or GPR48) LGR4 plays a role in cell migration, invasion, proliferation and apoptosis of prostate cancer (PCa). In this study, we aimed to explore whether LGR4 would affect radiation response in PCa. MATERIALS AND METHODS LGR4 expression was silenced by shRNA transfection. qRT-PCR was employed to determine mRNA expression of LGR4 and DNA damage repair genes. Western blot was used to evaluate protein expression of LGR4, RSPO1-4, androgen receptor (AR), cyclic AMP response-element binding protein (CREB1), γH2A.X, and H2A.X. Cell proliferation was detected by CCK-8 assay and apoptosis was assayed by flow cytometry. Additionally, a xenograft model was also established to validate the role of LGR4 in PCa cells after radiation. KEY FINDINGS LGR4 expression was enhanced in PCa cells by radiation treatment in dose- and time-dependent means. RSPO1-4 were also upregulated post-radiation. Furthermore, LGR4 knockdown exacerbated apoptosis, reduced cell viabilities and strengthened nuclear γH2A.X staining in AR positive PCa cells but not in AR negative cells in the presence of radiation. Likewise, LGR4 ablation diminished AR and CREB1 expression induced by radiation. In contrast, RSPO1 stimulation augmented cell viabilities, promoted AR and CREB1 expression, and upregulated DNA repair gene expression, which could be reversed by enzalutamide, except for AR expression. Additionally, LGR4 knockdown further suppressed tumor growth and AR/CREB1 expression but enhanced γH2A.X expression in xenografts. SIGNIFICANCE In all, our study suggested that LGR4 might serve as an important regulator of radiation sensitivity in PCa.
Collapse
Affiliation(s)
- Fang Liang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China.
| | - Hao Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Duo Cheng
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Hui Gao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junyong Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junmin Yue
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Nan Zhang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Jingjing Wang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Zhaoyang Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Beibei Zhao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| |
Collapse
|
43
|
Wang N, Kong R, Han W, Lu J. Wnt/β-catenin signalling controls bile duct regeneration by regulating differentiation of ductular reaction cells. J Cell Mol Med 2020; 24:14050-14058. [PMID: 33124779 PMCID: PMC7754022 DOI: 10.1111/jcmm.16017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Recently, the incidence of bile duct‐related diseases continues to increase, and there is no effective drug treatment except liver transplantation. However, due to the limited liver source and expensive donations, clinical application is often limited. Although current studies have shown that ductular reaction cells (DRCs) reside in the vicinity of peribiliary glands can differentiate into cholangiocytes and would be an effective alternative to liver transplantation, the role and mechanism of DRCs in cholangiole physiology and bile duct injury remain unclear. A 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine (DDC)‐enriched diet was used to stimulate DRCs proliferation. Our research suggests DRCs are a type of intermediate stem cells with proliferative potential that exist in the bile duct injury. Meanwhile, DRCs have bidirectional differentiation potential, which can differentiate into hepatocytes and cholangiocytes. Furthermore, we found DRCs highly express Lgr5, and Lgr5 is a molecular marker for neonatal DRCs (P < .05). Finally, we confirmed Wnt/β‐catenin signalling achieves bile duct regeneration by regulating the expression of Lgr5 genes in DRCs (P < .05). We described the regenerative potential of DRCs and reveal opportunities and source for the treatment of cholestatic liver diseases.
Collapse
Affiliation(s)
- Nan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Rui Kong
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wei Han
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
TAp63α targeting of Lgr5 mediates colorectal cancer stem cell properties and sulforaphane inhibition. Oncogenesis 2020; 9:89. [PMID: 33040081 PMCID: PMC7548006 DOI: 10.1038/s41389-020-00273-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) have an established role in cancer progression and therapeutic resistance. The p63 proteins are important transcription factors which belong to the p53 family, but their function and mechanism in CSCs remain elusive. Here, we investigated the role of TAp63α in colorectal CSCs and the effects of sulforaphane on TAp63α. We found that TAp63α was upregulated in spheres with stem cell properties compared to the parental cells. Overexpression of TAp63α promoted self-renewal capacity and enhanced CSC markers expression in colorectal sphere-forming cells. Furthermore, we showed that TAp63α directly bound to the promoter region of Lgr5 to enhance its expression and activate its downstream β-catenin pathway. Functional experiments revealed that sulforaphane suppressed the stemness of colorectal CSCs both in vitro and in vivo. Upregulation of TAp63α attenuated the inhibitory effect of sulforaphane on colorectal CSCs, indicating the role of TAp63α in sulforaphane suppression of the stemness in colorectal cancer. The present study elucidated for the first time that TAp63α promoted CSCs through targeting Lgr5/β-catenin axis and participated in sulforaphane inhibition of the stem cell properties in colorectal cancer.
Collapse
|
45
|
Raslan AA, Yoon JK. WNT Signaling in Lung Repair and Regeneration. Mol Cells 2020; 43:774-783. [PMID: 32807748 PMCID: PMC7528681 DOI: 10.14348/molcells.2020.0059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/06/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023] Open
Abstract
The lung has a vital function in gas exchange between the blood and the external atmosphere. It also has a critical role in the immune defense against external pathogens and environmental factors. While the lung is classified as a relatively quiescent organ with little homeostatic turnover, it shows robust regenerative capacity in response to injury, mediated by the resident stem/progenitor cells. During regeneration, regionally distinct epithelial cell populations with specific functions are generated from several different types of stem/progenitor cells localized within four histologically distinguished regions: trachea, bronchi, bronchioles, and alveoli. WNT signaling is one of the key signaling pathways involved in regulating many types of stem/progenitor cells in various organs. In addition to its developmental role in the embryonic and fetal lung, WNT signaling is critical for lung homeostasis and regeneration. In this minireview, we summarize and discuss recent advances in the understanding of the role of WNT signaling in lung regeneration with an emphasis on stem/progenitor cells.
Collapse
Affiliation(s)
- Ahmed A. Raslan
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 35, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 35, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
46
|
Gao L, Meng J, Zhang M, Fan S, Gao S, Wang X, Liang C. Expression and Prognostic Values of the Roof Plate-Specific Spondin Family in Bladder Cancer. DNA Cell Biol 2020; 39:1072-1089. [PMID: 32352838 DOI: 10.1089/dna.2019.5224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Lei Gao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, P.R. China
| | - Xiaolu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
47
|
Jank BJ, Kadletz L, Dunkler D, Haas M, Schnoell J, Kenner L, Heiduschka G. Epithelial stem cell marker LGR6 expression identifies a low-risk subgroup in human papillomavirus positive oropharyngeal squamous cell carcinoma. Oral Oncol 2020; 105:104657. [DOI: 10.1016/j.oraloncology.2020.104657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 01/07/2023]
|
48
|
Chen C, Zhang Q, Yu W, Chang B, Le AD. Oral Mucositis: An Update on Innate Immunity and New Interventional Targets. J Dent Res 2020; 99:1122-1130. [PMID: 32479139 DOI: 10.1177/0022034520925421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral mucositis (OM), a common debilitating toxicity associated with chemo- and radiation therapies, is a significant unmet clinical need for head and neck cancer patients. The biological complexities of chemoradiotherapy-induced OM involve interactions among disrupted tissue structures, inflammatory infiltrations, and oral microbiome, whereby several master inflammatory pathways constitute the complicated regulatory networks. Oral mucosal damages triggered by chemoradiotherapy-induced cell apoptosis were further exacerbated by the amplified inflammatory cascades dominantly governed by the innate immune responses. The coexistence of microbiome and innate immune components in oral mucosal barriers indicates that a signaling hub coordinates the interaction between environmental cues and host cells during tissue and immune homeostasis. Dysbiotic shifts in oral microbiota caused by cytotoxic cancer therapies may also contribute to the progression and severity of chemoradiotherapy-induced OM. In this review, we have updated the mechanisms involving innate immunity-governed inflammatory cascades in the pathobiology of chemoradiotherapy-induced OM and the development of new interventional targets for the management of this severe morbidity in head and neck cancer patients.
Collapse
Affiliation(s)
- C Chen
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Q Zhang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - W Yu
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B Chang
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - A D Le
- Department of Oral & Maxillofacial Surgery & Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center of Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Reis AH, Sokol SY. Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning. Development 2020; 147:dev189324. [PMID: 32366679 PMCID: PMC7272350 DOI: 10.1242/dev.189324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
R-spondins are a family of secreted proteins that play important roles in embryonic development and cancer. R-spondins have been shown to modulate the Wnt pathway; however, their involvement in other developmental signaling processes have remained largely unstudied. Here, we describe a novel function of Rspo2 in FGF pathway regulation in vivo Overexpressed Rspo2 inhibited elongation of Xenopus ectoderm explants and Erk1 activation in response to FGF. By contrast, the constitutively active form of Mek1 stimulated Erk1 even in the presence of Rspo2, suggesting that Rspo2 functions upstream of Mek1. The observed inhibition of FGF signaling was accompanied by the downregulation of the FGF target genes tbxt/brachyury and cdx4, which mediate anterioposterior axis specification. Importantly, these target genes were upregulated in Rspo2-depleted explants. The FGF inhibitory activity was mapped to the thrombospondin type 1 region, contrasting the known function of the Furin-like domains in Wnt signaling. Further domain analysis revealed an unexpected intramolecular interaction that might control Rspo2 signaling output. We conclude that, in addition to its role in Wnt signaling, Rspo2 acts as an FGF antagonist during mesoderm formation and patterning.
Collapse
Affiliation(s)
- Alice H Reis
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
50
|
Jin YR, Han XH, Nishimori K, Ben-Avraham D, Oh YJ, Shim JW, Yoon JK. Canonical WNT/β-Catenin Signaling Activated by WNT9b and RSPO2 Cooperation Regulates Facial Morphogenesis in Mice. Front Cell Dev Biol 2020; 8:264. [PMID: 32457899 PMCID: PMC7225269 DOI: 10.3389/fcell.2020.00264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
The R-spondin (RSPO) family of proteins potentiate canonical WNT/β-catenin signaling and may provide a mechanism to fine-tune the strength of canonical WNT signaling. Although several in vitro studies have clearly demonstrated the potentiation of canonical WNT signaling by RSPOs, whether this potentiation actually occurs in normal development and tissue function in vivo still remains poorly understood. Here, we provide clear evidence of the potentiation of canonical WNT signaling by RSPO during mouse facial development by analyzing compound Wnt9b and Rspo2 gene knockout mice and utilizing ex vivo facial explants. Wnt9b;Rspo2 double mutant mice display facial defects and dysregulated gene expression pattern that are significantly more severe than and different from those of Wnt9b or Rspo2 null mutant mice. Furthermore, we found suggestive evidence that the LGR4/5/6 family of the RSPO receptors may play less critical roles in WNT9b:RSPO2 cooperation. Our results suggest that RSPO-induced cooperation is a key mechanism for fine-tuning canonical WNT/β-catenin signaling in mouse facial development.
Collapse
Affiliation(s)
- Yong-Ri Jin
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Xiang Hua Han
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States
| | - Katsuhiko Nishimori
- Department of Applied Biological Chemistry, Tohoku University, Sendai, Japan
| | - Dan Ben-Avraham
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Mantoux Institute for Bioinformatics, Weizmann Institute of Science, Rehovot, Israel
| | - Youn Jeong Oh
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea.,Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| | - Jeong Kyo Yoon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, South Korea.,Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, South Korea
| |
Collapse
|