1
|
Hu K, Dong B, Wang Y, Meng X. The role of sperm protein in mammal fertilization: insights into gamete adhesion, membrane fusion and oocyte activation. ZYGOTE 2025:1-11. [PMID: 40356503 DOI: 10.1017/s0967199425000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Globally, numerous infertile couples have been assisted by extensive research on mammalian fertilization and the rapid development of Assisted Reproductive Technology (ART). However, 5%-15% of the couples that are selected for in vitro fertilization (IVF) experience a total fertilization failure (TFF), where no zygotes develop despite oocytes and semen parameters appear to be normal. Notably, an essential early event in fertilization is the binding of spermatozoa to the oocyte's external envelope, which followed by the spermatozoa-oocyte fusion. Meanwhile, oocyte activation is a crucial cellular process necessary to block polyspermy and start the development of the zygote. Improper membrane fusion of gametes has been demonstrated to be one of the mechanisms of TFF. Moreover, considering the large amount of research on sperm proteins in recent years, thus in this review, we characterize the role and molecular mechanisms of sperm proteins in the three key processes of gamete adhesion and fusion and oocyte activation, which would provide a comprehensive understanding of the role of sperm proteins in fertilization in mammals and a favourable reference for future studies in assisted reproduction due to FF.
Collapse
Affiliation(s)
- Kaiyue Hu
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Reproductive Medicine, Luoyang, China
| | - Bo Dong
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Yugang Wang
- Department of Reproductive Medicine, Luoyang maternal and child health hospital, Luoyang, 471000, China
- Luoyang branch of the National Center for assisted reproduction and eugenics, Luoyang, China
- Key Laboratory of reproduction and genetics, Luoyang, China
- Institute of Andrology, Luoyang, China
| | - Xiangrui Meng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Drobiova H, Al-Mulla F, Al-Temaimi R. ADAM9 Genetic Variants and Their Role in Modulating Enzyme Activity in Diabetes and Metabolic Traits. J Diabetes Res 2025; 2025:5519447. [PMID: 40330740 PMCID: PMC12052454 DOI: 10.1155/jdr/5519447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
A disintegrin and metalloproteinase Domain 9 (ADAM9) is a zinc-dependent proteinase involved in various biological processes. However, its role in the pathophysiology of metabolic syndrome remains unclear, and studies exploring the association between ADAM9 polymorphisms and metabolic traits are limited. In this study, we investigated the potential link between ADAM9 variants and metabolic syndrome traits in a cohort of adult participants from Kuwait. Using a genome-wide association study (GWAS), followed by a replication study, we identified two ADAM9 variants-ADAM9-E76K (rs61753672) and ADAM9-P750L (rs144750648)-that were associated with various metabolic traits. The replication phase confirmed the association of ADAM9-P750L with HbA1c levels and revealed new associations with systolic blood pressure, waist-to-hip ratio, fasting blood glucose, triglycerides, and cholesterol. Functional analysis showed that both variants exhibited reduced proteolytic activity, potentially contributing to the pathogenesis of Type 2 diabetes. These findings suggest that ADAM9 variants may play a significant role in metabolic health and diabetes risk.
Collapse
Affiliation(s)
- Hana Drobiova
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Fahd Al-Mulla
- Translational Medicine Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rabeah Al-Temaimi
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
3
|
Pineda-Suazo D, Guillén-Chable F, Escobedo-Hinojosa WI, Galindo-Sánchez CE, Rosas C. Insights into Octopus maya cathepsins from metatranscriptome and genome: structure evolutionary relationships and functional role prediction in digestive processes. Biol Open 2025; 14:bio061778. [PMID: 40106538 PMCID: PMC12032550 DOI: 10.1242/bio.061778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Physiological response to feeding is crucial for various production factors such as feed catabolism and growth. Despite growing significance in red Octopus maya aquaculture, large-scale commercial production is limited by not sufficiently knowing their nutritional needs, especially their digestive physiology. Since this species is carnivorous, one of the main feeding aspects is directed to protein digestion, but its enzymatic digestive repertoire has not been studied yet at genomic and transcriptomic levels. This study searched for protease enzymes encoded in O. maya genome and expressed in the transcriptome, allowing an initial annotation of genes involved in protein catabolism; 117 amino acid sequences related to 'octopus digestive enzymes' were retrieved from 66 available-species' genomes in the NCBI database, coding for cathepsins, papilins, and metalloproteases. Homology analysis identified 36 homologous sequences from O. maya transcriptome and three from its genome. Phylogenetic analysis grouped 37 of 39 sequences into 11 of 14 main clades, offering new insights into the evolutionary relationships and functional roles of these proteases. Phylogenetic and motif analyses resulted in selecting 19 amino acid O. maya sequences using multiple sequence alignment that were used to generate three-dimensional protein models. The obtained models revealed a diverse structural architecture among 16 modelled cathepsins; however, their catalytic potential to fully clarify their role in protein hydrolysis and cellular processes remains to be determined. Foundational data provides insights into biochemistry and physiology behind O. maya protein digestion. Further complementation of these results with enzymatic characterization of the identified proteases should allow for improved diet formulation in order to foster this species aquaculture.
Collapse
Affiliation(s)
- Daisy Pineda-Suazo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| | - Francisco Guillén-Chable
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| | - Wendy Itzel Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán 97356, México
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California 22860, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| |
Collapse
|
4
|
Ren R, Li Z, Fang Q. A disintegrin-like and metalloproteinase 15 facilitates glioblastoma proliferation and metastasis through activation of the protease-activated receptor 1. Cytojournal 2025; 22:34. [PMID: 40260066 PMCID: PMC12010881 DOI: 10.25259/cytojournal_92_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/25/2025] [Indexed: 04/23/2025] Open
Abstract
Objective Glioblastoma hinders therapeutic interventions and prognostic outlooks. At the same time, a disintegrin-like and metalloproteinase 15 (ADAM15) influences cellular processes, such as adhesion and migration. Furthermore, protease-activated receptor 1 (PAR1), a vital receptor, impacts tumorigenesis and disease progression. This study aimed to investigate ADAM15 and PAR1 interaction in epithelial-mesenchymal transition (EMT) modulation in glioblastoma behavior and provide insights into therapeutic targets. Material and Methods The impacts of ADAM15 overexpression and PAR-1/2 inhibition on the proliferation, invasion, and migration of glioblastoma cells U251 and U87 were evaluated using transwell assays, EdU incorporation, clonogenic assay, Ki67 immunohistochemistry, and immunofluorescence staining. Real-time quantitative polymerase chain reaction and Western blot analysis were employed to investigate the impact of ADAM15 on PAR1 expression. Results After analyzing the impacts of ADAM15 overexpression on the migration, invasion, and proliferation of human glioblastoma cell lines U251 and U87, the results showed that ADAM15 overexpression significantly enhanced migration (P < 0.001) and invasion rates (P < 0.001), as confirmed by scratch and transwell assays, thus indicating its tumor-promoting effects. This study revealed a significant increase in colony formation (P < 0.001), EdU incorporation (P < 0.001), and Ki67-positive cells (P < 0.001) in the ADAM15 overexpressed group. PAR1 and EMT markers were significantly increased in the ADAM15 overexpressed group (P < 0.001). Treatment with the PAR-1 antagonist SCH79797 inhibited EMT (P < 0.01) and suppressed cell proliferation (P < 0.001), migration (P < 0.001), and invasion (P < 0.001) in U251 and U87 cells overexpressing ADAM15, indicating the involvement of PAR-1 signaling in the effects of ADAM15 on cell behaviors. In comparison, the PAR-2 antagonist FSLLRY-NH2 did not show significant effects on EMT or these cell behaviors. Conclusion ADAM15 drives glioblastoma cell lines U251 and U87 progression through PAR1.
Collapse
Affiliation(s)
- Rong Ren
- Department of Traditional Chinese Medicine, Qingdao Chengyang People’s Hospital, Qingdao, Shandong, China
| | - Zuowei Li
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Qingdao Medical College, Qing Dao University, Qingdao, Shandong, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiong Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Oh S, Lee SS, Jin H, Choi SH, Cha CK, Lee J, Kwack K, Kim SG, Choi SW. A disintegrin and metallopeptidase domain (ADAM) 12, ADAM 17 mRNA and ADAM10 protein hold potential as biomarkers for detection of early gastric cancer. Sci Rep 2025; 15:763. [PMID: 39755747 PMCID: PMC11700123 DOI: 10.1038/s41598-024-84237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database. Subsequently, the mRNA and protein expression levels of these markers except ADAM8 were tested in blood samples from patients with EGC and healthy controls. In the TCGA data analyses, EGC tissues (n = 57) expressed significantly higher mRNA levels of ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17 than normal tissues (n = 35) (p < 0.005). In human blood sample analyses, ADAM12 (p = 0.0007), ADAM17 mRNA (p < 0.0001) and ADAM10 (p < 0.0017) protein were significantly elevated in patients with EGC (n = 27 for mRNA and n = 25 for protein) compared to the controls (n = 30 for mRNA and n = 26 for protein). Areas under the curves calculated by receiver-operating characteristic analysis for ADAM12, ADAM17 mRNA and ADAM10 protein were 0.7568 (95% confidence interval [CI]: 0.6334 to 0.8802), 0.8062 (95% CI: 0.6889 to 0.9234; p < 0.0001), and 0.8108 (95% CI: 0.6895 to 0.9320; p = 0.0001), respectively. Thus, ADAM12, ADAM17 mRNA and ADAM10 protein levels in peripheral blood could hold potential as biomarkers for screening EGC, and further investigations are required.
Collapse
Affiliation(s)
- Sooyeon Oh
- Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea
- Graduate school of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sang-Soo Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, Korea
| | - Hoeyoung Jin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, Korea
| | - Seo-Hyeon Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, Korea
| | - Choong-Keun Cha
- Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea
| | - Jooho Lee
- Department of Gastroenterology and Hepatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, Korea
| | - KyuBum Kwack
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 13488, Korea.
| | - Sang Gyun Kim
- Division of Gastroenterology, Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| | - Sang-Woon Choi
- Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea
| |
Collapse
|
6
|
Evers M, Stühmer T, Schreder M, Steinbrunn T, Rudelius M, Jundt F, Ebert R, Hartmann TN, Bargou RC, Rosenwald A, Leich E. Association of ADAM family members with proliferation signaling and disease progression in multiple myeloma. Blood Cancer J 2024; 14:156. [PMID: 39261477 PMCID: PMC11390935 DOI: 10.1038/s41408-024-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy whose curability is greatly challenged by recurrent patient relapses and therapy resistance. We have previously proposed the high expression of ADAM8, ADAM9 and ADAM15 (A Disintegrin And Metalloproteinase 8/9/15) as adverse prognostic markers in MM. This study focused on the so far scarcely researched role of ADAM8/9/15 in MM using two patient cohorts and seven human MM cell lines (HMCL). High ADAM8/9/15 expression was associated with high-risk cytogenetic abnormalities and extramedullary disease. Furthermore, ADAM8/15 expression increased with MM progression and in relapsed/refractory MM compared to untreated patient samples. RNA sequencing and gene set enrichment analysis comparing ADAM8/9/15high/low patient samples revealed an upregulation of proliferation markers and proliferation-associated gene sets in ADAM8/9/15high patient samples. High ADAM8/9/15 expression correlated with high Ki67 and high ADAM8/15 expression with high MYC protein expression in immunohistochemical stainings of patient tissue. Conversely, siRNA-mediated knockdown of ADAM8/9/15 in HMCL downregulated proliferation-related gene sets. Western blotting revealed that ADAM8 knockdown regulated IGF1R/AKT signaling and ADAM9 knockdown decreased mTOR activation. Lastly, high ADAM8/9/15 expression levels were verified as prognostic markers independent of Ki67/MYC expression and/or high-risk abnormalities. Overall, these findings suggest that ADAM8/9/15 play a role in MM progression and proliferation signaling.
Collapse
Affiliation(s)
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Schreder
- First Department of Medicine, Klinik Ottakring, Vienna, Austria
| | - Torsten Steinbrunn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-University München, München, Germany
| | - Franziska Jundt
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Würzburg, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - Ralf Christian Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | | | - Ellen Leich
- Institute of Pathology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
8
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
9
|
Erin N, Akdeniz Ö. ADAM10 and Neprilysin level decreases in immune cells of mice bearing metastatic breast carcinoma: Possible role in cancer inflammatory response. Int Immunopharmacol 2024; 127:111384. [PMID: 38141405 DOI: 10.1016/j.intimp.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE AND DESIGN ADAM10 and Neprilysin, proteases, play critical role in inflammatory disease, however their role in cancer immune response is not clear. We here evaluated changes in immune response using an experimental model for breast cancer. MATERIAL AND METHOD Highly metastatic breast cancer cells (4T1-derived) were injected orthotopically (mammary-pad of Balb-c mice) to induce tumors. Changes in enzyme level and activity as well as alterations in inflammatory cytokine release in the presence or absence of ADAM10 and NEP activity was determined using specific inhibitors and recombinant proteins. Cytokine response was evaluated using mix leucocyte cultures obtained from control and tumor-bearing mice. ANOVA with Dunnett's posttest was used for statistical analysis. RESULTS ADAM10 and NEP expression was decreased markedly in lymph nodes and spleens of tumor-bearing mice. ADAM10 activity was reduced together with apparent alterations of ADAM10 processing. ADAM10 and NEP activity decreased TNF-α, IL-6 and IFN-ɣ secretion. Suppression of these inflammatory cytokines were more prominent in cultures obtained from control mice demonstrating counteracting factors that are exist in tumor-bearing mice. CONCLUSION Loss of ADAM10 and NEP activity in immune cells during breast cancer metastasis might be one of the main factors involved in induction of chronic inflammation by tumors.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye.
| | - Özlem Akdeniz
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye
| |
Collapse
|
10
|
Wang Z, Li W, Chen S, Tang XX. Role of ADAM and ADAMTS proteases in pathological tissue remodeling. Cell Death Discov 2023; 9:447. [PMID: 38071234 PMCID: PMC10710407 DOI: 10.1038/s41420-023-01744-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 09/10/2024] Open
Abstract
Pathological tissue remodeling is closely associated with the occurrence and aggravation of various diseases. A Disintegrin And Metalloproteinases (ADAM), as well as A Disintegrin And Metalloproteinase with ThromboSpondin motifs (ADAMTS), belong to zinc-dependent metalloproteinase superfamily, are involved in a range of pathological states, including cancer metastasis, inflammatory disorders, respiratory diseases and cardiovascular diseases. Mounting studies suggest that ADAM and ADAMTS proteases contribute to the development of tissue remodeling in various diseases, mainly through the regulation of cell proliferation, apoptosis, migration and extracellular matrix remodeling. This review focuses on the roles of ADAM and ADAMTS proteinases in diseases with pathological tissue remodeling, with particular emphasis on the molecular mechanisms through which ADAM and ADAMTS proteins mediate tissue remodeling. Some of these reported proteinases have defined protective or contributing roles in indicated diseases, while their underlying regulation is obscure. Future studies are warranted to better understand the catalytic and non-catalytic functions of ADAM and ADAMTS proteins, as well as to evaluate the efficacy of targeting these proteases in pathological tissue remodeling.
Collapse
Affiliation(s)
- Zhaoni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanshan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shixing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Laboratory, Bio-island, Guangzhou, China.
| |
Collapse
|
11
|
Piotrowski KB, Blasco LP, Samsøe-Petersen J, Eefsen RL, Illemann M, Oria VO, Campos KIA, Lopresti AM, Albrechtsen R, Sørensen CS, Sun XF, Kveiborg M, Gnosa S. ADAM12 expression is upregulated in cancer cells upon radiation and constitutes a prognostic factor in rectal cancer patients following radiotherapy. Cancer Gene Ther 2023; 30:1369-1381. [PMID: 37495855 PMCID: PMC10581903 DOI: 10.1038/s41417-023-00643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023]
Abstract
Radiotherapy is one of the most common cancer treatments, yet, some patients require high doses to respond. Therefore, the development of new strategies leans toward personalizing therapy to avoid unnecessary burden on cancer patients. This approach prevents the administration of ineffective treatments or uses combination strategies to increase the sensitivity of cancer cells. ADAM12 has been shown to be upregulated in many cancers and correlate with poor survival and chemoresistance, thus making it a potential candidate responsible for radioresistance. Here, we show that ADAM12 expression is upregulated in response to irradiation in both mouse and human cancer cells in vitro, as well as in tumor tissues from rectal cancer patients. Interestingly, the expression of ADAM12 following radiotherapy correlates with the initial disease stage and predicts the response of rectal cancer patients to the treatment. While we found no cell-autonomous effects of ADAM12 on the response of colon cancer cells to irradiation in vitro, depletion of ADAM12 expression markedly reduced the tumor growth of irradiated cancer cells when subcutaneously transplanted in syngeneic mice. Interestingly, loss of cancer cell-derived ADAM12 expression increased the number of CD31+FAP- cells in murine tumors. Moreover, conditioned medium from ADAM12-/- colon cancer cells led to increased tube formation when added to endothelial cell cultures. Thus, it is tempting to speculate that altered tumor vascularity may be implicated in the observed effect of ADAM12 on response to radiotherapy in rectal cancer. We conclude that ADAM12 represents a promising prognostic factor for stratification of rectal cancer patients receiving radiotherapy and suggest that targeting ADAM12 in combination with radiotherapy could potentially improve the treatment response.
Collapse
Affiliation(s)
| | - Laia Puig Blasco
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Illemann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Victor Oginga Oria
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Alexia Mélanie Lopresti
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Sebastian Gnosa
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
- Minerva Imaging, Lyshøjvej 21, Ølstykke, Denmark.
| |
Collapse
|
12
|
Lv X, Lin Y, Zhang Z, Li B, Zeng Z, Jiang X, Zhao Q, Li W, Wang Z, Yang C, Yan H, Wang Q, Huang R, Hu X, Gao L. Investigating the association between serum ADAM/ADAMTS levels and bone mineral density by mendelian randomization study. BMC Genomics 2023; 24:406. [PMID: 37468870 DOI: 10.1186/s12864-023-09449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/14/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) have been reported potentially involved in bone metabolism and related to bone mineral density. This Mendelian Randomization (MR) analysis was performed to determine whether there are causal associations of serum ADAM/ADAMTS with BMD in rid of confounders. METHODS The genome-wide summary statistics of four site-specific BMD measurements were obtained from studies in individuals of European ancestry, including forearm (n = 8,143), femoral neck (n = 32,735), lumbar spine (n = 28,498) and heel (n = 426,824). The genetic instrumental variables for circulating levels of ADAM12, ADAM19, ADAM23, ADAMTS5 and ADAMTS6 were retrieved from the latest genome-wide association study of European ancestry (n = 5336 ~ 5367). The estimated causal effect was given by the Wald ratio for each variant, the inverse-variance weighted model was used as the primary approach to combine estimates from multiple instruments, and sensitivity analyses were conducted to assess the robustness of MR results. The Bonferroni-corrected significance was set at P < 0.0025 to account for multiple testing, and a lenient threshold P < 0.05 was considered to suggest a causal relationship. RESULTS The causal effects of genetically predicted serum ADAM/ADAMTS levels on BMD measurements at forearm, femoral neck and lumbar spine were not statistically supported by MR analyses. Although causal effect of ADAMTS5 on heel BMD given by the primary MR analysis (β = -0.006, -0.010 to 0.002, P = 0.004) failed to reach Bonferroni-corrected significance, additional MR approaches and sensitivity analyses indicated a robust causal relationship. CONCLUSION Our study provided suggestive evidence for the causal effect of higher serum levels of ADAMTS5 on decreased heel BMD, while there was no supportive evidence for the associations of ADAM12, ADAM19, ADAM23, and ADAMTS6 with BMD at forearm, femoral neck and lumbar spine in Europeans.
Collapse
Affiliation(s)
- Xin Lv
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Yuhong Lin
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhilei Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Ziliang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xu Jiang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiancheng Zhao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Wenpeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Zheyu Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Canchun Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Haolin Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Qiwei Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Renyuan Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
| | - Xumin Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
| |
Collapse
|
13
|
Ma B, Yu R. Pan-cancer analysis of ADAMs: A promising biomarker for prognosis and response to chemotherapy and immunotherapy. Front Genet 2023; 14:1105900. [PMID: 37082201 PMCID: PMC10110990 DOI: 10.3389/fgene.2023.1105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Members of a disintegrin and metalloproteinase (ADAM) family play a vital role in cancer development. However, a comprehensive analysis of the landscape of the ADAM family in pan-cancer remains to be performed.Methods: The correlation of the expression level and prognostic value with ADAMs in a pan-cancer cohort and the relationship between ADAMs and the stemness score, tumour microenvironment (TME), chemotherapy-related drug sensitivity, immune subtype, and immunotherapy outcome were investigated.Results: ADAMs were differentially expressed between tumour and para-carcinoma tissues in the pan-cancer cohort, and the expression of ADAMs was significantly correlated with patient prognosis. Furthermore, ADAMs were significantly correlated with the stromal score and immune score based on the TME analysis. Additionally, ADAMs were also correlated with DNAss and RNAss in the pan-cancer cohort. On investigating the CellMiner database, ADAMs were revealed to be significantly correlated with the sensitivity of various drugs, including raloxifene and tamoxifen. Moreover, in the IMvigor210 and GSE78220 cohorts, ADAMs were correlated with immunotherapy response and immune activation genes. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were utilised to determine the differential level of ADAM9 in cancer and para-carcinoma tissues in patients’ samples.Conclusion: This study elucidates the importance of ADAMs in cancer progression and lays a foundation for further exploration of ADAMs as potential pan-cancer targets.
Collapse
Affiliation(s)
- Bo Ma
- *Correspondence: Bo Ma, ; Riyue Yu,
| | - Riyue Yu
- *Correspondence: Bo Ma, ; Riyue Yu,
| |
Collapse
|
14
|
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr Issues Mol Biol 2023; 45:2917-2936. [PMID: 37185715 PMCID: PMC10136553 DOI: 10.3390/cimb45040191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are some of the most common cancers in the world and their number is increasing. Their etiology and pathogenesis are still unclear. ADAM proteins are a family of transmembrane and secreted metalloproteinases that play a role in cancerogenesis, metastasis and neoangiogenesis. MicroRNAs are small single-stranded non-coding RNAs that take part in the post-transcriptional regulation of gene expression. Some ADAM proteins can be targets for microRNAs. In this review, we analyze the impact of microRNA/ADAM protein axes in GI cancers.
Collapse
Affiliation(s)
- Agnieszka Kalita
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Magdalena Sikora-Skrabaka
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| |
Collapse
|
15
|
He RZ, Zheng JH, Yao HF, Xu DP, Yang MW, Liu DJ, Sun YW, Huo YM. ADAMTS12 promotes migration and epithelial-mesenchymal transition and predicts poor prognosis for pancreatic cancer. Hepatobiliary Pancreat Dis Int 2023; 22:169-178. [PMID: 35508435 DOI: 10.1016/j.hbpd.2022.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/18/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.
Collapse
Affiliation(s)
- Rui-Zhe He
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Hao Zheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Fei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da-Peng Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Wei Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - De-Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Wei Sun
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Miao Huo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Gupta S, Sharma P, Chaudhary M, Premraj S, Kaur S, Vijayan V, Arun MG, Prasad NG, Ramachandran R. Pten associates with important gene regulatory network to fine-tune Müller glia-mediated zebrafish retina regeneration. Glia 2023; 71:259-283. [PMID: 36128720 DOI: 10.1002/glia.24270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
Unlike mammals, zebrafish possess a remarkable ability to regenerate damaged retina after an acute injury. Retina regeneration in zebrafish involves the induction of Müller glia-derived progenitor cells (MGPCs) exhibiting stem cell-like characteristics, which are capable of restoring all retinal cell-types. The induction of MGPC through Müller glia-reprograming involves several cellular, genetic and biochemical events soon after a retinal injury. Despite the knowledge on the importance of Phosphatase and tensin homolog (Pten), which is a dual-specificity phosphatase and tumor suppressor in the maintaining of cellular homeostasis, its importance during retina regeneration remains unknown. Here, we explored the importance of Pten during zebrafish retina regeneration. The Pten gets downregulated upon retinal injury and is absent from the MGPCs, which is essential to trigger Akt-mediated cellular proliferation essential for retina regeneration. We found that the downregulation of Pten in the post-injury retina accelerates MGPCs formation, while its overexpression restricts the regenerative response. We observed that Pten regulates the proliferation of MGPCs not only through Akt pathway but also by Mmp9/Notch signaling. Mmp9-activity is essential to induce the proliferation of MGPCs in the absence of Pten. Lastly, we show that expression of Pten is fine-tuned through Mycb/histone deacetylase1 and Tgf-β signaling. The present study emphasizes on the stringent regulation of Pten and its crucial involvement during the zebrafish retina regeneration.
Collapse
Affiliation(s)
- Shivangi Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Mansi Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Sharanya Premraj
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Simran Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Vijithkumar Vijayan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Manas Geeta Arun
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
17
|
Bendavid G, Hubeau C, Perin F, Gillard A, Nokin MJ, Carnet O, Gerard C, Noel A, Lefebvre P, Rocks N, Cataldo D. Role for the metalloproteinase ADAM28 in the control of airway inflammation, remodelling and responsiveness in asthma. Front Immunol 2023; 13:1067779. [PMID: 36685493 PMCID: PMC9851272 DOI: 10.3389/fimmu.2022.1067779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background Asthma is characterized by morphological modifications of the airways (inflammation and remodelling) and bronchial hyperresponsiveness. Mechanisms linking these two key features of asthma are still poorly understood. ADAM28 (a disintegrin and metalloproteinase 28) might play a role in asthma pathophysiology. ADAM28 exists as membrane-bound and soluble forms and is mainly expressed by lymphocytes and epithelial cells. Methods ADAM28-/- mice and ADAM28+/+ counterparts were sensitized and exposed to ovalbumin (OVA). Airway responsiveness was measured using the flexiVent® system. After sacrifice, bronchoalveolar lavage (BAL) was performed and lungs were collected for analysis of airway inflammation and remodelling. Results The expression of the soluble form of ADAM28 was lower in the lungs of OVA-exposed mice (as compared to PBS-exposed mice) and progressively increased in correlation with the duration of allergen exposure. In lungs of ADAM28-/- mice exposed to allergens, the proportion of Th2 cells among CD 4 + cells and the number of B cells were decreased. Bronchial responsiveness was lower in ADAM28-/- mice exposed to allergens and similar to the responsiveness of sham-challenged mice. Similarly, features of airway remodelling (collagen deposition, smooth muscle hyperplasia, mucous hyperplasia) were significantly less developed in OVA-exposed ADAM28-/- animals in sharp contrasts to ADAM28+/+. In addition, we report the first evidence of ADAM28 RNA expression by lung fibroblasts and we unveil a decreased capacity of lung fibroblasts extracted from OVA-exposed ADAM28-/- mice to proliferate as compared to those extracted from OVA-exposed ADAM28+/+ suggesting a direct contribution of this enzyme to the modulation of airway remodelling. Conclusion These results suggest that ADAM28 might be a key contributor to the pathophysiology of asthma.
Collapse
Affiliation(s)
- Guillaume Bendavid
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium,Department of Otorhinolaryngology Head and Neck Surgery, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium
| | - Céline Hubeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Fabienne Perin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Alison Gillard
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Marie-Julie Nokin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Oriane Carnet
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Catherine Gerard
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Philippe Lefebvre
- Department of Otorhinolaryngology Head and Neck Surgery, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium
| | - Natacha Rocks
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege), Liege, Belgium,Department of respiratory diseases, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium,*Correspondence: Didier Cataldo,
| |
Collapse
|
18
|
Association of Inherited Copy Number Variation in ADAM3A and ADAM5 Pseudogenes with Oropharynx Cancer Risk and Outcome. Genes (Basel) 2022; 13:genes13122408. [PMID: 36553675 PMCID: PMC9778539 DOI: 10.3390/genes13122408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Inherited copy number variations (CNVs) can provide valuable information for cancer susceptibility and prognosis. However, their association with oropharynx squamous cell carcinoma (OPSCC) is still poorly studied. Using microarrays analysis, we identified three inherited CNVs associated with OPSCC risk, of which one was validated in 152 OPSCC patients and 155 controls and related to pseudogene-microRNA-mRNA interaction. Individuals with three or more copies of ADAM3A and ADAM5 pseudogenes (8p11.22 chromosome region) were under 6.49-fold increased risk of OPSCC. ADAM5 shared a highly homologous sequence with the ADAM9 3'-UTR, predicted to be a binding site for miR-122b-5p. Individuals carrying more than three copies of ADAM3A and ADAM5 presented higher ADAM9 expression levels. Moreover, patients with total deletion or one copy of pseudogenes and with higher expression of miR-122b-5p presented worse prognoses. Our data suggest, for the first time, that ADAM3A and ADAM5 pseudogene-inherited CNV could modulate OPSCC occurrence and prognosis, possibly through the interaction of ADAM5 pseudogene transcript, miR-122b-5p, and ADAM9.
Collapse
|
19
|
Gene Expression and Immunochemistry Analysis of ADAMTS-1 and Versican in Ameloblastoma. Int J Dent 2022; 2022:5235376. [PMID: 36338393 PMCID: PMC9629950 DOI: 10.1155/2022/5235376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Ameloblastoma is a benign but locally invasive odontogenic epithelial tumor, associated with a high recurrence rate after treatment. The action of enzymes of the metalloproteinase family is important to the degraded extracellular matrix, contributing to invasion. Thus, this study aimed to investigate the gene and protein expression of ADAMTS-1 and versican in ameloblastoma. Materials and Methods Twenty cases of ameloblastoma (n = 20) and ten dental follicles (DF) (n = 10) were used as a source for immunochemistry and quantitative RT-PCR for determining the protein and mRNA expressions of the concerned genes, respectively. Moreover, western blot and indirect immunofluorescence analysis were performed in AME cells. Results ADAMTS-1 and versican were overexpressed in DF than ameloblastoma by RT-PCR. However, in the immunolocalization analysis, ADAMTS-1 was expressed in ameloblastoma more than in DF and versican immunostaining obtained a similar pattern between ameloblastoma and DF. Indirect immunofluorescence detected the ADAMTS-1 and versican expression in cell lines derived from ameloblastoma. Western blot from cell lysate and conditioned medium detected ADAMTS-1 bands representing full-length and different processed forms. Monensin treatment confined ADAMTS-1 in the cell cytoplasm. Versican fragments also were detected in different compartments, intracellular and conditioned medium, allowing the versican process by ADAMTS-1. Conclusion This study showed a distinct expression of ADAMTS-1 and versican in ameloblastoma and DF, with ADAMTS-1 protein higher expression observed in ameloblastoma and possibly cleaved versican. These findings suggested that ADAMTS-1 may participate in tumor invasion, especially for the degradation of substrates (versican) in the ECM.
Collapse
|
20
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Li F, Cai J, Liu J, Yu SC, Zhang X, Su Y, Gao L. Construction of a solid Cox model for AML patients based on multiomics bioinformatic analysis. Front Oncol 2022; 12:925615. [PMID: 36033493 PMCID: PMC9399435 DOI: 10.3389/fonc.2022.925615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy. The bone marrow (BM) microenvironment in AML plays an important role in leukemogenesis, drug resistance and leukemia relapse. In this study, we aimed to identify reliable immune-related biomarkers for AML prognosis by multiomics analysis. We obtained expression profiles from The Cancer Genome Atlas (TCGA) database and constructed a LASSO-Cox regression model to predict the prognosis of AML using multiomics bioinformatic analysis data. This was followed by independent validation of the model in the GSE106291 (n=251) data set and mutated genes in clinical samples for predicting overall survival (OS). Molecular docking was performed to predict the most optimal ligands to the genes in prognostic model. The single-cell RNA sequence dataset GSE116256 was used to clarify the expression of the hub genes in different immune cell types. According to their significant differences in immune gene signatures and survival trends, we concluded that the immune infiltration-lacking subtype (IL type) is associated with better prognosis than the immune infiltration-rich subtype (IR type). Using the LASSO model, we built a classifier based on 5 hub genes to predict the prognosis of AML (risk score = -0.086×ADAMTS3 + 0.180×CD52 + 0.472×CLCN5 - 0.356×HAL + 0.368×ICAM3). In summary, we constructed a prognostic model of AML using integrated multiomics bioinformatic analysis that could serve as a therapeutic classifier.
Collapse
Affiliation(s)
- Fu Li
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiao Cai
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, China
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jia Liu
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shi-cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Su
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, China
- *Correspondence: Lei Gao, ; Yi Su,
| | - Lei Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lei Gao, ; Yi Su,
| |
Collapse
|
22
|
Helicobacter pylori Infection Mediates Inflammation and Tumorigenesis-Associated Genes Through miR-155-5p: An Integrative Omics and Bioinformatics-Based Investigation. Curr Microbiol 2022; 79:192. [PMID: 35551487 DOI: 10.1007/s00284-022-02880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori (H. pylori) is a major human pathogenic bacterium that survives in the gastric mucosa. The aim of this study is to evaluate the expression of the target gene network of miR-155-5p in H. pylori-related gastritis using a combination of public gene expression datasets and web-based platforms. To evaluate the expression of genes related to gastritis, we used two datasets from Gene Expression Omnibus (GEO) database. Then, we determined the overlaps between the predicted miR-155-5p target genes and gastritis-dysregulated GEO datasets genes; in the next step, we identified the possible miR-155-5p target-DEGs (Target-Differentially Expressed Genes). Also, we performed multiple bioinformatics analyses to identify the most important targets and downstream pathways associated with this miRNA. Using the UCSC cancer genomic browser analysis tool, we investigated the expression of hub genes in relation to gastric cancer and H. pylori infection, as well as the potential role of hub genes in gastritis, inflammation, and cancer. In this regard, 28 differentially expressed target genes of miR-155-5p were identified. Most of the captured target genes were correlated with the host immune response and inflammation. Based on the specific patterns of expression in gastritis and cancer, CD9, MST1R, and ADAM10 were candidates for the most probable targets of miR-155-5p. Although the focus of this study is primarily on bioinformatics, we think that our findings should be experimentally validated before they can be used as potential therapeutic and diagnostic tools.
Collapse
|
23
|
Chen Y, Ji H, Liu S, Xing Q, Zhu B, Wang Y. Survival Prognosis, Tumor Immune Landscape, and Immune Responses of ADAMTS14 in Clear Cell Renal Cell Carcinoma and Its Potential Mechanisms. Front Immunol 2022; 13:790608. [PMID: 35572505 PMCID: PMC9099013 DOI: 10.3389/fimmu.2022.790608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background ADAMTS14 played a crucial role in the formation and development of various cancers. Currently, no associations had been revealed between ADAMTS14 and clear cell renal cell carcinoma (ccRCC). Hence, this study was designed to assess the prognostic values and immunological roles of ADAMTS14 in ccRCC and to reveal its potential mechanisms. Methods ADAMTS14-related expression profiles and related clinical data were downloaded from The Cancer Genome Atlas (TCGA) dataset, validated by the ICGC dataset, qRT-PCR, and immunohistochemistry. We utilized gene set enrichment analysis (GSEA) to find potentially ADAMTS14-related pathways and applied univariate/multivariate Cox regression analyses to identify independent factors significantly related to overall survival (OS) for ccRCC. A nomogram consisted of independent prognostic factors was also conducted. We further explored the associations between ADAMTS14 with immunity and revealed its potential mechanisms. Results ADAMTS14 displayed a higher expression in ccRCC tumor than in adjacent normal tissues, and further validated results of the ICGC dataset; qRT-PCR and immunohistochemistry remained consistent (all p < 0.05). Moreover, elevated ADAMTS14 expression was significantly associated with poor OS (p < 0.001). Through univariate/multivariate Cox regression analyses, ADAMTS14 was found to be an independent prognostic factor for ccRCC (both p < 0.05) and GSEA identified several signaling pathways including INSULIN, MTOR, and PPAR pathways. The nomogram based on independent prognostic factors was successfully established and well evaluated. Moreover, the expression of ADAMTS14 was remarkably associated with immune checkpoint molecules, tumor mutational burden (TMB), immune cells, and tumor immune microenvironment (all p < 0.05). Results from TIDE and TCIA showed that highly expressed ADAMTS14 could predict worse efficacy of immunotherapy (all p < 0.05). As for its potential mechanisms, we also revealed several LncRNA/RNA binding protein (RBP)/ADAMTS14 mRNA networks. Conclusions ADAMTS14 was found to play oncogenic roles in ccRCC and to be significantly associated with immunity. Several LncRNA/RBP/ADAMTS14 mRNA networks were also identified for its potential mechanisms.
Collapse
Affiliation(s)
- Yinhao Chen
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Ji
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Shouyong Liu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Wang, ; Bingye Zhu, ; Qianwei Xing,
| | - Bingye Zhu
- Department of Urology, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
- *Correspondence: Yi Wang, ; Bingye Zhu, ; Qianwei Xing,
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Wang, ; Bingye Zhu, ; Qianwei Xing,
| |
Collapse
|
24
|
Pece R, Tavella S, Costa D, Varesano S, Camodeca C, Cuffaro D, Nuti E, Rossello A, Alfano M, D'Arrigo C, Galante D, Ravetti JL, Gobbi M, Tosetti F, Poggi A, Zocchi MR. Inhibitors of ADAM10 reduce Hodgkin lymphoma cell growth in 3D microenvironments and enhance brentuximab-vedotin effect. Haematologica 2022; 107:909-920. [PMID: 34109776 PMCID: PMC8968898 DOI: 10.3324/haematol.2021.278469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Shedding of ADAM10 substrates, like TNFa or CD30, can affect both anti-tumor immune response and antibody-drug-conjugate (ADC)-based immunotherapy. We have published two new ADAM10 inhibitors, LT4 and MN8 able to prevent such shedding in Hodgkin lymphoma (HL). Since tumor tissue architecture deeply influences the outcome of anti-cancer treatments, we set up a new threedimensional (3D) culture systems to verify whether ADAM10 inhibitors can contribute to, or enhance, the anti-lymphoma effects of the ADC brentuximab-vedotin (BtxVed). In order to recapitulate some aspects of lymphoma structure and architecture, we assembled two 3D culture models: mixed spheroids made of HL lymph node (LN) mesenchymal stromal cells (MSC) and Reed Sternberg/Hodgkin lymphoma cells (HL cells) or collagen scaffolds repopulated with LN-MSC and HL cells. In these 3D systems we found that: i) the ADAM10 inhibitors LT4 and MN8 reduce ATP content or glucose consumption, related to cell proliferation, increasing lactate dehydrogenase release as a cell damage hallmark; ii) these events are paralleled by mixed spheroids size reduction and inhibition of CD30 and TNFa shedding; iii) the effects observed can be reproduced in repopulated HL LN-derived matrix or collagen scaffolds; iv) ADAM10 inhibitors enhance the anti-lymphoma effect of the anti-CD30 ADC BtxVed both in conventional cultures and in repopulated scaffolds. Thus, we provide evidence for a direct and combined antilymphoma effect of ADAM10 inhibitors with BtxVed, leading to the improvement of ADC effects; this is documented in 3D models recapitulating features of the LN microenvironment, that can be proposed as a reliable tool for anti-lymphoma drug testing.
Collapse
Affiliation(s)
- Roberta Pece
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino and Department of Experimental Medicine, University of Genoa
| | - Sara Tavella
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino and Department of Experimental Medicine, University of Genoa
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | | | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa
| | | | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele
| | | | | | | | - Marco Gobbi
- Clinical Oncohematology, University of Genoa
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute.
| |
Collapse
|
25
|
Zha Y, Li Y, Ge Z, Wang J, Jiao Y, Zhang J, Zhang S. ADAMTS8 Promotes Cardiac Fibrosis Partly Through Activating EGFR Dependent Pathway. Front Cardiovasc Med 2022; 9:797137. [PMID: 35224040 PMCID: PMC8866452 DOI: 10.3389/fcvm.2022.797137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction or pressure overload leads to cardiac fibrosis, the leading cause of heart failure. ADAMTS8 (A disintegrin and metalloproteinase with thrombospondin motifs 8) has been reported to be involved in many fibrosis-related diseases. However, the specific role of ADAMTS8 in cardiac fibrosis caused by myocardial infarction or pressure overload is yet unclear. The present study aimed to explore the function of ADAMTS8 in cardiac fibrosis and its underlying mechanism. ADAMTS8 expression was significantly increased in patients with dilated cardiomyopathy; its expression myocardial infarction and TAC rat models was also increased, accompanied by increased expression of α-SMA and Collagen1. Adenovirus-mediated overexpression of ADAMTS8 through cardiac in situ injection aggravated cardiac fibrosis and impaired cardiac function in the myocardial infarction rat model. Furthermore, in vitro studies revealed that ADAMTS8 promoted the activation of cardiac fibroblasts; ADAMTS8 acted as a paracrine mediator allowing for cardiomyocytes and fibroblasts to communicate indirectly. Our findings showed that ADAMTS8 could damage the mitochondrial function of cardiac fibroblasts and then activate the PI3K-Akt pathway and MAPK pathways, promoting up-regulation of YAP expression, with EGFR upstream of this pathway. This study systematically revealed the pro-fibrosis effect of ADAMTS8 in cardiac fibrosis and explored its potential role as a therapeutic target for the treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Yafang Zha
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyan Li
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuheng Jiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayan Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Song Zhang
| |
Collapse
|
26
|
Dynein Heavy Chain 64C Differentially Regulates Cell Survival and Proliferation of Wingless-Producing Cells in Drosophila melanogaster. J Dev Biol 2021; 9:jdb9040043. [PMID: 34698231 PMCID: PMC8544498 DOI: 10.3390/jdb9040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Dynein is a multi-subunit motor protein that moves toward the minus-end of microtubules, and plays important roles in fly development. We identified Dhc64Cm115, a new mutant allele of the fly Dynein heavy chain 64C (Dhc64C) gene whose heterozygotes survive against lethality induced by overexpression of Sol narae (Sona). Sona is a secreted metalloprotease that positively regulates Wingless (Wg) signaling, and promotes cell survival and proliferation. Knockdown of Dhc64C in fly wings induced extensive cell death accompanied by widespread and disorganized expression of Wg. The disrupted pattern of the Wg protein was due to cell death of the Wg-producing cells at the DV midline and overproliferation of the Wg-producing cells at the hinge in disorganized ways. Coexpression of Dhc64C RNAi and p35 resulted in no cell death and normal pattern of Wg, demonstrating that cell death is responsible for all phenotypes induced by Dhc64C RNAi expression. The effect of Dhc64C on Wg-producing cells was unique among components of Dynein and other microtubule motors. We propose that Dhc64C differentially regulates survival of Wg-producing cells, which is essential for maintaining normal expression pattern of Wg for wing development.
Collapse
|
27
|
Liu J, Wang W, Chen L, Li Y, Zhao S, Liang Y. MicroRNA-33b replacement effect on growth and migration inhibition in ovarian cancer cells. Chem Biol Drug Des 2021; 101:1019-1026. [PMID: 34590776 DOI: 10.1111/cbdd.13964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Ovarian cancer is a devastating gynecological disease which is considered the major cause of cancer fatality around the world. The down-regulation of microRNA-33b (miR-33b) was reported in some malignancies. Hence, we transfected the miR-33b mimic into SKOV3 cells and evaluated the impacts of this interference on the growth and migration repression of these tumor cells as well as on targeted genes expression. METHODS In our study, transfecting the miR-33b mimic and inhibitor, negative control (NC), and NC inhibitor were established using Lipofectamine 2000. The cytotoxic effects of miR-33b were evaluated by MTT. To assess the miR-33b effects on cell migration, a scratching test was applied. The expression levels of miR-33b, ADAMTS, C-Myc, MMP9, K-Ras, and CXCR4 were evaluated using qRT-PCR. RESULTS These findings indicate that transfection of miR-143 mimic had no marked effects on the SKOV3 cell line. As expected, miR-33b relative expression levels were as follows: miR-33b mimic >NC and NC inhibitor >miR-33b inhibitor (p < 0.01). Moreover, transfected miR-33b mimic could suppress SKOV3 cells' proliferation, whereas transfected miR-33b inhibitor could promote cell proliferation (p < 0.01). MiR-33b overexpression significantly down-regulated the MMP9, CXCR-4, c-Myc, ADAMTS, and K-Ras mRNA levels (p < 0.05). CONCLUSION As expected, these results confirm the tumor-suppressive effect of miR-33b in the SKOV3 ovarian cancer cell line by reducing cell survival, proliferation, and migration.
Collapse
Affiliation(s)
- Jin Liu
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Weiming Wang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Limin Chen
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yachai Li
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Shuimiao Zhao
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yijuan Liang
- Department of Gynecology, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
28
|
Carron J, Della Coletta R, Lourenço GJ. Pseudogene Transcripts in Head and Neck Cancer: Literature Review and In Silico Analysis. Genes (Basel) 2021; 12:genes12081254. [PMID: 34440428 PMCID: PMC8391979 DOI: 10.3390/genes12081254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Once considered nonfunctional, pseudogene transcripts are now known to provide valuable information for cancer susceptibility, including head and neck cancer (HNC), a serious health problem worldwide, with about 50% unimproved overall survival over the last decades. The present review focuses on the role of pseudogene transcripts involved in HNC risk and prognosis. We combined current literature and in silico analyses from The Cancer Genome Atlas (TCGA) database to identify the most deregulated pseudogene transcripts in HNC and their genetic variations. We then built a co-expression network and performed gene ontology enrichment analysis to better understand the pseudogenes’ interactions and pathways in HNC. In the literature, few pseudogenes have been studied in HNC. Our in silico analysis identified 370 pseudogene transcripts associated with HNC, where SPATA31D5P, HERC2P3, SPATA31C2, MAGEB6P1, SLC25A51P1, BAGE2, DNM1P47, SPATA31C1, ZNF733P and OR2W5 were found to be the most deregulated and presented several genetic alterations. NBPF25P, HSP90AB2P, ZNF658B and DPY19L2P3 pseudogenes were predicted to interact with 12 genes known to participate in HNC, DNM1P47 was predicted to interact with the TP53 gene, and HLA-H pseudogene was predicted to interact with HLA-A and HLA-B genes. The identified pseudogenes were associated with cancer biology pathways involving cell communication, response to stress, cell death, regulation of the immune system, regulation of gene expression, and Wnt signaling. Finally, we assessed the prognostic values of the pseudogenes with the Kaplan–Meier Plotter database, and found that expression of SPATA31D5P, SPATA31C2, BAGE2, SPATA31C1, ZNF733P and OR2W5 pseudogenes were associated with patients’ survival. Due to pseudogene transcripts’ potential for cancer diagnosis, progression, and as therapeutic targets, our study can guide new research to HNC understanding and development of new target therapies.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, São Paulo, Brazil;
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, São Paulo, Brazil;
- Correspondence: ; Tel.: +55-19-3521-9120
| |
Collapse
|
29
|
Savchenko RR, Murashkina AA, Fishman VS, Sukhikh ES, Vertinsky AV, Sukhikh LG, Serov OL, Lebedev IN, Vasilyev SA. Effect of ADAMTS1 Differential Expression on the Radiation-Induced Response of HеLа Cell Line. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Loss of ADAMTS15 Promotes Browning in 3T3-L1 White Adipocytes via Activation of β3-adrenergic Receptor. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0036-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Identified a disintegrin and metalloproteinase with thrombospondin motifs 6 serve as a novel gastric cancer prognostic biomarker by bioinformatics analysis. Biosci Rep 2021; 41:228334. [PMID: 33851708 PMCID: PMC8065180 DOI: 10.1042/bsr20204359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Objective: We aimed to explore the prognostic value of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) genes in gastric cancer (GC). Methods: The RNA-sequencing (RNA-seq) expression data for 351 GC patients and other relevant clinical data were acquired from The Cancer Genome Atlas (TCGA). Survival analysis and a genome-wide gene set enrichment analysis (GSEA) were performed to define the underlying molecular value of the ADAMTS genes in GC development. Besides, qRT-PCR and immunohistochemistry were all employed to validate the relationship between the expression of these genes and GC patient prognosis. Results: The Log rank test with both Cox regression and Kaplan–Meier survival analyses showed that ADAMTS6 expression profile correlated with the GC patients clinical outcome. Patients with a high expression of ADAMTS6 were associated with poor overall survival (OS). Comprehensive survival analysis of the ADAMTS genes suggests that ADAMTS6 might be an independent predictive factor for the OS in patients with GC. Besides, GSEA demonstrated that ADAMTS6 might be involved in multiple biological processes and pathways, such as the vascular endothelial growth factor A (VEGFA), kirsten rat sarcoma viral oncogene (KRAS), tumor protein P53, c-Jun N-terminal kinase (JNK), cadherin (CDH1) or tumor necrosis factor (TNF) pathways. It was also confirmed by immunohistochemistry and qRT-PCR that ADAMTS6 is highly expressed in GC, which may be related to the prognosis of GC patients. Conclusion: In summary, our study demonstrated that ADAMTS6 gene could be used as a potential molecular marker for GC prognosis.
Collapse
|
32
|
Quesnel A, Karagiannis GS, Filippou PS. Extracellular proteolysis in glioblastoma progression and therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188428. [PMID: 32956761 DOI: 10.1016/j.bbcan.2020.188428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Gliomas encompass highly invasive primary central nervous system (CNS) tumours of glial cell origin with an often-poor clinical prognosis. Of all gliomas, glioblastoma is the most aggressive form of primary brain cancer. Current treatments in glioblastoma are insufficient due to the invasive nature of brain tumour cells, which typically results in local tumour recurrence following treatment. The latter represents the most important cause of mortality in glioblastoma and underscores the necessity for an in-depth understanding of the underlying mechanisms. Interestingly, increased synthesis and secretion of several proteolytic enzymes within the tumour microenvironment, such as matrix metalloproteinases, lysosomal proteases, cathepsins and kallikreins for extracellular-matrix component degradation may play a major role in the aforementioned glioblastoma invasion mechanisms. These proteolytic networks are key players in establishing and maintaining a tumour microenvironment that promotes tumour cell survival, proliferation, and migration. Indeed, the targeted inhibition of these proteolytic enzymes has been a promisingly useful therapeutic strategy for glioblastoma management in both preclinical and clinical development. We hereby summarize current advances on the biology of the glioblastoma tumour microenvironment, with a particular emphasis on the role of proteolytic enzyme families in glioblastoma invasion and progression, as well as on their subsequent prognostic value as biomarkers and their therapeutic targeting in the era of precision medicine.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, United Kingdom.
| |
Collapse
|
33
|
Abstract
The ADAMs family belongs to the transmembrane protein superfamily of zinc-dependent metalloproteases, which consists of multiple domains. These domains have independent but complementary functions that enable them to participate in multiple biological processes. Among them, ADAM9 can not only participate in the degradation of extracellular matrix as a metalloprotease, but also mediate tumor cell adhesion through its deintegrin domain, which is closely related to tumor invasion and metastasis. It is widely expressed in a variety of tumor cells and can affect the proliferation, invasion and metastasis of related cancer cells. We provide our views on current progress, its increasing importance as a strategic treatment goal, and our vision for the future of ADAM9.
Collapse
Affiliation(s)
- M A Haoyuan
- Department of Clinical Medicine, China Medical University , Liaoning, Shenyang, China
| | - L I Yanshu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Liaoning, Shenyang, China
| |
Collapse
|
34
|
Hubeau C, Rocks N, Cataldo D. ADAM28: Another ambivalent protease in cancer. Cancer Lett 2020; 494:18-26. [PMID: 32861707 DOI: 10.1016/j.canlet.2020.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 01/10/2023]
Abstract
Emergence of novel therapeutic options in a perspective of personalized therapy of cancer relies on the discovery of precise molecular mechanisms involved in the switch from a localized tumor to invasive metastasis spread. Pro-tumor functions have been mostly ascribed to proteolytic enzymes from the metalloproteinase family including A Disintegrin And Metalloproteinases (ADAMs). Particularly, when expressed by cancer cells, ADAM28 protease supports cancer cell proliferation, survival and migration as well as metastatic progression. In sharp contrast, ADAM28 derived from the tumor microenvironment has shown to exert strong protective effects against deleterious metastasis dissemination. Indeed, depletion of host-derived ADAM28 (ADAM28 KO mice) accelerates colonization lung tissues, increases tumor foci implantation, and impairs T cell immune response. In this review, we outline specific ADAM28 functions when specifically expressed by carcinoma cells or by tumor microenvironment. Finally, we discuss about future research strategies that could be pursued to highlight new functions of this protease in cancer.
Collapse
Affiliation(s)
- Céline Hubeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Natacha Rocks
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium; Department of Respiratory Diseases, CHU of Liège, University of Liège, Liège, Belgium.
| |
Collapse
|
35
|
Zhang L, Li X, Kong X, Jin H, Han Y, Xie Y. Effects of the NF‑κB/p53 signaling pathway on intervertebral disc nucleus pulposus degeneration. Mol Med Rep 2020; 22:1821-1830. [PMID: 32705171 PMCID: PMC7411364 DOI: 10.3892/mmr.2020.11288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of intervertebral disc degeneration (IDD) is increasing, especially among elderly individuals. The present study aimed to investigate the effects of the NF-κB/p53 signaling pathway on IDD and its regulatory effect on associated cytokines. In the present study, human nucleus pulposus cells were isolated from patients with thoracic-lumbar fractures and patients with IDD to observe cellular morphology and detect phosphorylated (p)-p65/p53 expression levels. The locality and expression levels of p65 in interleukin (IL)-1β-stimulated nucleus pulposus cells, with or without the addition of ammonium pyrrolidinedithiocarbamate (PDTC; a NF-κB signaling pathway-specific blocker), were measured. Furthermore, the effects of IL-1β stimulation on the protein and gene expression levels of IDD-related cytokines were determined following p53 knockdown and inhibition of the NF-κB signaling pathway. The results suggested that p-p65 and p53 expression was significantly increased in IDD cells compared with normal nucleus pulposus cells. Moreover, nucleus pulposus cells isolated from patients with IDD contained less cytoplasm compared with normal nucleus pulposus cells, and p65 expression levels were higher in the cytoplasm than the nucleus of IL-1β-stimulated PDTC-treated healthy nucleus pulposus cells. Moreover, the p53 expression levels were significantly decreased following transfection with sip53. PDTC treatment and p53 knockdown significantly decreased matrix metallopeptidase (MMP)-3, MMP-13, metallopeptidases with thrombospondin type 1 motif (ADAMTS)-4 and ADAMTS-5 expression levels, and increased aggrecan and collagen type II expression levels in IL-1β-stimulated cells. The present study indicated that activation of the NF-κB/p53 signaling pathway might be related to the occurrence of IDD; therefore, the NF-κB/p53 signaling pathway may serve as a therapeutic target for IDD.
Collapse
Affiliation(s)
- Litao Zhang
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xiujuan Li
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xue Kong
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Hua Jin
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yaoqi Han
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yuanzhong Xie
- Department of Radiology, Taian Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
36
|
Saha SK, Choi HY, Yang GM, Biswas PK, Kim K, Kang GH, Gil M, Cho SG. GPR50 Promotes Hepatocellular Carcinoma Progression via the Notch Signaling Pathway through Direct Interaction with ADAM17. Mol Ther Oncolytics 2020; 17:332-349. [PMID: 32405532 PMCID: PMC7210388 DOI: 10.1016/j.omto.2020.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and it is thus critical to identify novel molecular biomarkers of HCC prognosis and elucidate the molecular mechanisms underlying HCC progression. Here, we show that G-protein-coupled receptor 50 (GPR50) in HCC is overexpressed and that GPR50 knockdown may downregulate cancer cell progression through attenuation of the Notch signaling pathway. GPR50 knockdown was found to reduce HCC progression by inactivating Notch signaling in a ligand-independent manner through a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), a proteolytic enzyme that cleaves the Notch receptor, which was corroborated by GPR50 overexpression in hepatocytes. GPR50 silencing also downregulated transcription and translation of ADAM17 through the AKT/specificity protein-1 (SP1) signaling axis. Notably, GPR50 was found to directly interact with ADAM17. Overall, we demonstrate a novel GPR50-mediated regulation of the ADAM17-Notch signaling pathway, which can provide insights into HCC progression and prognosis and development of Notch-based HCC treatment strategies.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
37
|
Wang T, Lv X, Jiang S, Han S, Wang Y. Expression of ADAM29 and FAM135B in the pathological evolution from normal esophageal epithelium to esophageal cancer: Their differences and clinical significance. Oncol Lett 2020; 19:1727-1734. [PMID: 32194665 PMCID: PMC7039107 DOI: 10.3892/ol.2020.11272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 11/17/2019] [Indexed: 12/24/2022] Open
Abstract
A Disintegrin And Metalloprotease Domain 29 (ADAM29) and Family with sequence similarity 135 member B (FAM135B) genes have been reported to be associated with a carcinogenic risk of esophageal squamous cell carcinoma (ESCC). However, to the best of our knowledge, the expression of ADAM29 and FAM135B in the pathological evolution from normal esophageal epithelial cells to ESCC has not yet been investigated. The present study aimed to investigate the expression of ADAM29 and FAM135B in normal esophageal mucosal epithelium, low-grade and high-grade esophageal intraepithelial neoplasia, and ESCC. Furthermore, the present study aimed to investigate the role of ADAM29 and FAM135B in the development of esophageal lesions. Immunohistochemistry was performed in order to detect the expression levels of ADAM29 and FAM135B proteins in normal esophageal mucosa samples (40 cases), low-grade intraepithelial neoplasia samples (20 cases), high-grade intraepithelial neoplasia samples (20 cases) and ESCC samples (40 cases). The results of the present study demonstrated that the positive rates of ADAM29 and FAM135B proteins increased gradually from normal esophageal mucosal epithelium and esophageal intraepithelial neoplasia, to ESCC (P<0.05). Furthermore, the expression levels of ADAM29 and FAM135B proteins in ESCC were not associated with age and the tumor size (P>0.05); however, the protein levels were associated with the pathological stage, clinical stage and lymph node metastasis of ESCC (P<0.05). In addition, there was a significant association between the expression levels of ADAM29 protein and FAM135B protein (χ2=60.071; P<0.001). The results of the present study demonstrated that the expression levels of ADAM29 and FAM135B were associated with the tumor behavior characteristics and the progression of esophageal cancer, the expression of which could be used for the diagnosis of early esophageal cancer, and provide the basis for guiding individualized treatment.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| | - Xiaoyan Lv
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| | - Shen Jiang
- Department of Emergency Internal Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 201203, P.R. China
| | - Shaorong Han
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| | - Yanming Wang
- Department of Radiation Oncology, PLA 960th Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
38
|
Agioutantis PC, Kotsikoris V, Kolisis FN, Loutrari H. RNA-seq data analysis of stimulated hepatocellular carcinoma cells treated with epigallocatechin gallate and fisetin reveals target genes and action mechanisms. Comput Struct Biotechnol J 2020; 18:686-695. [PMID: 32257052 PMCID: PMC7113608 DOI: 10.1016/j.csbj.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an essentially incurable inflammation-related cancer. We have previously shown by network analysis of proteomic data that the flavonoids epigallocatechin gallate (EGCG) and fisetin (FIS) efficiently downregulated pro-tumor cytokines released by HCC through inhibition of Akt/mTOR/RPS6 phospho-signaling. However, their mode of action at the global transcriptome level remains unclear. Herein, we endeavor to compare gene expression alterations mediated by these compounds through a comprehensive transcriptome analysis based on RNA-seq in HEP3B, a responsive HCC cell line, upon perturbation with a mixture of prototypical stimuli mimicking conditions of tumor microenvironment or under constitutive state. Analysis of RNA-seq data revealed extended changes on HEP3B transcriptome imposed by test nutraceuticals. Under stimulated conditions, EGCG and FIS significantly modified, compared to the corresponding control, the expression of 922 and 973 genes, respectively, the large majority of which (695 genes), was affected by both compounds. Hierarchical clustering based on the expression data of shared genes demonstrated an almost identical profile in nutraceutical-treated stimulated cells which was virtually opposite in cells exposed to stimuli alone. Downstream enrichment analyses of the co-modified genes uncovered significant associations with cancer-related transcription factors as well as terms of Gene Ontology/Reactome Pathways and highlighted ECM dynamics as a nodal modulation point by nutraceuticals along with angiogenesis, inflammation, cell motility and growth. RNA-seq data for selected genes were independently confirmed by RT-qPCR. Overall, the present systems approach provides novel evidence stepping up the mechanistic understanding of test nutraceuticals, thus rationalizing their clinical exploitation in new preventive/therapeutic modalities against HCC.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinase with thrombospondin motifs
- ADAMTS9, ADAM metallopeptidase with thrombospondin type 1 motif 9
- CLIC3, Chloride Intracellular Channel 3
- CTGF, Connective Tissue Growth Factor
- DEGs, differentially expressed genes
- DMSO, dimethyl sulfoxide
- ECM, extracellular matrix
- EGCG, epigallocatechin gallate
- EMT, epithelial to mesenchymal transition
- Epigallocatechin gallate
- FIS, fisetin
- Fisetin
- GO, Gene Ontology
- Gene Ontology
- HCC, hepatocellular carcinoma
- HSPA2, Heat Shock Protein Family A (Hsp70) Member 2
- HSPB1, Heat Shock Protein Family B (Small) Member 1
- Hepatocellular carcinoma
- MEM, minimum essential medium
- MMP11, Matrix Metallopeptidase 11
- MMP9, Matrix Metallopeptidase 9
- MMPs, matrix metalloproteinases
- PDGFRB, Platelet Derived Growth Factor Receptor Beta
- RNA-sequencing
- RT-qPCR, reverse transcription-quantitative real time PCR
- Reactome Pathways
- SD, standard deviation
- SEM, standard error of mean
- SERPINE1, Serpin Family E Member 1
- STIM, stimulated
- TF, transcription factor
- Transcription factors
Collapse
Affiliation(s)
- Panagiotis C Agioutantis
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., Athens 10675, Greece.,Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Vasilios Kotsikoris
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., Athens 10675, Greece
| | - Fragiskos N Kolisis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens 15780, Greece
| | - Heleni Loutrari
- G.P. Livanos and M. Simou Laboratories, 1st Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, Medical School, National Kapodistrian University of Athens, 3 Ploutarchou Str., Athens 10675, Greece
| |
Collapse
|
39
|
Li C, Luo X, Huang B, Wang X, Deng Y, Zhong Z. ADAMTS12 acts as a cancer promoter in colorectal cancer via activating the Wnt/β-catenin signaling pathway in vitro. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:301. [PMID: 32355745 PMCID: PMC7186627 DOI: 10.21037/atm.2020.02.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND ADAMTS12, a member of the ADAMTS family, is reported to be associated with the clinic outcome of colorectal cancer (CRC) patients. However, the functions and precise mechanism in CRC progression have yet to be fully understood. METHODS By analyzing The Cancer Genome Atlas (TCGA) database, we examined the mRNA level of ADAMTS12 and assessed the prognostic value of ADAMTS12 in CRC patients using a tissue microarray containing 41 CRC patient samples. Cell Counting Kit-8 (CCK-8), colony formation, and transwell assays were used to quantify the impact of ADAMTS12 on cell proliferation and migration in ADAMTS12-overexpressing and ADAMTS12-deficient cell lines. The signaling pathways that ADAMTS12 mediated were identified by dual-luciferase reporter assays, and confirmed by western blotting and quantitative teal-time polymerase chain reaction (qRT-PCR). RESULTS The ADAMTS12 mRNA level was upregulated in CRC tissues, and CRC patients with a high level of ADAMTS12 showed worse prognosis when compared with the patients with a low level of ADAMTS12. In vitro functional assays demonstrated that overexpression of ADAMTS12 significantly boosted cell proliferation and migration while ADAMTS12 deficiency remarkably impaired both tumor cell behaviors. Mechanical studies further verified that ADAMTS12 overexpression enhanced the transcriptional activity of β-catenin in the Wnt/β-catenin signaling pathway. In the ADAMTS12-deficient context, the downstream gene expression of myc and cyclin D1 was significantly reduced compared with that in wild-type cancer cells. CONCLUSIONS ADAMTS12 fulfills the tumor-promotor role by activating Wnt/β-catenin signaling pathway in colon cells and may represent a new option in CRC target treatment.
Collapse
Affiliation(s)
- Chunxue Li
- Department of General Surgery, Gastric and Colorectal Surgery Division, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuelian Luo
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bin Huang
- Department of General Surgery, Gastric and Colorectal Surgery Division, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiangfeng Wang
- Department of General Surgery, Gastric and Colorectal Surgery Division, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Deng
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
40
|
Lin YM, Lin CW, Lu JW, Yeh KT, Lin SH, Yang SF. Decreased Cytoplasmic Expression of ADAMTS14 Is Correlated with Reduced Survival Rates in Oral Squamous Cell Carcinoma Patients. Diagnostics (Basel) 2020; 10:diagnostics10020122. [PMID: 32102222 PMCID: PMC7168220 DOI: 10.3390/diagnostics10020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin motif 14 (ADAMTS14) is a member of the zinc-dependent protease family that is implicated in the occurrence and progression of tumors. Oral cancer (OC) is a common cancer worldwide, but it is particularly prevalent in Taiwan. However, whether the expression of ADAMTS14 is correlated with the carcinogenesis and progression of oral squamous cell carcinoma (OSCC) has not yet been investigated. In this study, we used immunohistochemistry (IHC) to examine 250 OSCC specimens in order to identify correlations between the cytoplasmic expression of ADAMTS14 and (1) clinicopathological features of OSCC as well as (2) clinical outcomes of OSCC. Our results indicate that cytoplasmic expression of ADAMTS14 was lower in OSCC tissues than in normal tissues. In analyzing correlations between ADAMTS14 expression and clinicopathological features, we found that negative cytoplasmic expression of ADAMTS14 was significantly associated with higher frequencies of lymph node metastasis and more advanced AJCC stages (III/IV). Kaplan-Meier survival analysis revealed that negative cytoplasmic expression of ADAMTS14 was also associated with significantly worse OSCC survival. Univariate and multivariate analyses confirmed that cytoplasmic expression of ADAMTS14 was associated with lymph node metastasis, tumor stage, and tumor grade and also indicated that cytoplasmic ADAMTS14 expression may be an independent prognostic factor for OSCC. This is the first study to report that the cytoplasmic expression level of ADAMTS14 is associated with OSCC prognosis and tumor progression. Our data indicate that ADAMTS14 can serve as a prognostic marker and a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan; (Y.-M.L.); (K.-T.Y.)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
- Correspondence: (S.-H.L.); (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-H.L.); (S.-F.Y.)
| |
Collapse
|
41
|
Rossi GR, Trindade ES, Souza-Fonseca-Guimaraes F. Tumor Microenvironment-Associated Extracellular Matrix Components Regulate NK Cell Function. Front Immunol 2020; 11:73. [PMID: 32063906 PMCID: PMC7000552 DOI: 10.3389/fimmu.2020.00073] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment (TME) is composed of multiple infiltrating host cells (e.g., endothelial cells, fibroblasts, lymphocytes, and myeloid cells), extracellular matrix, and various secreted or cell membrane-presented molecules. Group 1 innate lymphoid cells (ILCs), which includes natural killer (NK) cells and ILC1, contribute to protecting the host against cancer and infection. Both subsets are able to quickly produce cytokines such as interferon gamma (IFN-γ), chemokines, and other growth factors in response to activating signals. However, the TME provides many molecules that can prevent the potential effector function of these cells, thereby protecting the tumor. For example, TME-derived tumor growth factor (TGF)-β and associated members of the superfamily downregulate NK cell cytotoxicity, cytokine secretion, metabolism, proliferation, and induce effector NK cells to upregulate ILC1-like characteristics. In concert, a family of carbohydrate-binding proteins called galectins, which can be produced by different cells composing the TME, can downregulate NK cell function. Matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) are also enzymes that can remodel the extracellular matrix and shred receptors from the tumor cell surface, impairing the activation of NK cells and leading to less effective effector functions. Gaining a better understanding of the characteristics of the TME and its associated factors, such as infiltrating cells and extracellular matrix, could lead to tailoring of new personalized immunotherapy approaches. This review provides an overview of our current knowledge on the impact of the TME and extracellular matrix-associated components on differentiation, impairment, and function of NK cells.
Collapse
Affiliation(s)
| | - Edvaldo S Trindade
- Cellular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | |
Collapse
|
42
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
43
|
Omura J, Satoh K, Kikuchi N, Satoh T, Kurosawa R, Nogi M, Ohtsuki T, Al-Mamun ME, Siddique MAH, Yaoita N, Sunamura S, Miyata S, Hoshikawa Y, Okada Y, Shimokawa H. ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure: A Possible Novel Therapeutic Target. Circ Res 2019; 125:884-906. [PMID: 31556812 DOI: 10.1161/circresaha.119.315398] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling with aberrant pulmonary artery smooth muscle cells (PASMCs) proliferation, endothelial dysfunction, and extracellular matrix remodeling. OBJECTIVE Right ventricular (RV) failure is an important prognostic factor in PAH. Thus, we need to elucidate a novel therapeutic target in both PAH and RV failure. METHODS AND RESULTS We performed microarray analysis in PASMCs from patients with PAH (PAH-PASMCs) and controls. We found a ADAMTS8 (disintegrin and metalloproteinase with thrombospondin motifs 8), a secreted protein specifically expressed in the lung and the heart, was upregulated in PAH-PASMCs and the lung in hypoxia-induced pulmonary hypertension (PH) in mice. To elucidate the role of ADAMTS8 in PH, we used vascular smooth muscle cell-specific ADAMTS8-knockout mice (ADAMTSΔSM22). Hypoxia-induced PH was attenuated in ADAMTSΔSM22 mice compared with controls. ADAMTS8 overexpression increased PASMC proliferation with downregulation of AMPK (AMP-activated protein kinase). In contrast, deletion of ADAMTS8 reduced PASMC proliferation with AMPK upregulation. Moreover, deletion of ADAMTS8 reduced mitochondrial fragmentation under hypoxia in vivo and in vitro. Indeed, PASMCs harvested from ADAMTSΔSM22 mice demonstrated that phosphorylated DRP-1 (dynamin-related protein 1) at Ser637 was significantly upregulated with higher expression of profusion genes (Mfn1 and Mfn2) and improved mitochondrial function. Moreover, recombinant ADAMTS8 induced endothelial dysfunction and matrix metalloproteinase activation in an autocrine/paracrine manner. Next, to elucidate the role of ADAMTS8 in RV function, we developed a cardiomyocyte-specific ADAMTS8 knockout mice (ADAMTS8ΔαMHC). ADAMTS8ΔαMHC mice showed ameliorated RV failure in response to chronic hypoxia. In addition, ADAMTS8ΔαMHC mice showed enhanced angiogenesis and reduced RV ischemia and fibrosis. Finally, high-throughput screening revealed that mebendazole, which is used for treatment of parasite infections, reduced ADAMTS8 expression and cell proliferation in PAH-PASMCs and ameliorated PH and RV failure in PH rodent models. CONCLUSIONS These results indicate that ADAMTS8 is a novel therapeutic target in PAH.
Collapse
Affiliation(s)
- Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Masamichi Nogi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Tomohiro Ohtsuki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Md Elias Al-Mamun
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Mohammad Abdul Hai Siddique
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Fujita Health University School of Medicine, Toyoake, Japan (Y.H.)
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan (Y.O.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (J.O., K.S., N.K., T.S., R.K., M.N., T.O., M.E.A.-M., M.A.H.S., N.Y.; S.S., S.M., H.S.)
| |
Collapse
|
44
|
Downregulation of ADAMTS18 May Serve as a Poor Prognostic Biomarker for Cervical Cancer Patients. Appl Immunohistochem Mol Morphol 2019; 26:670-675. [PMID: 28362704 DOI: 10.1097/pai.0000000000000496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ADAMTS18 is a member of ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family proteins which have been found to play important roles in cancer progression and metastasis in different cancer types. The present study aims at evaluating the prognostic significance of ADAMTS18 in cervical cancer. The expression levels of ADAMTS18 was evaluated by real-time PCR in normal (N=28) and cervical cancer tissues from patients at different stages as well as in tumor tissues from 35 cervical cancer patients with primary cancer and 29 patients with metastasis. The correlation between serum ADAMTS18 expression levels and clinicopathologic features or overall survival of cervical cancer patients was analyzed. ADAMTS18 expression levels were significantly decreased in cervical cancer tissues compared with normal tissues and it decreased gradually from early stage to late stage. Low expression of ADAMTS18 was positively associated with high tumor stage (P=0.0239), positive lymph node metastasis (P=0.0388), and distant metastasis (P=0.0004). Tissue levels of ADAMTS18 in patients with primary cancer were significantly lower compared with those with metastasis. Moreover, patients with low ADAMTS18 expression levels had shorter overall survival (P=0.0119) or disease-free survival (P=0.0033). Multivariate analysis demonstrated that ADAMTS18 was an independent prognostic factor for cervical cancer. Our study suggests that ADAMTS18 is downregulated in cervical cancer and ADAMTS18 may serve as a potential prognostic biomarker for cervical cancer.
Collapse
|
45
|
Huang J, Pan Y, Hu G, Sun W, Jiang L, Wang P, Ding X. SRC fine-tunes ADAM10 shedding activity to promote pituitary adenoma cell progression. FEBS J 2019; 287:190-204. [PMID: 31365784 DOI: 10.1111/febs.15026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022]
Abstract
A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a metalloproteinase known to modulate the progression of several types of tumor. However, the role played by ADAM10 in pituitary adenomas is currently unknown, and what factors orchestrate the activation of ADAM10 in this kind of tumor is also unclear. Here, we found that SRC kinase is an ADAM10-interacting partner and that SRC kinase activity is required for this interaction. As a new positive regulator promoting the shedding activity of ADAM10, SRC could compete with calmodulin 1 (CALM1) for ADAM10 binding in a mutually exclusive manner. Strikingly, the interaction between ADAM10 and CALM1 is regulated by SRC activity. Furthermore, we proved that the cytoplasmic region of ADAM10 is required for the shedding activity of ADAM10 upon SRC activation. As a proof-of-concept, we discovered that the combination of ADAM10 and SRC inhibitors can inhibit cell proliferation and migration to a great extent. Thus, our findings shed light on a novel therapeutic strategy to block the tumorigenesis and migration of pituitary adenoma.
Collapse
Affiliation(s)
- Jinxiang Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Pan
- Department of Neurosurgery, No.971 Hospital of People's Liberation Army Navy, Qingdao, Shandong, China
| | - Guohan Hu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Peng Wang
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuehua Ding
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
46
|
Won JH, Kim GW, Kim JY, Cho DG, Kwon B, Bae YK, Cho KO. ADAMTS Sol narae cleaves extracellular Wingless to generate a novel active form that regulates cell proliferation in Drosophila. Cell Death Dis 2019; 10:564. [PMID: 31332194 PMCID: PMC6646336 DOI: 10.1038/s41419-019-1794-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022]
Abstract
Wnt/ Wingless (Wg) is essential for embryonic development and adult homeostasis in all metazoans, but the mechanisms by which secreted Wnt/Wg is processed remain largely unknown. A Drosophila Sol narae (Sona) is a member of ADisintegrin And Metalloprotease with ThromboSpondin motif (ADAMTS) family, and positively regulates Wg signaling by promoting Wg secretion. Here we report that Sona and Wg are secreted by both conventional Golgi and exosomal transports, and Sona cleaves extracellular Wg at the two specific sites, leading to the generation of N-terminal domain (NTD) and C-terminal domain (CTD) fragments. The cleaved forms of extracellular Wg were detected in the extracellular region of fly wing discs, and its level was substantially reduced in sona mutants. Transient overexpression of Wg-CTD increased wing size while prolonged overexpression caused lethality and developmental defects. In contrast, Wg-NTD did not induce any phenotype. Moreover, the wing defects and lethality induced by sona RNAi were considerably rescued by Wg-CTD, indicating that a main function of extracellular Sona is the generation of Wg-CTD. Wg-CTD stabilized cytoplasmic Armadillo (Arm) and had genetic interactions with components of canonical Wg signaling. Wg-CTD also induced Wg downstream targets such as Distal-less (Dll) and Vestigial (Vg). Most importantly, Cyclin D (Cyc D) was induced by Wg-CTD but not by full-length Wg. Because Sona also induces Cyc D in a cell non-autonomous manner, Wg-CTD generated by Sona in the extracellular region activates a subset of Wg signaling whose major function is the regulation of cell proliferation.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Go-Woon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Ja-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Dong-Gyu Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Buki Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajung-ro, Yuseung-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
47
|
Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken) 2019; 303:1557-1572. [PMID: 31168956 DOI: 10.1002/ar.24188] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/27/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It is now widely appreciated that members of the matrix metalloproteinase (MMP) family of enzymes play a key role in cancer development and progression along with many of the hallmarks associated with them. The activity of these enzymes has been directly implicated in extracellular matrix remodeling, the processing of growth factors and receptors, the modulation of cell migration, proliferation, and invasion, the epithelial to mesenchymal transition, the regulation of immune responses, and the control of angiogenesis. Certain MMP family members have been validated as biomarkers of a variety of human cancers including those of the breast, brain, pancreas, prostate, ovary, and others. The related metalloproteinases, the A disintegrin and metalloproteinases (ADAMs), share a number of these functions as well. Here, we explore these essential metalloproteinases and some of their disease-associated activities in detail as well as some of their complementary translational potential. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roopali Roy
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Golnaz Morad
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrej Jedinak
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marsha A Moses
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Badshah II, Brown S, Weibel L, Rose A, Way B, Sebire N, Inman G, Harper J, O'Shaughnessy RFL. Differential expression of secreted factors SOSTDC1 and ADAMTS8 cause profibrotic changes in linear morphoea fibroblasts. Br J Dermatol 2019; 180:1135-1149. [PMID: 30367460 DOI: 10.1111/bjd.17352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linear morphoea (LM) is a rare connective tissue disorder characterized by a line of thickened skin and subcutaneous tissue and can also affect the underlying muscle and bone. Little is known about the disease aetiology, with treatment currently limited to immune suppression, and disease recurrence post-treatment is common. OBJECTIVES In order to uncover new therapeutic avenues, the cell-intrinsic changes in LM fibroblasts compared with site-matched controls were characterized. METHODS We grew fibroblasts from site-matched affected and unaffected regions from five patients with LM, we subjected them to gene expression analysis and investigation of SMAD signalling. RESULTS Fibroblasts from LM lesions showed increased migration, proliferation, altered collagen processing, and abnormally high basal levels of phosphorylated SMAD2, thereby rendering them less responsive to transforming growth factor (TGF)-β1 and reducing the degree of myofibroblast differentiation, which is a key component of the wound-healing and scarring process in normal skin. Conditioned media from normal fibroblasts could reverse LM-affected fibroblast migration and proliferation, suggesting that the LM phenotype is driven by an altered secretome. Gene array analysis and RNA-Seq indicated upregulation of ADAMTS8 and downregulation of FRAS1 and SOSTDC1. SOSTDC1 knock-down recapitulated the reduced TGF-β1 responsiveness and LM fibroblast migration, while overexpression of ADAMTS8 induced myofibroblast markers. CONCLUSIONS We demonstrate that cell-intrinsic changes in the LM fibroblast secretome lead to changes observed in the disease, and that secretome modulation could be a viable therapeutic approach in the treatment of LM.
Collapse
Affiliation(s)
- I I Badshah
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - S Brown
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
- Restoration of Appearance and Function Trust, Leopold Muller Building, Mount Vernon Hospital, Northwood, Middlesex, U.K
| | - L Weibel
- Department of Dermatology, University Hospital, Zurich, Switzerland
| | - A Rose
- Division of Cancer Research, University of Dundee, School of Medicine, Dundee, U.K
| | - B Way
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - N Sebire
- Histopathology, Great Ormond Street Hospital, London, U.K
| | - G Inman
- Division of Cancer Research, University of Dundee, School of Medicine, Dundee, U.K
| | - J Harper
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
| | - R F L O'Shaughnessy
- Immunobiology and Dermatology, UCL Institute of Child Health, London, U.K
- Livingstone Skin Research Centre, UCL Institute of Child Health, London, U.K
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, U.K
| |
Collapse
|
49
|
ADAM10 mediates malignant pleural mesothelioma invasiveness. Oncogene 2019; 38:3521-3534. [PMID: 30651596 PMCID: PMC6756017 DOI: 10.1038/s41388-018-0669-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/28/2018] [Accepted: 12/14/2018] [Indexed: 11/19/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with limited therapeutic options and treatment efficiency. Even if the latency period between asbestos exposure, the main risk factor, and mesothelioma development is very long, the local invasion of mesothelioma is very rapid leading to a mean survival of one year after diagnosis. ADAM10 (A Disintegrin And Metalloprotease) sheddase targets membrane-bound substrates and its overexpression is associated with progression in several cancers. However, nothing is known about ADAM10 implication in MPM. In this study, we demonstrated higher ADAM10 expression levels in human MPM as compared to control pleural samples and in human MPM cell line. This ADAM10 overexpression was also observed in murine MPM samples. Two mouse mesothelioma cell lines were used in this study including one primary cell line obtained by repeated asbestos fibre injections. We show, in vitro, that ADAM10 targeting through shRNA and pharmacological (GI254023X) approaches reduced drastically mesothelioma cell migration and invasion, as well as for human mesothelioma cells treated with siRNA targeting ADAM10. Moreover, ADAM10 downregulation in murine mesothelioma cells significantly impairs MPM progression in vivo after intrapleural cell injection. We also demonstrate that ADAM10 sheddase downregulation decreases the production of a soluble N-cadherin fragment through membrane N-cadherin, which stimulated mesothelioma cell migration. Taken together, we demonstrate that ADAM10 is overexpressed in MPM and takes part to MPM progression through the generation of N-cadherin fragment that stimulates mesothelioma cell migration. ADAM10 inhibition is worth considering as a therapeutic perspective in mesothelioma context.
Collapse
|
50
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|