1
|
Song H, Wang G, Gao G, Xia H, Jiao L, Wu K. A Systematic Analysis of Expression and Function of RAS GTPase-Activating Proteins (RASGAPs) in Urological Cancers: A Mini-Review. Cancers (Basel) 2025; 17:1485. [PMID: 40361412 PMCID: PMC12071082 DOI: 10.3390/cancers17091485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
The RAS signaling pathway is one of the most commonly dysregulated pathways in urological cancers. This pathway can be regulated by RASGAPs, which catalyze the hydrolysis of RAS-GTP to RAS-GDP. As such, the loss of RASGAPs can promote the activation of the RAS signaling pathway. Dysregulation of RASGAPs significantly contributes to the progression of urological cancers, including prostate cancer, bladder cancer, and renal cell carcinoma. Furthermore, alterations in RASGAP expression may influence sensitivity to chemotherapy, radiotherapy, and targeted therapies, suggesting their potential as therapeutic targets. Despite the challenges involved, a deeper understanding of the complexity of the RAS signaling network, along with the evolution of personalized medicine, holds promise for delivering more precise and effective treatment options targeting RASGAPs in urological cancers.
Collapse
Affiliation(s)
- Hao Song
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Guojing Wang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Guoqiang Gao
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Huayu Xia
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (H.S.); (G.W.); (G.G.); (H.X.)
| |
Collapse
|
2
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Wang X, Xi M, Lu X, Tan X. The Role and Mechanism of Innate Immune Regulation in Overcoming Oxaliplatin Resistance and Enhancing Anti-Tumor Efficacy in Colorectal Cancer. Pharmaceuticals (Basel) 2025; 18:317. [PMID: 40143096 PMCID: PMC11944980 DOI: 10.3390/ph18030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: The reversal effect of cGAMP, as a STING pathway regulator, on oxaliplatin resistance in colorectal cancer was investigated, and its mechanism was proposed. Methods: The efficacy and mechanism of the cGAMP and oxaliplatin combination for oxaliplatin-resistant colorectal cancer through a nude mouse tumor model were investigated and analyzed, and a western blot analysis of tumors was applied. Results: The reversal effect of cGAMP on oxaliplatin resistance in colorectal cancer was investigated, and its mechanism was proposed. After OXA treatment, the IC50 values of HCT116 and HCT116/L cells were 9.04 μmol/L and 47.04 μmol/L, respectively. In nude mouse tumor models, the combination of cGAMP and oxaliplatin significantly reversed the resistance of oxaliplatin to primary drug-resistant HCT116/L colorectal cancer, and the tumor inhibition rate increased from 8% (oxaliplatin alone) to 60% (combination). In the HCT116 nude mouse transplanted tumor model, the combined treatment of cGAMP and oxaliplatin also showed a more significant tumor inhibition effect than oxaliplatin alone, and the tumor inhibition rate increased by 39%, indicating that cGAMP had a considerable improvement effect on oxaliplatin acquired resistance. These results fully demonstrated the synergistic effect of cGAMP and oxaliplatin. Western blot results showed that cGAMP enhanced the sensitivity of oxaliplatin-resistant tumor cells by down-regulating the expression of p-PI3K and p-AKT and up-regulating the expression of p53 protein. Conclusions: cGAMP, as an immunomodulator against oxaliplatin resistance, shows a potential application prospect in treating oxaliplatin-resistant colorectal cancer.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China; (X.W.); (X.L.)
| | - Meili Xi
- Zhongshan Hospital, Fudan University, Shanghai 200032, China;
| | - Xing Lu
- Department of Chemistry, Fudan University, Shanghai 200433, China; (X.W.); (X.L.)
| | - Xiangshi Tan
- Department of Chemistry, Fudan University, Shanghai 200433, China; (X.W.); (X.L.)
| |
Collapse
|
4
|
De Florian Fania R, Bellazzo A, Collavin L. An update on the tumor-suppressive functions of the RasGAP protein DAB2IP with focus on therapeutic implications. Cell Death Differ 2024; 31:844-854. [PMID: 38902547 PMCID: PMC11239834 DOI: 10.1038/s41418-024-01332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/β-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.
Collapse
Affiliation(s)
| | - Arianna Bellazzo
- Unit of Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Via Franco Gallini, 2, 33081, Aviano, Italy
| | - Licio Collavin
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
5
|
Kazemi Shariat Panahi H, Dehhaghi M, Guillemin GJ, Peng W, Aghbashlo M, Tabatabaei M. Targeting microRNAs as a promising anti-cancer therapeutic strategy against traffic-related air pollution-mediated lung cancer. Cancer Metastasis Rev 2024; 43:657-672. [PMID: 37910296 DOI: 10.1007/s10555-023-10142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Air pollutants are increasingly emitted into the atmosphere because of the high dependency of humans on fossil-derived fuels. Wind speed and direction assisted high dispersibility and uncontrolled nature of air pollution across geo-/demographical borders, making it one of the major global concerns. Besides climate change, air pollution has been found to be associated with various diseases, such as cancer. Lung cancer, which is the world's most common type of cancer, has been found to be associated with traffic-related air pollution. Research and political efforts have been taken to explore green/renewable energy sources. However, these efforts at the current intensity cannot cope with the increasing need for fossil fuels. More specifically, political tensions such as the Russian-Ukraine war, economic tension (e.g., China-USA economic tensions), and other issues (e.g., pandemic, higher inflation rate, and poverty) significantly hindered phasing out fossil fuels. In this context, an increasing global population will be exposed to traffic-related air pollution, which justifies the current uptrend in the number of lung cancer patients. To combat this health burden, novel treatments with higher efficiency and specificity must be designed. One of the potential "life changer" options is microRNA (miRNA)-based therapy to target the expression of oncogenic genes. That said, this review discusses the association of traffic-related air pollution with lung cancer, the changes in indigenous miRNAs in the body during lung cancer, and the current status of miRNA therapeutics for lung cancer treatment. We believe that the article will significantly appeal to a broad readership of oncologists, environmentalists, and those who work in the field of (bio)energy. It may also gain the policymakers' attention to establish better health policies and regulations about air pollution, for example, by promoting (bio)fuel exploration, production, and consumption.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Biofuel Research Team (BRTeam), Kuala Terengganu, Terengganu, Malaysia
| | - Mona Dehhaghi
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Biofuel Research Team (BRTeam), Kuala Terengganu, Terengganu, Malaysia
| | | | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
6
|
Shang M, Ma M, Su G, Xiao L. Application value of miRNA-182 as a biomarker for cancer diagnosis: a systematic review with meta-analysis. Biomark Med 2023; 17:907-918. [PMID: 38205594 DOI: 10.2217/bmm-2023-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Aim: This study aims to establish the potential reliability and validity of miRNA-182 as a diagnostic tool in oncology, and hence to contribute to the decision-making process in clinical settings. Materials & methods: To further evaluate the role of miRNA-182 as a cancer biomarker, we conducted a search of the PubMed, Cochrane Library, Wanfang and China National Knowledge Infrastructure databases of existing literature. Conclusion: These results suggest that miRNA-182 could function as a potential molecular marker for cancer detection and diagnosis. The effect of miRNA-182 on tumor development should be further studied to confirm these results and add to the current understanding of its role in cancer.
Collapse
Affiliation(s)
- Mengyu Shang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Mengdan Ma
- Shantou University Medical College, Shantou, 515041, China
| | - Ganglin Su
- Shantou University Medical College, Shantou, 515041, China
| | - Liang Xiao
- Department of Surgery and Oncology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| |
Collapse
|
7
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
8
|
Sameti P, Tohidast M, Amini M, Bahojb Mahdavi SZ, Najafi S, Mokhtarzadeh A. The emerging role of MicroRNA-182 in tumorigenesis; a promising therapeutic target. Cancer Cell Int 2023; 23:134. [PMID: 37438760 DOI: 10.1186/s12935-023-02972-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
A wide range of studies have indicated that microRNAs (miRNAs), a type of small single-stranded regulatory RNAs, are dysregulated in a different variety of human cancers. Therefore, they are expected to play important roles in tumorigenesis by functioning as oncogenic (oncomiRs) or tumor-suppressive miRNAs. Subsequently, their potential as diagnostic and therapeutic targets for malignancies has attracted attention in recent years. In particular, studies have revealed the aberrant expression of miR-182 through tumorigenesis and its important roles in various aspects of malignancies, including proliferation, metastasis, and chemoresistance. Accumulating reports have illustrated that miR-182, as a dual-role regulator, directly or indirectly regulates the expression of a wide range of genes and modulates the activity of various signaling pathways involved in tumor progression, such as JAK / STAT3, Wnt / β-catenin, TGF-β, and P13K / AKT. Therefore, considering the high therapeutic and diagnostic potential of miR-182, this review aims to point out the effects of miR-182 dysregulation on the signaling pathways involved in tumorigenesis.
Collapse
Affiliation(s)
- Pouriya Sameti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Role of miRNAs in the regulation of cancer-associated signaling pathways. Noncoding RNA Res 2022. [DOI: 10.1016/j.ncrna.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Souza MF, Cólus IMS, Fonseca AS, Antunes VC, Kumar D, Cavalli LR. MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways. Biomolecules 2022; 12:187. [PMID: 35204688 PMCID: PMC8961520 DOI: 10.3390/biom12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients' survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Collapse
Affiliation(s)
- Marilesia Ferreira Souza
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ilce Mara Syllos Cólus
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Valquíria Casanova Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Luciane Regina Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| |
Collapse
|
11
|
Zhou Y, Yang Z, Zhang H, Li H, Zhang M, Wang H, Zhang M, Qiu P, Zhang R, Liu J. DNMT3A facilitates colorectal cancer progression via regulating DAB2IP mediated MEK/ERK activation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166353. [DOI: 10.1016/j.bbadis.2022.166353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
|
12
|
Jafarzadeh M, Soltani BM. MiRNA-Wnt signaling regulatory network in colorectal cancer. J Biochem Mol Toxicol 2021; 35:e22883. [PMID: 34382723 DOI: 10.1002/jbt.22883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/02/2021] [Indexed: 01/05/2023]
Abstract
Colorectal cancer (CRC) is one of the common malignancies worldwide and the Wnt signaling pathway is recognized as the main disrupted pathway in this malignancy. MicroRNAs (miRNAs) are recognized to contribute to the pathogenesis of CRC by triggering or impeding the Wnt signaling pathway. In addition, transcriptional regulation of miRNAs by canonical Wnt signaling also participates in CRC cell progression. In this review, we present comprehensive literature of the existing data on the interaction of miRNAs and Wnt signaling that could be useful in future studies in the field of CRC management.
Collapse
Affiliation(s)
- Meisam Jafarzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
14
|
The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed Pharmacother 2021; 137:111279. [PMID: 33493969 DOI: 10.1016/j.biopha.2021.111279] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The PI3K/AKT pathway is an intracellular signaling pathway with an indispensable impact on cell cycle control. This pathway is functionally related with cell proliferation, cell survival, metabolism, and quiescence. The crucial role of this pathway in the development of cancer has offered this pathway as a target of novel anti-cancer treatments. Recent researches have demonstrated the role of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in controlling the PI3K/AKT pathway. Some miRNAs such as miR-155-5p, miR-328-3p, miR-125b-5p, miR-126, miR-331-3p and miR-16 inactivate this pathway, while miR-182, miR-106a, miR-193, miR-214, miR-106b, miR-93, miR-21 and miR-103/107 enhance activity of this pathway. Expression levels of PI3K/AKT-associated miRNAs could be used to envisage the survival of cancer patients. Numerous lncRNAs such as GAS5, FER1L4, LINC00628, PICART1, LOC101928316, ADAMTS9-AS2, SLC25A5-AS1, MEG3, AB073614 and SNHG6 interplay with this pathway. Identification of the impact of miRNAs and lncRNAs in the control of the activity of PI3K/AKT pathway would enhance the efficacy of targeted therapies against this pathway. Moreover, each of the mentioned miRNAs and lncRNAs could be used as a putative therapeutic candidate for the interfering with the carcinogenesis. In the current study, we review the role of miRNAs and lncRNAs in controlling the PI3K/AKT pathway and their contribution to carcinogenesis.
Collapse
|
15
|
Yaghoubi N, Zahedi Avval F, Khazaei M, Aghaee-Bakhtiari SH. MicroRNAs as potential investigative and predictive biomarkers in colorectal cancer. Cell Signal 2020; 80:109910. [PMID: 33387618 DOI: 10.1016/j.cellsig.2020.109910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a noticeable reason of cancer-associated deaths with a high incidence and mortality rate. Countless effort have been put into the improving clinical management of CRC patients including more effective tools and a wide variety of biomarkers for diagnostic, prognostic or predictive purposes. In recent years, dysregulated miRNAs have been emerged as highly sensitive and specific markers to manage CRC in an effective way. They can play key roles in carcinogenesis as potential oncogenes, tumor suppressors or regulators of cancer network. Therefore, miRNAs may serve as molecular tools that can be quantified and used in diagnostic and prognostic approaches. Growing evidence also suggests that forced expression of tumor suppressor miRNAs or inhibiting the oncogene ones, can be used as a novel treatment strategy. In this review, we focus on the clinical applications of miRNAs as promising biomarkers of early cancer detection, prognosis and treatment.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Bellazzo A, Collavin L. Cutting the Brakes on Ras-Cytoplasmic GAPs as Targets of Inactivation in Cancer. Cancers (Basel) 2020; 12:cancers12103066. [PMID: 33096593 PMCID: PMC7588890 DOI: 10.3390/cancers12103066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary GTPase-Activating Proteins (RasGAPs) are a group of structurally related proteins with a fundamental role in controlling the activity of Ras in normal and cancer cells. In particular, loss of function of RasGAPs may contribute to aberrant Ras activation in cancer. Here we review the multiple molecular mechanisms and factors that are involved in downregulating RasGAPs expression and functions in cancer. Additionally, we discuss how extracellular stimuli from the tumor microenvironment can control RasGAPs expression and activity in cancer cells and stromal cells, indirectly affecting Ras activation, with implications for cancer development and progression. Abstract The Ras pathway is frequently deregulated in cancer, actively contributing to tumor development and progression. Oncogenic activation of the Ras pathway is commonly due to point mutation of one of the three Ras genes, which occurs in almost one third of human cancers. In the absence of Ras mutation, the pathway is frequently activated by alternative means, including the loss of function of Ras inhibitors. Among Ras inhibitors, the GTPase-Activating Proteins (RasGAPs) are major players, given their ability to modulate multiple cancer-related pathways. In fact, most RasGAPs also have a multi-domain structure that allows them to act as scaffold or adaptor proteins, affecting additional oncogenic cascades. In cancer cells, various mechanisms can cause the loss of function of Ras inhibitors; here, we review the available evidence of RasGAP inactivation in cancer, with a specific focus on the mechanisms. We also consider extracellular inputs that can affect RasGAP levels and functions, implicating that specific conditions in the tumor microenvironment can foster or counteract Ras signaling through negative or positive modulation of RasGAPs. A better understanding of these conditions might have relevant clinical repercussions, since treatments to restore or enhance the function of RasGAPs in cancer would help circumvent the intrinsic difficulty of directly targeting the Ras protein.
Collapse
|
17
|
Zhang L, Dong X, Yan B, Yu W, Shan L. CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis 2020; 11:542. [PMID: 32681092 PMCID: PMC7367849 DOI: 10.1038/s41419-020-2707-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy with high occurrence and mortality worldwide. In recent years, the overall survival rate of CRC patients has been improved because of the advances in early diagnosis and therapy. However, the prognosis of CRC patients at the advanced stage is still poor due to high recurrence rate and metastasis. The function of circular RNA (circRNA) ArfGAP with FG repeats 1 (circAGFG1) has been explored in non-small-cell lung cancer and triple-negative breast cancer. Nevertheless, its role in CRC is not clear. In this study, circAGFG1 was upregulated in CRC cell lines. CircAGFG1 silencing significantly suppressed cell proliferation, migration, invasion, and stemness, while promoted cell apoptosis in CRC. Meanwhile, we found that circAGFG1 also accelerated CRC tumor growth and metastasis in vivo. Importantly, circAGFG1 activated Wnt/β-catenin pathway through regulating CTNNB1. Afterwards, YY1 was found to transcriptionally activate CTNNB1. Furthermore, circAGFG1 directly sponged miR-4262 and miR-185-5p to upregulate YY1 expression. Eventually, rescue assays demonstrated that the effect of circAGFG1 silencing on CRC cell functions was observably reversed by upregulating YY1 or CTNNB1. In brief, our findings uncovered that circAGFG1 modulated YY1/CTNNB1 axis to drive metastasis and stemness in CRC by sponging miR-4262 and miR-185-5p.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Bo Yan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Letian Shan
- the First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
18
|
Liang L, Li L. Down-Regulation of circNRIP1 Promotes the Apoptosis and Inhibits the Migration and Invasion of Gastric Cancer Cells by miR-182/ROCK1 Axis. Onco Targets Ther 2020; 13:6279-6288. [PMID: 32636647 PMCID: PMC7335292 DOI: 10.2147/ott.s221633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aim Circular RNAs (circRNAs) play important roles in the progression of human cancers. circRNA nuclear receptor interacting protein 1 (circNRIP1) has been reported to play as an oncogene in gastric cancer. However, the mechanism underlying circNRIP1 in gastric cancer progression is far from understood. Patients and Methods Forty-five gastric cancer patients were recruited and overall survival of patients was analyzed. Gastric cancer cell lines MGC-803 and AGS cells were cultured for study in vitro. The expression levels of circNRIP1, microRNA (miR)-182 and rho-associated protein kinase 1 (ROCK1) were detected by quantitative real-time polymerase chain reaction or Western blot. Cell migration, invasion, cell cycle distribution and apoptosis were determined by transwell, flow cytometry and Western blot assays, respectively. The target association between miR-182 and circNRIP1 or ROCK1 was assessed by luciferase reporter assay and RNA immunoprecipitation. Results circNRIP1 expression was enhanced in gastric cancer tissues and cells and high expression of circNRIP1 indicated poor survival of patients. Knockdown of circNRIP1 suppressed cell migration and invasion, arrested cell cycle at G0-G1 phase and promoted apoptosis in gastric cancer cells. miR-182 was a target of circNRIP1 and its deficiency reversed the effect of circNRIP1 silence on cell migration, invasion, cell cycle distribution and apoptosis in gastric cancer cells. Moreover, ROCK1 was validated as a target of miR-182 and competitively regulated by circNRIP1. Conclusion Silence of circNRIP1 inhibited progression of gastric cancer by increasing miR-182 and decreasing ROCK1, providing a novel target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Lu Liang
- Department of Oncology, Shangqiu First People's Hospital, Shangqiu, Henan Province 476100, People's Republic of China
| | - Lu Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan Province 476100, People's Republic of China
| |
Collapse
|
19
|
Zhang X, Xu J, Zhang H, Sun J, Li N, Huang X. MicroRNA-758 acts as a tumor inhibitor in colorectal cancer through targeting PAX6 and regulating PI3K/AKT pathway. Oncol Lett 2020; 19:3923-3930. [PMID: 32391100 PMCID: PMC7204622 DOI: 10.3892/ol.2020.11516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/06/2020] [Indexed: 12/24/2022] Open
Abstract
Recently, a number of microRNAs (miRNAs) have been reported to play different roles in human cancers, including colorectal cancer (CRC). However, the specific role of miR-758 has not been clarified in CRC. Therefore, the aim of the present study was to explore the role of miR-758 in CRC. RT-qPCR and western blot analysis were used to quantify the expression of miR-758 and genes. The function of miR-758 in CRC was investigated using Transwell, CCK-8 and luciferase reporter assays. According to the results, the downregulation of miR-758 expression was associated with aggressive behavior and poor prognosis in CRC patients. miR-758 was shown to restrain the cell viability and metastasis in CRC. In addition, it was confirmed that miR-758 directly targets PAX6 and inhibits CRC progression through targeting PAX6. The results also revealed that miR-758 blocked EMT and PI3K/AKT pathway in CRC. In conclusion, miR-758 acts as a tumor suppressor in CRC by downregulating PAX6.
Collapse
Affiliation(s)
- Xinli Zhang
- Medical Records Management Office, Qingdao West Coast New Area Central Hospital, Qingdao, Shandong 266555, P.R. China
| | - Jumei Xu
- Department of Hepatobiliary Gastrointestinal Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Hongchang Zhang
- Department of Infectious Diseases, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Jilan Sun
- Sterilization Supply Room, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Na Li
- Department of Radiology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xianyu Huang
- Radiotherapy Center, Qingdao Central Hospital, Qingdao University, Qingdao, Shandong 266042, P.R. China
| |
Collapse
|
20
|
Lin M, Li Y, Xian J, Chen J, Feng Y, Mao C, Pan Y, Li Z, Zeng Y, Yang L, Lu J, Wei Y, Qiu F. Long non-coding RNA AGER-1 inhibits colorectal cancer progression through sponging miR-182. Int J Biol Markers 2020; 35:10-18. [PMID: 32031046 DOI: 10.1177/1724600819897079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Abundant evidence has illustrated that long non-coding RNA (lncRNA) plays a vital role in the regulation of tumor development and progression. Ectopic expression of a novel lncRNA, termed lnc-AGER-1, has been discovered in cancers, and this lncRNA was reported to exert an anti-tumor effect. However, its biological mechanism remains unelucidated in colorectal cancer. METHODS A total of 159 paired colorectal cancer specimens and adjacent tissues was applied to detect the expression of lnc-AGER-1 by the quantitative Real-time PCR (qRT-PCR), and a series of functional assays was executed to uncover the role of this lncRNA on colorectal cancer. RESULTS We found that the expression of lnc-AGER-1 in the tumor tissues was significantly down-regulated, while compared with adjacent normal tissues (0.0115 ± 0.0718 vs. 0.0347 ± 0.157; P < 0.0001). Also, lnc-AGER-1 was observably associated with clinical T status (r = -0.184, P = 0.024). Patients with advanced T status exerted a significantly lower level of lnc-AGER-1 than those with early T status (20.0% vs. 40.7%, P = 0.021). Over-expression of lnc-AGER-1 inhibited cell proliferation and migration efficiency, and induced cell cycle arrest at the G0/G1 phase, and promoted cell apoptosis. Further research proved that lnc-AGER-1 altered the expression of its neighbor gene, AGER, through acting as a competing endogenous RNA for miR-182 in colorectal cancer. CONCLUSION lnc-AGER-1 has a suppressive role in colorectal cancer development via modulating AGER, which may serve as a target for colorectal cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Mingzhu Lin
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yinyan Li
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jianfeng Xian
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jinbin Chen
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yingyi Feng
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Chun Mao
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yujie Pan
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhi Li
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuyuan Zeng
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Lei Yang
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jiachun Lu
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Yisheng Wei
- Department of Gastronintestinal Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Fuman Qiu
- The First Affiliated Hospital, The School of Public Health, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
21
|
Liao S, Liu C, Zhu G, Wang K, Yang Y, Wang C. Relationship between SDC1 and cadherin signalling activation in cancer. Pathol Res Pract 2019; 216:152756. [PMID: 31810587 DOI: 10.1016/j.prp.2019.152756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 12/17/2022]
Abstract
E-cadherin and SDC1 are markers of epithelial-to-mesenchymal transition (EMT) that can be used to assess tumour prognosis. SDC1 has different effects in various types of cancers. On the one hand, reduced expression of SDC1 can leads to advantage stages of some cancers, such as gastric and colorectal cancer. On the other hand, SDC1 overexpression can also promote the growth and proliferation of cancer cells in pancreatic and breast cancer. However, the function of SDC1 is influenced and regulated by many factors. Exfoliated extracellular domain HS chain can mediate the function of SDC1 and play an important role in the occurrence and development of cancer. SDC1 binds to various ligands and influences the growth and reproduction of cancer cells via the activation of Wnt, the long isoform of FLICE-inhibitory protein (FLIP long), vascular endothelial growth factor receptor (VEGFR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and MAPK/c-Jun N-terminal kinase (JNK) and other pathways. Cadherins occur in several types, but this review focuses on classical cadherins. N-cadherin and P-cadherin are activated during tumour development, whereas E-cadherin is a tumour suppressor. The cellular signalling pathways involved in classical cadherins, such as Wnt and VEGFR pathways, are also related to SDC1. The activation of E-cadherin caused by SDC1 knockdown has also been observed. Despite this evidence, no articles regarding the relationship of SDC1 and cadherin activation have been published. This review summarises the expressions of these two molecules in different cancers and analyses their possible relationship to provide insights into future cancer research and clinical treatment.
Collapse
Affiliation(s)
- Shiyao Liao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Chang Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China; Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guiying Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Kai Wang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Ying Yang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116011, China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
22
|
Zhang Y, Ge T, Xiang P, Zhou J, Tang S, Mao H, Tang Q. Tanshinone IIA Reverses Oxaliplatin Resistance In Human Colorectal Cancer Via Inhibition Of ERK/Akt Signaling Pathway. Onco Targets Ther 2019; 12:9725-9734. [PMID: 32009805 PMCID: PMC6859961 DOI: 10.2147/ott.s217914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Oxaliplatin (OXA)-based chemotherapy is generally used to treat human cancers, whereas OXA resistance is a main obstacle for the treatment of colorectal cancer (CRC). Evidence has shown that tanshinone IIA (Tan IIA) could induce apoptosis in CRC cells. However, the role of combination of OXA and Tan IIA on OXA-resistance CRC cells remains unknown. Thus, this study aimed to investigate the effects of Tan IIA in combination with OXA on OXA-resistance CRC cells. Methods MTT assay, Ki67 immunofluorescence staining and flow cytometry were used to detect viability, proliferation and apoptosis in OXA-resistant cell line SW480/OXA, respectively. The expressions of Bcl-2, Bax, active caspase 3, p-Akt and p-ERK in SW480/OXA cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of OXA on the proliferation and invasion of SW480/OXA cells were significantly enhanced by Tan IIA. In addition, Tan IIA obviously enhanced the anti-apoptosis effects of OXA on SW480/OXA cells via decreasing the levels of Bcl-2, p-Akt and p-ERK, and increasing the levels of Bax and active caspase 3. In vivo experiments confirmed that Tan IIA enhanced OXA sensitivity in SW480/OXA xenograft model. Conclusion We found that Tan IIA could reverse OXA resistance in OXA-resistance CRC cells. Therefore, OXA combined with Tan IIA might be considered as a therapeutic approach for the treatment of OXA-resistant CRC.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Tingrui Ge
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Ping Xiang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Jingyi Zhou
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Shumin Tang
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Haibing Mao
- Department of Anus and Intestine Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, 222061, People's Republic of China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222061, People's Republic of China
| |
Collapse
|
23
|
Su X, Su J, He H, Zhan Y, Liu H. Hsa_circ_0070269 inhibits hepatocellular carcinoma progression through modulating miR-182/NPTX1 axis. Biomed Pharmacother 2019; 120:109497. [PMID: 31606623 DOI: 10.1016/j.biopha.2019.109497] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) have recently been shown to play critical roles in tumorigenesis. However, the roles of circRNAs in hepatocellular carcinoma (HCC) remain largely unknown. In the present study, we identified a novel circRNA (hsa_circ_0070269) was significantly decreased in HCC tissues and cell lines, low hsa_circ_0070269 expression was positively associated with advanced tumor stage, lymph node metastasis, and poor overall survival. Hsa_circ_0070269 overexpression suppressed proliferation and invasion of HCC cells in vitro and reduced tumor growth in vivo. Mechanistically, hsa_circ_0070269 increased NPTX1 expression via sponging miR-182 in HCC cells, which inhibited aggressive tumor behavior. Taken together, our findings suggest that hsa_circ_0070269 might play an important role in HCC development via miR-182/NPTX1 axis, therefore could serve as a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiaotong Su
- Department of General Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, Henan, PR China.
| | - Jutong Su
- Luoyang Central Blood Station, Luoyang, 471000, Henan, PR China
| | - Hua He
- Department of General Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, Henan, PR China
| | - Yong Zhan
- Department of General Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, Henan, PR China
| | - Haichao Liu
- Department of General Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000, Henan, PR China
| |
Collapse
|