1
|
Farajzadeh M, Fathi M, Jalali P, Mahmoudsalehi Kheshti A, Khodayari S, Hojjat-Farsangi M, Jadidi F. Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential. Cancer Cell Int 2025; 25:131. [PMID: 40188050 PMCID: PMC11972515 DOI: 10.1186/s12935-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) have been recognized as significant modulators of gene expression and are essential for various biological functions, even though they don't appear to have the ability to encode proteins. Originally considered dark matter, lncRNAs have been recognized as being dysregulated and contributing to the onset, progression, and resistance to treatment of acute myeloid leukemia (AML). AML is a prevalent type of leukemia characterized by the disruption of myeloid cell differentiation, leading to an increased number of immature myeloid progenitor cells. Currently, the need for novel biomarkers and treatment targets to enhance therapeutic alternatives has led to a focus on lncRNAs as possible indicators for prognostic, therapeutic, and diagnostic systems in various human cancers, including AML. Recent research has recognized a limited set of lncRNAs as possible prognostic biomarkers or diagnoses in AML. This review evaluates the key research that highlights the significance of lncRNAs in AML and discusses their roles and impacts on the disease. Furthermore, we intend to underscore the importance of lncRNAs as new and trustworthy markers for the diagnosis, prediction, drug resistance, and targets for treatment in AML.
Collapse
Affiliation(s)
- Maryam Farajzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran
| | | | - Shahla Khodayari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Xu J, Zhang J, Zhang C, Hu H, Wang S, Deng F, Zhou W, Liu Y, Hu C, Huang H, Wei S. LncRNA-ANRIL regulates CDKN2A to promote malignant proliferation of Kasumi-1 cells. Cell Div 2025; 20:2. [PMID: 39875984 PMCID: PMC11773856 DOI: 10.1186/s13008-025-00144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the regulatory effects of long non-coding RNA-ANRIL on CDKN2A in the cell cycle of Kasumi-1 cells and elucidate the underlying molecular mechanisms. METHODS ANRIL and CDKN2A expression levels were quantified using RT-qPCR in peripheral blood samples from acute myeloid leukemia (AML) patients. CDKN2A knockdown efficiency was validated via RT-qPCR, and cell cycle distribution was analyzed using flow cytometry. Cell proliferation assays were conducted with CCK-8 following palbociclib treatment and CDKN2A downregulation. RNA immunoprecipitation (RIP) identified potential ANRIL-associated targets, while western blotting assessed the expression levels of GSK3β/β-catenin/cyclin D1 signaling components and related proteins. RESULTS ANRIL and CDKN2A were markedly overexpressed in AML patient samples. Knockdown of ANRIL and CDKN2A led to G1 phase arrest accompanied by reduced CDK2/4/6 and cyclin D1 protein levels, while ANRIL upregulation induced the opposite effect. Palbociclib treatment for 24 h and 48 h elevated the G1 phase cell population and suppressed CDK2/4/6 and cyclin D1 protein expression, demonstrating its ability to counteract ANRIL-driven cell cycle progression. Downregulation of ANRIL and CDKN2A also suppressed the GSK3β/β-catenin signaling pathway, reducing cyclin D1 expression, whereas ANRIL upregulation reactivated this axis. Co-transfection experiments showed that simultaneous cyclin D1 suppression and ANRIL overexpression attenuated ANRIL's stimulatory effects on cell cycle progression. RIP analysis confirmed a physical interaction between ANRIL and CDKN2A. Furthermore, CDKN2A downregulation inhibited cell proliferation and reversed GSK3β/β-catenin/cyclin D1 pathway activation mediated by ANRIL upregulation. CONCLUSION ANRIL facilitates Kasumi-1 cell survival by modulating CDKN2A to activate the GSK3β/β-catenin/cyclin D1 signaling pathway.
Collapse
Affiliation(s)
- Jianxia Xu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Jingxin Zhang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Chengsi Zhang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Huali Hu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Siqi Wang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Fahua Deng
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Wu Zhou
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Yuancheng Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Chenlong Hu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China.
| | - Sixi Wei
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, 550004, China.
| |
Collapse
|
3
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Seifpour S, Zomorrod MS, Atashi A, Khaseb S, Tavangar F, Vajari MK, Ahmadvand M. SNHG14 lncRNA as a Prognostic Biomarker in Adult Non-M3 AML Patients. Hematol Oncol Stem Cell Ther 2025; 18:21-28. [PMID: 40263900 DOI: 10.4103/hemoncstem.hemoncstem-d-24-00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/27/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Acute myeloid leukemia (AML) is one of the most common blood malignancies in adults, characterized by the involvement of hematopoietic myeloid progenitors. Numerous studies have demonstrated the involvement of long noncoding RNAs (lncRNAs) in AML pathogenesis. This study aimed to investigate the expression profile of lncRNA small nuclear RNA host gene 14 (SNHG14) and its role in the pathogenesis, clinical features, and prognosis of adult non-M3 AML. MATERIALS AND METHODS The expression level of SNHG14 was evaluated in bone marrow (BM) samples obtained from 50 adult non-M3 AML patients and 49 healthy controls using Quantitative Reverse Transcription-Polymerase Chain Reaction. We also investigated the correlation between clinicopathological characteristics and SNHG14 expression levels in AML patients. RESULTS The expression level of SNHG14 was significantly decreased in the BM tissues of adult non-M3 AML patients compared to healthy controls. Patients with low SNHG14 expression were associated with poor overall survival, while no correlation was found between low SNHG14 expression and relapse-free survival. CONCLUSION Our findings suggest that SNHG14 expression could serve as a potential biomarker for prognosing adult non-M3 AML patients. Furthermore, SNHG14 may offer insights into novel therapeutic targets for this subset of AML patients.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/biosynthesis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- Male
- Female
- Adult
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/biosynthesis
- Prognosis
- Aged
Collapse
Affiliation(s)
- Saba Seifpour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mina Soufi Zomorrod
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Khaseb
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran
| | - Fatemeh Tavangar
- Iranian Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mahdi Kohansal Vajari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Hu C, Fu X, Li S, Chen C, Zhao X, Peng J. Chidamide inhibits cell glycolysis in acute myeloid leukemia by decreasing N6-methyladenosine-related GNAS-AS1. Daru 2024; 32:11-24. [PMID: 37926762 PMCID: PMC11087453 DOI: 10.1007/s40199-023-00482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/10/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy. Chidamide has shown anti-cancer effect in different malignancies. The function of Chidamide in glycolysis in AML cells remains unclear. METHODS AML cells were treated with 1000 nM Chidamide for 48 h. The levels of long non-coding RNA-GNAS-AS1, miR-34a-5p, glycolysis-related proteins, and Ras homolog gene family (RhoA)/Rho-associated protein kinase (ROCK) signaling-related proteins were detected by qRT-PCR or western blot. Cell viability and apoptosis were measured by CCK-8 and flow cytometry. Glycolysis levels were measured by assay kits. GNAS-AS1 N6-methyladenosine (m6A) modification level was detected by methylated RNA immunoprecipitation sequencing. The combined targets of miR-34a-5p were validated using a dual-luciferase reporter assay. BALB/C nude mice were selected for subcutaneous tumor validation. Chidamide at a dosage of 25 mg/kg was used in the animal study. RESULTS GNAS-AS1 promoted glycolysis in AML cells by upregulating the expression of glycolysis-related proteins and increasing glucose consumption, lactate production, ATP generation, and the extracellular acidification rate. Chidamide treatment suppressed WT1-associated protein (WTAP)-mediated RNA m6A modification of GNAS-AS1. Chidamide downregulated GNAS-AS1 to inhibit glycolysis in AML cells. GNAS-AS1 targeted miR-34a-5p to promote insulin-like growth factor 2 mRNA-binding protein (IGF2BP2) expression. IGF2BP2 inhibition reversed the promoting effect of miR-34a-5p knockdown on glycolysis and RhoA/ROCK pathway in Chidamide-treated cells. GNAS-AS1 overexpression abolished the inhibitory effect of Chidamide on AML tumorigenesis in vivo by modulating the RhoA/ROCK pathway. CONCLUSION Chidamide inhibited glycolysis in AML by repressing WTAP-mediated GNAS-AS1 m6A modification and then regulating the miR-34a-5p/IGF2BP2 axis.
Collapse
Affiliation(s)
- Changmei Hu
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, 139 Mid RenMin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao Fu
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Shujun Li
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Cong Chen
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xielan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jie Peng
- Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Sayed NH, Hammad M, Abdelrahman SA, Abdelgawad HM. Association of long non-coding RNAs and ABO blood groups with acute lymphoblastic leukemia in Egyptian children. Noncoding RNA Res 2024; 9:307-317. [PMID: 38505304 PMCID: PMC10945145 DOI: 10.1016/j.ncrna.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 03/21/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevailing cancer among children. Despite extensive studies, ALL etiology is still an unsolved puzzle. Long non-coding RNAs (lncRNAs) emerged as key mediators in cancer etiology. Several lncRNAs are dysregulated in ALL, leading to oncogenic or tumor-suppressive activities. Additionally, a relation between ABO blood groups and hematological malignancies was proposed. The current study intended to explore the association of lncRNAs, ANRIL and LINC-PINT, and their downstream targets, CDKN2A and heme oxygenase-1 (HMOX1), with the incidence of ALL and treatment response, and to determine the distribution of blood groups across different childhood ALL phenotypes. Blood samples were taken from 66 ALL patients (at diagnosis and at the end of remission induction phase) and 39 healthy children. Whole blood was used for blood group typing. Expression of ANRIL, LINC-PINT and CDKN2A was analyzed in plasma by qRT-PCR. Serum HMOX1 was measured using ELISA. ANRIL and CDKN2A were upregulated, while LINC-PINT and HMOX1 were downregulated in newly diagnosed patients. All of which showed remarkable diagnostic performance, where HMOX1 was superior. HMOX1 was independent predictor of ALL as well. LINC-PINT and HMOX1 were significantly upregulated after treatment. Notably, ANRIL and LINC-PINT were associated with poor outcome. No significant difference in the distribution of ABO blood groups was observed between patients and controls. In conclusion, our results suggested an association of ANRIL and LINC-PINT with childhood ALL predisposition, at least in part, through altering CDKN2A and HMOX1 production. Furthermore, the impact of remission induction treatment was newly revealed.
Collapse
Affiliation(s)
- Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Mahmoud Hammad
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Egypt
| | | | | |
Collapse
|
8
|
Leithy AAE, Bakr YM, Hassan NM, Dardeer KT, Assem M, Wahab AHAA. PTCSC3, XIST, GAS5, UCA1, and HIFAL: Five lncRNAs Emerging as Potential Prognostic Players in Egyptian Adult Acute Myeloid Leukemia (AML) Patients. Cancer Control 2024; 31:10732748241309044. [PMID: 39673539 DOI: 10.1177/10732748241309044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND AND AIMS So far, long noncoding RNAs (lncRNAs) signatures in acute myeloid leukemia (AML) are poorly understood. The present study aims to explore the prognostic significance of eleven cancer-related lncRNAs in bone marrow (BM) samples from adult Egyptian AML patients. MATERIALS AND METHODS In this study, we analyzed eleven lncRNAs using the qRT-PCR assay in the bone marrow (BM) of 79 de novo AML adult patients before receiving any therapy. RESULTS Five lncRNAs out of 11 were aberrantly expressed, and two lncRNAs influenced significantly the patient's overall survival (OS). LncRNA-XIST was favorable when overexpressed (in univariate and multivariate analysis, P-value = .001). LncRNA-GAS5 adversely affected the OS (only in multivariate analysis P-value = .02). Two other lncRNAs (UCA1 and HIFAL) impacted complete remission induction (CR) significantly in univariate analysis (P-value = .046 for both). Furthermore, lncRNA-UCA1 affected CR significantly in multivariate COX regression analysis (P-value = .004). The 4 previously mentioned lncRNAs were among the 9 downregulated lncRNAs. Instead, the only 2 upregulated lncRNAs (SNHG15, MALAT1) did not significantly influence neither CR induction nor OS. LncRNA-PTCSC3, a fifth lncRNA, emerged as the only one that could predict relapse occurrence in an upfront original BM sample. CONCLUSION Two lncRNAs out of eleven (lncRNA-XIST and GAS5) impacted OS, and two other lncRNAs (UCA1 and HIFAL) affected CR in adult de novo AML patients. LncRNA-PTCSC3 predict relapse, however, further validation is still required.
Collapse
Affiliation(s)
- Asmaa A El Leithy
- College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Yasser Mabrouk Bakr
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Naglaa M Hassan
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Magda Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | |
Collapse
|
9
|
Sabaghi F, Sadat SY, Mirsaeedi Z, Salahi A, Vazifehshenas S, Kesh NZ, Balavar M, Ghoraeian P. The Role of Long Noncoding RNAs in Progression of Leukemia: Based on Chromosomal Location. Microrna 2024; 13:14-32. [PMID: 38275047 DOI: 10.2174/0122115366265540231201065341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 01/27/2024]
Abstract
Long non-coding RNA [LncRNA] dysregulation has been seen in many human cancers, including several kinds of leukemia, which is still a fatal disease with a poor prognosis. LncRNAs have been demonstrated to function as tumor suppressors or oncogenes in leukemia. This study covers current research findings on the role of lncRNAs in the prognosis and diagnosis of leukemia. Based on recent results, several lncRNAs are emerging as biomarkers for the prognosis, diagnosis, and even treatment outcome prediction of leukemia and have been shown to play critical roles in controlling leukemia cell activities, such as proliferation, cell death, metastasis, and drug resistance. As a result, lncRNA profiles may have superior predictive and diagnostic potential in leukemia. Accordingly, this review concentrates on the significance of lncRNAs in leukemia progression based on their chromosomal position.
Collapse
Affiliation(s)
- Fatemeh Sabaghi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saina Yousefi Sadat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirsaeedi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aref Salahi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Vazifehshenas
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Zahmat Kesh
- Department of Genetics, Zanjan Branch Islamic Azad University, Zanjan, Iran
| | - Mahdieh Balavar
- Department of Genetics, Falavarjan Branch Islamic Azad University, Falavarjan, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
da Cunha Agostini L, Almeida TC, da Silva GN. ANRIL, H19 and TUG1: a review about critical long non-coding RNAs in cardiovascular diseases. Mol Biol Rep 2023; 51:31. [PMID: 38155319 DOI: 10.1007/s11033-023-09007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/30/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide. They are non-transmissible diseases that affect the cardiovascular system and have different etiologies such as smoking, lipid disorders, diabetes, stress, sedentary lifestyle and genetic factors. To date, lncRNAs have been associated with increased susceptibility to the development of cardiovascular diseases such as hypertension, acute myocardial infarction, stroke, angina and heart failure. In this way, lncRNAs are becoming a very promising point for the prevention and diagnosis of cardiovascular diseases. Therefore, this review highlights the most important and recent discoveries about the mechanisms of action of the lncRNAs ANRIL, H19 and TUG1 and their clinical relevance in these pathologies. This may contribute to early detection of cardiovascular diseases in order to prevent the pathological phenotype from becoming established.
Collapse
Affiliation(s)
- Lívia da Cunha Agostini
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil
| | - Tamires Cunha Almeida
- Escola Superior Instituto Butantan (ESIB), Laboratório de Dor e Sinalização, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Glenda Nicioli da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (CiPharma), Escola de Farmácia, Universidade Federal de Ouro Preto, Morro do Cruzeiro, s/nº, Ouro Prêto, Minas Gerais, CEP 35402-163, Brazil.
- Departamento de Análises Clínicas (DEACL), Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Prêto, Brazil.
| |
Collapse
|
11
|
Connerty P, Lock RB. The tip of the iceberg-The roles of long noncoding RNAs in acute myeloid leukemia. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1796. [PMID: 37267628 PMCID: PMC10909534 DOI: 10.1002/wrna.1796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/04/2023]
Abstract
Long noncoding RNAs (lncRNAs) are traditionally defined as RNA transcripts longer than 200 nucleotides that have no protein coding potential. LncRNAs have been identified to be dysregulated in various types of cancer, including the deadly hematopoietic cancer-acute myeloid leukemia (AML). Currently, survival rates for AML have reached a plateau necessitating new therapeutic targets and biomarkers to improve treatment options and survival from the disease. Therefore, the identification of lncRNAs as novel biomarkers and therapeutic targets for AML has major benefits. In this review, we assess the key studies which have recently identified lncRNAs as important molecules in AML and summarize the current knowledge of lncRNAs in AML. We delve into examples of the specific roles of lncRNA action in AML such as driving proliferation, differentiation block and therapy resistance as well as their function as tumor suppressors and utility as biomarkers. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneySydneyNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneySydneyNew South WalesAustralia
- University of New South Wales Centre for Childhood Cancer ResearchUNSW SydneySydneyNew South WalesAustralia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research CentreUNSW SydneySydneyNew South WalesAustralia
- School of Clinical MedicineUNSW Medicine & Health, UNSW SydneySydneyNew South WalesAustralia
- University of New South Wales Centre for Childhood Cancer ResearchUNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
12
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
13
|
Wen C, Lu X, Sun Y, Li Q, Liao J, Li L. Naringenin induces the cell apoptosis of acute myeloid leukemia cells by regulating the lncRNA XIST/miR-34a/HDAC1 signaling. Heliyon 2023; 9:e15826. [PMID: 37206002 PMCID: PMC10189189 DOI: 10.1016/j.heliyon.2023.e15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a life-threatening aggressive malignancy of the bone marrow and has posed a great challenge to the clinic, due to a lack of fully understanding of the molecular mechanism. Histone deacetylase 1 (HDAC1) has been reported to be a therapeutic target for treating AML. Naringenin (Nar) may act as an anti-leukemic agent and suppress the expression of HDACs. However, the potential underlying mechanism of Nar in suppressing the activity of HDAC1 remains unclear. Here, we found that Nar induced the apoptosis, decreased the expression of lncRNA XIST and HDAC1, and increased the expression of microRNA-34a in HL60 cells. Sh-XIST transfection could induce cell apoptosis. On the contrary, the forced expression of XIST might reverse the biological actions of Nar. XIST could sponge miR-34a, which targeted to degrade HDAC1. The forced expression of HDAC1 could effectively reverse the effects of Nar. Thus, Nar can induce cell apoptosis by mediating the expression of lncRNA XIST/miR-34a/HDAC1 signaling in HL60 cells.
Collapse
Affiliation(s)
- Chao Wen
- School of Nursing, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoliang Lu
- Department of General Surgery, Ningdu County People's Hospital, Ganzhou, 341000, China
| | - Yingyin Sun
- Gannan Health Vocational College, Ganzhou, 341000, China
| | - Qi Li
- Department of Basic Medicine, Chuxiong Medical and Pharmaceutical College, Chuxiong, 675005, China
| | - Jing Liao
- School of Nursing, Gannan Medical University, Ganzhou, 341000, China
| | - Lin Li
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Corresponding author.
| |
Collapse
|
14
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
15
|
Dynamical Analysis of a Boolean Network Model of the Oncogene Role of lncRNA ANRIL and lncRNA UFC1 in Non-Small Cell Lung Cancer. Biomolecules 2022; 12:biom12030420. [PMID: 35327612 PMCID: PMC8946683 DOI: 10.3390/biom12030420] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) such as ANRIL and UFC1 have been verified as oncogenic genes in non-small cell lung cancer (NSCLC). It is well known that the tumor suppressor microRNA-34a (miR-34a) is downregulated in NSCLC. Furthermore, miR-34a induces senescence and apoptosis in breast, glioma, cervical cancer including NSCLC by targeting Myc. Recent evidence suggests that these two lncRNAs act as a miR-34a sponge in corresponding cancers. However, the biological functions between these two non-coding RNAs (ncRNAs) have not yet been studied in NSCLC. Therefore, we present a Boolean model to analyze the gene regulation between these two ncRNAs in NSCLC. We compared our model to several experimental studies involving gain- or loss-of-function genes in NSCLC cells and achieved an excellent agreement. Additionally, we predict three positive circuits involving miR-34a/E2F1/ANRIL, miR-34a/E2F1/UFC1, and miR-34a/Myc/ANRIL. Our circuit- perturbation analysis shows that these circuits are important for regulating cell-fate decisions such as senescence and apoptosis. Thus, our Boolean network permits an explicit cell-fate mechanism associated with NSCLC. Therefore, our results support that ANRIL and/or UFC1 is an attractive target for drug development in tumor growth and aggressive proliferation of NSCLC, and that a valuable outcome can be achieved through the miRNA-34a/Myc pathway.
Collapse
|
16
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
17
|
Kirtonia A, Ashrafizadeh M, Zarrabi A, Hushmandi K, Zabolian A, Bejandi AK, Rani R, Pandey AK, Baligar P, Kumar V, Das BC, Garg M. Long noncoding RNAs: A novel insight in the leukemogenesis and drug resistance in acute myeloid leukemia. J Cell Physiol 2021; 237:450-465. [PMID: 34569616 DOI: 10.1002/jcp.30590] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Kiavash Hushmandi
- Division of Epidemiology and Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefe K Bejandi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reshma Rani
- Amity Institute of Biotechnology (AIB), Amity University, Noida, Uttar Pradesh, India
| | - Amit K Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
18
|
LINC00987 knockdown inhibits the progression of acute myeloid leukemia by suppressing IGF2BP2-mediated PA2G4 expression. Anticancer Drugs 2021; 33:e207-e217. [PMID: 34407052 DOI: 10.1097/cad.0000000000001188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study aimed to investigate the role and potential mechanisms of LINC00987 in acute myeloid leukemia (AML) progression. The expression of LINC00987 in bone marrow specimens of AML patients and cell lines was measured by quantitative reverse transcription PCR (RT-qPCR). Small interfering RNA targeting LINC00987 (si-LINC00987) was transfected into AML cell lines HL-60 and KG-1, and the proliferation, invasion and apoptosis were detected with Cell Counting Kit-8 (CCK-8), Transwell and flow cytometry, respectively. Moreover, the binding between LINC00987 and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) was validated with an RNA pull-down assay. Co-immunoprecipitation assay was used to verify the binding between IGF2BP2 and proliferation-associated 2G4 (PA2G4). Then rescue experiments were performed to explore the effects of LINC00987/IGF2BP2/PA2G4 axis on HL-60 and KG-1 cell functions. Additionally, HL-60 cells transfected with si-LINC00987 were injected into mice, followed by the evaluation of xenograft tumor growth. LINC00987 was upregulated in AML patient specimens and cell lines. LINC00987 knockdown inhibited proliferation and invasion and promoted apoptosis in AML cells. LINC00987 could bind with IGF2BP2 and promote its expression, and IGF2BP2 overexpression reversed the effects of LINC00987 knockdown on the proliferation, invasion and apoptosis in AML cells. Besides, IGF2BP2 could bind with PA2G4. IGF2BP2 knockdown inhibited proliferation and invasion, and promoted apoptosis in AML cells, whereas PA2G4 overexpression reversed these effects. Additionally, the LINC00987 knockdown inhibited the xenograft tumor growth of AML in vivo. Knockdown of LINC00987 inhibits AML cell proliferation and invasion, and promotes apoptosis in vitro and reduces tumor growth in vivo by suppressing IGF2BP2-mediated PA2G4 expression.
Collapse
|
19
|
Che D, Fang Z, Mai H, Xu Y, Fu L, Zhou H, Zhang L, Pi L, Gu X. The lncRNA ANRIL Gene rs2151280 GG Genotype is Associated with Increased Susceptibility to Recurrent Miscarriage in a Southern Chinese Population. J Inflamm Res 2021; 14:2865-2872. [PMID: 34234511 PMCID: PMC8256094 DOI: 10.2147/jir.s304801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Genetic factors may play an important role in susceptibility to recurrent miscarriage. Some cardiovascular disease-related candidate genes have been shown to be associated with recurrent miscarriage. Long noncoding RNA ANRIL has been confirmed to be associated with susceptibility to various diseases, such as cardiovascular disease. However, it remains unclear whether the ANRIL gene polymorphism is related to recurrent miscarriage susceptibility. Methods Three ANRIL gene polymorphisms (rs2151280, rs1063192 and rs564398) were genotyped in 819 controls and 610 recurrent miscarriage patients through TaqMan real-time polymerase chain reaction. The odds ratios and 95% confidence intervals (CIs) were used to assess the strength of each association. Results Our results showed that the ANRIL rs2151280 GG genotype was associated with increased susceptibility to recurrent miscarriage (GG vs AA: adjusted OR=1.527, 95% CI=1.051–2.218, p=0.0262; GG vs AG/AA adjusted OR=1.460, 95% CI=1.021–2.089, p=0.0381). By combining the analysis of the risk genotypes in the three SNPs, we found that individuals with 2–3 risk genotypes had a significantly increased risk of recurrent miscarriage compared with those with a 0–1 risk genotype (adjusted OR=1.728, 95% CI=1.112–2.683, p=0.0149). This risk was more significant in subgroups of women less than 35–40 years of age and women with 2–3 miscarriages. Conclusion These results suggested that a specific SNP in the ANRIL gene may be associated with increased susceptibility to recurrent miscarriage in a southern Chinese population.
Collapse
Affiliation(s)
- Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenzhen Fang
- Program of Molecular Medicine, Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hanran Mai
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - LanYan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Linyuan Zhang
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
TCF-3-mediated transcription of lncRNA HNF1A-AS1 targeting oncostatin M expression inhibits epithelial-mesenchymal transition via TGFβ signaling in gastroenteropancreatic neuroendocrine neoplasms. Aging (Albany NY) 2021; 13:14065-14077. [PMID: 34037532 PMCID: PMC8202880 DOI: 10.18632/aging.203024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs play key roles in several cancers, but their potential functions in gastroenteropancreatic neuroendocrine neoplasms remain to be investigated. We performed GeneChip assay to explore differentiated lncRNAs in gastric NENs and peri-cancerous tissues. The regulation of HNF1A-AS1 on biological behavior of GEP-NENs cells and in vivo xenograft model was confirmed by CCK8, colony formation assay, transwell, western blot and qRT-PCR. We next detected the potential transcription factors and the binding sites between them with bioinformatic analysis. qRT-PCR was performed to analyze the exact relationship between them. HNF1A-AS1 expression was decreased in gastric NENs tissues (p < 0.01). Over-expression of HNF1A-AS1 suppressed cellular proliferation, migration and invasion. Knockdown of transcription factor 3 inhibited the expression of HNF1A-AS1 and promoted cellular migration and invasion. Oncostatin M was identified as the downstream target of HNF1A-AS1. Inhibition of transforming growth factor-β activity inhibited HNF1A-AS1/Oncostatin M-mediated epithelial-mesenchymal transition. Our data suggest that transcription factor 3/HNF1A-AS1/Oncostatin M axis inhibits the tumorigenesis and metastasis of gastroenteropancreatic neuroendocrine neoplasms via transforming growth factor-β signaling.
Collapse
|
21
|
Yin Y, Yang W, Zhang L, Liu K, Luo Z. Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma. ACTA ACUST UNITED AC 2021; 26:160-169. [PMID: 33528317 DOI: 10.1080/16078454.2021.1872275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study aimed to investigate the correlations of long non-coding RNA ANRIL (lncRNA ANRIL), microRNA (miR)-34a, miR-125a and miR-186 with disease risk, clinical features and prognosis of multiple myeloma (MM). METHOD Totally, 87 MM patients and 30 controls were recruited. LncRNA ANRIL and its target miRNAs (miR-34a, miR-125a and miR-186) in bone marrow derived plasma cells were detected by RT-qPCR. Treatment response was assessed and survivals were calculated in MM patients. RESULTS LncRNA ANRIL expression was increased, while miR-34a, miR-125a and miR-186 expressions were reduced in MM patients compared with controls. Meanwhile, lncRNA ANRIL negatively correlated with miR-34a and miR-125a but not miR-186 in MM patients, while did not correlate with miR-34a, miR-125a or miR-186 in controls. In MM patients, lncRNA ANRIL high expression associated with higher beta-2-microglobulin (β2-MG) and more advanced international staging system (ISS) stage; miR-125a high expression associated with lower β2-MG, less advanced ISS stage and less t (14; 16) abnormality; miR186 high expression associated with increased albumin; while miR-34a did not associate with any clinical features. Furthermore, lncRNA ANRIL high expression associated with decreased complete response (CR), while miR-34a high and miR-125a high expression associated with increased CR and objective response rate. Additionally, lncRNA ANRIL high expression associated with shorter progression-free survival (PFS), while miR-34a high expression associated with prolonged overall survival (OS), and miR-125a high expression associated with longer PFS and OS. CONCLUSION LncRNA ANRIL and its target miRNAs might serve as biomarkers for assisting with personalized treatment and prognosis improvement of MM.
Collapse
Affiliation(s)
- Yafei Yin
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, People's Republic of China
| | - Wenqun Yang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, People's Republic of China
| | - Lu Zhang
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, People's Republic of China
| | - Kang Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, People's Republic of China
| | - Zimian Luo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, People's Republic of China
| |
Collapse
|
22
|
Ma W, Zhao X, Xue N, Gao Y, Xu Q. The LINC01410/miR-122-5p/NDRG3 axis is involved in the proliferation and migration of osteosarcoma cells. IUBMB Life 2021; 73:705-717. [PMID: 33583123 DOI: 10.1002/iub.2452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE It is generally accepted that long noncoding RNAs (lncRNAs) function as vital regulators of tumor development and progression. Long intergenic non-coding RNA 1410 (LINC01410) is a newly discovered lncRNA, and its role in osteosarcoma (OS) is yet to be determined. MATERIALS AND METHODS The expression of LINC01410, microRNA-122-5p (miR-122-5p), and N-myc downstream-regulated gene 3 (NDRG3) in OS tissues was determined using reverse transcription-quantitative PCR. Interactions between LINC01410, miR-122-5p, and NDRG3 were predicted and verified using bioinformatics tools and luciferase assays. Cell proliferation, migration, and invasion were detected using cell counting Kit-8 and Transwell assays. RESULTS LINC01410 was overexpressed in OS tissues. Furthermore, it was confirmed that LINC01410 facilitated OS cell proliferation and migration. Our studies also showed that LINC01410 binds to miR-122-5p, and miR-122-5p binds to NDRG3. Finally, we observed that LINC01410 knockdown inhibited the proliferation, invasion, and migration of OS cells. Knockdown of LINC01410 resulted in the upregulation of miR-122-5p and downregulation of NDRG3. CONCLUSION Our results demonstrated that the LINC01410/miR-122-5p/NDRG3 axis is involved in the progression of OS.
Collapse
Affiliation(s)
- Weiguo Ma
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Xue
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yun Gao
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Qingxia Xu
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
23
|
Neve B, Jonckheere N, Vincent A, Van Seuningen I. Long non-coding RNAs: the tentacles of chromatin remodeler complexes. Cell Mol Life Sci 2021; 78:1139-1161. [PMID: 33001247 PMCID: PMC11072783 DOI: 10.1007/s00018-020-03646-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Chromatin remodeler complexes regulate gene transcription, DNA replication and DNA repair by changing both nucleosome position and post-translational modifications. The chromatin remodeler complexes are categorized into four families: the SWI/SNF, INO80/SWR1, ISWI and CHD family. In this review, we describe the subunits of these chromatin remodeler complexes, in particular, the recently identified members of the ISWI family and novelties of the CHD family. Long non-coding (lnc) RNAs regulate gene expression through different epigenetic mechanisms, including interaction with chromatin remodelers. For example, interaction of lncBRM with BRM inhibits the SWI/SNF complex associated with a differentiated phenotype and favors assembly of a stem cell-related SWI/SNF complex. Today, over 50 lncRNAs have been shown to affect chromatin remodeler complexes and we here discuss the mechanisms involved.
Collapse
Affiliation(s)
- Bernadette Neve
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France.
| | - Nicolas Jonckheere
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Audrey Vincent
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| | - Isabelle Van Seuningen
- UMR9020-U1277 - CANTHER - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Univ. Lille, CNRS, Inserm, CHU Lille, 59000, Lille, France
| |
Collapse
|
24
|
Li L, Wan D, Li L, Qin Y, Ma W. lncRNA RAET1K Promotes the Progression of Acute Myeloid Leukemia by Targeting miR-503-5p/INPP4B Axis. Onco Targets Ther 2021; 14:531-544. [PMID: 33500628 PMCID: PMC7823139 DOI: 10.2147/ott.s291123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background Although long non-coding RNA (lncRNA) RAET1K has been observed to be abnormally expressed in patients with various cancers, its role and molecular mechanism in acute myeloid leukemia (AML) remain unclear. Methods The expression of RAET1K and miR-503-5p in bone marrow tissues and cell lines was detected by qRT-PCR. Cell proliferation was evaluated by cell counting kit-8 and 5-ethynyl-20-deoxyuridine (EdU) staining assay. Cell invasion and migration were detected by transwell assay. Cell apoptosis was evaluated by flow cytometry. The relationship between RAET1K and miR-503-5p, as well as miR-503-5p and INPP4B, was determined by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In addition, the tumorigenesis of leukemia cells was evaluated by using a xenograft mouse model in vivo. Results RAET1K was significantly upregulated and miR-503-5p was markedly downregulated in bone marrow tissues and cell lines (HL-60 and THP-1). Silencing of RAET1K (si-RAET1K) and overexpression of miR-503-5p inhibited cell proliferation, migration, and invasion but promoted apoptosis of HL-60 and THP-1 cells. RAET1K functioned as a sponge of miR-503-5p, and miR-503-5p inhibitor obviously attenuated the effect of si-RAET1K on AML progression in vitro. INPP4B was identified as a target of miR-503-5p, and INPP4B overexpression obviously reversed the effect of miR-503-5p mimics on cell proliferation, migration, invasion, and apoptosis of HL-60 and THP-1 cells in vitro. Knockdown of RAET1K effectively inhibited the tumorigenesis of leukemia cells in vivo. Conclusion Our results demonstrated that RAET1K/miR-503-5p/INPP4B axis contributed to AML progression, suggesting that RAET1K might be a potential target for the treatment of AML.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Lin Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Yang Qin
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People's Republic of China
| |
Collapse
|
25
|
Zhang X, Yang L, Xu G. Silencing of long noncoding RNA TUG1 inhibits viability and promotes apoptosis of acute myeloid leukemia cells by targeting microRNA-221-3p/KIT axis. Clin Hemorheol Microcirc 2020; 76:425-437. [PMID: 32804119 DOI: 10.3233/ch-200906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE: Acute myeloid leukemia (AML) is a hematological malignancy. This study was attempted to uncover the effects of long noncoding RNA taurine-upregulated gene1 (TUG1) on the viability and apoptosis of AML cells. METHODS: QRT-PCR was implemented to examine the expression of TUG1, miR-221-3p and KIT in AML. The correlation between TUG1 and clinicopathological features of AML patients was evaluated. The effect of TUG1 on AML cells were studied by RNA interference approach. AML cells were transfected with miR-221-3p mimic and miR-221-3p inhibitor, respectively. Then the viability and apoptosis of AML cells were examined by MTT and flow cytometry assay, respectively. Additionally, dual-luciferase reporter assay was used to confirm the interactions among TUG1, miR-221-3p and KIT. Western blot was applied to analyze protein expression of KIT. RESULTS: The expression of TUG1 and KIT was up-regulated in AML, but miR-221-3p was down-regulated. TUG1 expression had obviously correlation with World Health Organization (WHO) grade in AML patients. The functional experiment stated that TUG1 silencing suppressed the viability and accelerated the apoptosis of AML cells. Moreover, the mechanical experiment demonstrated that TUG1 and KIT were both targeted by miR-221-3p with the complementary binding sites at 3’UTR. Up-regulation of miR-221-3p inhibited the protein expression of KIT. Furthermore, in the feedback experiment, miR-221-3p inhibition or KIT overexpression reversed the repression of tumor behavior induced by TUG1 silencing. CONCLUSIONS: TUG1 silencing retarded viability and promoted apoptosis of AML cells via regulating miR-221-3p/KIT axis, providing a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Xifeng Zhang
- Pediatric Intensive Care Unit, Liaocheng Second People’s Hospital, Affiliated to the First Medical University of Shandong, Linqing, China
| | - Likun Yang
- Pediatric Intensive Care Unit, Liaocheng Second People’s Hospital, Affiliated to the First Medical University of Shandong, Linqing, China
| | - Guixia Xu
- Pediatric Intensive Care Unit, Liaocheng Second People’s Hospital, Affiliated to the First Medical University of Shandong, Linqing, China
| |
Collapse
|
26
|
Tan Z, Zhu K, Yin Y, Luo Z. Long non‑coding RNA ANRIL is a potential indicator of disease progression and poor prognosis in acute myeloid leukemia. Mol Med Rep 2020; 23:112. [PMID: 33300059 PMCID: PMC7723160 DOI: 10.3892/mmr.2020.11751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
The present study explored the association of long non‑coding RNA (lncRNA) antisense non‑coding RNA in the INK4 locus (ANRIL) with the development of acute myeloid leukemia (AML) clinical features and prognosis of patients with AML. Bone marrow mononuclear cells (BMMCs) were obtained from 178 patients with de novo AML prior to initial therapy and from 30 healthy donors. The expression of lncRNA ANRIL in BMMCs was detected by reverse transcription‑quantitative PCR. Complete remission (CR) was assessed after induction therapy. Event‑free survival (EFS) and overall survival (OS) were evaluated during the follow‑up. The levels of lncRNA ANRIL were increased in patients with AML compared with those in healthy donors and were capable of distinguishing patients with AML from healthy donors (area under the curve, 0.886; 95% CI, 0.820‑0.952). Furthermore, lncRNA ANRIL was associated with an increased occurrence internal tandem duplications in the FMS‑like tyrosine kinase 3, decreased occurrence inv(16) or t(16;6), intermediate‑risk and poor‑risk stratification while no association of lncRNA ANRIL was identified with French‑American‑British classification, cytogenetics, isolated biallelic CCAAT/enhancer‑binding protein α mutation and nucleophosmin 1 mutation in patients with AML. Furthermore, lncRNA ANRIL was significantly associated with a lower CR rate. In addition, EFS and OS were shorter in patients with high expression of lncRNA ANRIL compared with those in patients with low expression of lncRNA ANRIL. Multivariate Cox regression analyses revealed that high expression of lncRNA ANRIL, poor‑risk stratification and white blood cells (>10.0x109 cells/l) were independent prognostic factors for shorter EFS, while high expression of lncRNA ANRIL and poorer risk stratification were independent prognostic factors for shorter OS. The present results suggested that lncRNA ANRIL has clinical relevance as a biomarker for assisting diagnosis treatment decisions and prognosis prediction and the identification of potential drug target for AML.
Collapse
Affiliation(s)
- Zhenqing Tan
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Kaibo Zhu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Yafei Yin
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| | - Zimian Luo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
27
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
28
|
Li G, Gao L, Zhao J, Liu D, Li H, Hu M. LncRNA ANRIL/miR-7-5p/TCF4 axis contributes to the progression of T cell acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:335. [PMID: 32714094 PMCID: PMC7376839 DOI: 10.1186/s12935-020-01376-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background Antisense non-coding RNA in the INK4 locus (ANRIL) is of great importance in cell biological behaviors, and ANRIL functions in many kinds of cancers including leukemia. However, the mechanism of ANRIL in the progression of T-cell acute lymphoblastic leukemia (T-ALL) has not been clarified clearly. Methods qRT-PCR was performed to detect ANRIL expression in T-ALL samples. T-ALL cell lines (MOLT4, CCRF-CEM and KOPT-K1) were used as the cell models. The function of ANRIL on T-ALL cells was investigated by CCK-8 assays, Transwell assays, and apoptosis experiments in vitro. qRT-PCR, Western blot, luciferase reporter assay and RIP assay were used to confirm the interactions between ANRIL and miR-7-5p, miR-7-5p and its target gene transcription factor 4 (TCF4). Results ANRIL was significantly up-regulated in T-ALL samples. Its knockdown markedly inhibited viability, migration and invasion of T-ALL cells, but its overexpression exerted the opposite effects. TCF4 was proved to be a target gene of miR-7-5p. ANRIL down-regulated miR-7-5p via sponging it and in turn up-regulated TCF4. Conclusions LncRNA ANRIL can modulate malignant phenotypes of T-ALL cells, possibly by regulating miR-7-5p/TCF4 axis, and it serves as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Gang Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Lan Gao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Jing Zhao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Dejun Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Hui Li
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| | - Min Hu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Weiwu Road, No. 7, Zhengzhou, Henan 450003 China
| |
Collapse
|