1
|
Li X, Chen Y, Lan R, Liu P, Xiong K, Teng H, Tao L, Yu S, Han G. Transmembrane mucins in lung adenocarcinoma: understanding of current molecular mechanisms and clinical applications. Cell Death Discov 2025; 11:163. [PMID: 40210618 PMCID: PMC11985918 DOI: 10.1038/s41420-025-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/12/2025] Open
Abstract
The mucin family is a group of highly glycosylated macromolecules widely present in human epithelial cells and with subtypes of secreted and membrane-associated forms. The membrane-associated mucins, known as transmembrane mucins, are not only involved in the formation of mucus barrier but also regulate cell signal transduction in physiological and pathological status. Transmembrane mucins could contribute to lung adenocarcinoma (LUAD) proliferation, apoptosis, angiogenesis, invasion, and metastasis, and remodel the immune microenvironment involved in immune escape. Furthermore, transmembrane mucins have been explored as potential LUAD indicators for diagnosis and prognosis. The development of targeted therapy and immunotherapeutic drugs targeting transmembrane mucins has also provided broad application prospects for clinic. In the following review, we summarize the characteristic structures of diverse transmembrane mucins, regulatory roles in promoting the progression of LUAD, and the current situation of diagnosis, prognosis, and therapeutic strategies based on transmembrane mucins.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Chen
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Lan
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Statistic, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Hetai Teng
- Department of General Surgery, Inner Mongolia Forestry General Hospital, Yakeshi, China
| | - Lili Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, China
| | - Shan Yu
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Mental Hospital, Harbin, China.
| | - Guiping Han
- Department of Pathology, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
Malik S, Sikander M, Wahid M, Dhasmana A, Sarwat M, Khan S, Cobos E, Yallapu MM, Jaggi M, Chauhan SC. Deciphering cellular and molecular mechanism of MUC13 mucin involved in cancer cell plasticity and drug resistance. Cancer Metastasis Rev 2024; 43:981-999. [PMID: 38498072 DOI: 10.1007/s10555-024-10177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.
Collapse
Affiliation(s)
- Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohammed Sikander
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Mohd Wahid
- Unit of Research and Scientific Studies, College of Nursing and Allied Health Sciences, University of Jazan, Jizan, Saudi Arabia
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Noida, India
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Everardo Cobos
- Department of Medicine, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, Biomedical Research Building, University of Texas Rio Grande Valley, 5300 North L Street, McAllen, TX, 78504, USA.
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|
4
|
Dzhalilova D, Silina M, Tsvetkov I, Kosyreva A, Zolotova N, Gantsova E, Kirillov V, Fokichev N, Makarova O. Changes in the Expression of Genes Regulating the Response to Hypoxia, Inflammation, Cell Cycle, Apoptosis, and Epithelial Barrier Functioning during Colitis-Associated Colorectal Cancer Depend on Individual Hypoxia Tolerance. Int J Mol Sci 2024; 25:7801. [PMID: 39063041 PMCID: PMC11276979 DOI: 10.3390/ijms25147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vladimir Kirillov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Health of Russian Federation, 117513 Moscow, Russia;
| | - Nikolay Fokichev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| |
Collapse
|
5
|
Bessho T. Up-Regulation of Non-Homologous End-Joining by MUC1. Genes (Basel) 2024; 15:808. [PMID: 38927743 PMCID: PMC11203369 DOI: 10.3390/genes15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.
Collapse
Affiliation(s)
- Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Zhao Z, Yang Y, Wu S, Yao D. Role of Secretory Mucins in the Occurrence and Development of Cholelithiasis. Biomolecules 2024; 14:676. [PMID: 38927079 PMCID: PMC11201413 DOI: 10.3390/biom14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cholelithiasis is a common biliary tract disease. However, the exact mechanism underlying gallstone formation remains unclear. Mucin plays a vital role in the nuclear formation and growth of cholesterol and pigment stones. Excessive mucin secretion can result in cholestasis and decreased gallbladder activity, further facilitating stone formation and growth. Moreover, gallstones may result in inflammation and the secretion of inflammatory factors, which can further increase mucin expression and secretion to promote the growth of gallstones. This review systematically summarises and analyses the role of mucins in gallstone occurrence and development and its related mechanisms to explore new ideas for interventions in stone formation or recurrence.
Collapse
Affiliation(s)
| | | | | | - Dianbo Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang 110004, China; (Z.Z.); (Y.Y.); (S.W.)
| |
Collapse
|
7
|
Medvedev KE, Schaeffer RD, Chen KS, Grishin NV. Pan-cancer structurome reveals overrepresentation of beta sandwiches and underrepresentation of alpha helical domains. Sci Rep 2023; 13:11988. [PMID: 37491511 PMCID: PMC10368619 DOI: 10.1038/s41598-023-39273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023] Open
Abstract
The recent progress in the prediction of protein structures marked a historical milestone. AlphaFold predicted 200 million protein models with an accuracy comparable to experimental methods. Protein structures are widely used to understand evolution and to identify potential drug targets for the treatment of various diseases, including cancer. Thus, these recently predicted structures might convey previously unavailable information about cancer biology. Evolutionary classification of protein domains is challenging and different approaches exist. Recently our team presented a classification of domains from human protein models released by AlphaFold. Here we evaluated the pan-cancer structurome, domains from over and under expressed proteins in 21 cancer types, using the broadest levels of the ECOD classification: the architecture (A-groups) and possible homology (X-groups) levels. Our analysis reveals that AlphaFold has greatly increased the three-dimensional structural landscape for proteins that are differentially expressed in these 21 cancer types. We show that beta sandwich domains are significantly overrepresented and alpha helical domains are significantly underrepresented in the majority of cancer types. Our data suggest that the prevalence of the beta sandwiches is due to the high levels of immunoglobulins and immunoglobulin-like domains that arise during tumor development-related inflammation. On the other hand, proteins with exclusively alpha domains are important elements of homeostasis, apoptosis and transmembrane transport. Therefore cancer cells tend to reduce representation of these proteins to promote successful oncogeneses.
Collapse
Affiliation(s)
- Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
8
|
Sotoudeh M, Mansouri V, Shakeri R, Sharififard B, Sajadi N, Haghpanah V, Naderi M. Decoding the expression pattern of MUC3A in gastric adenocarcinoma: unveiling the key to successful immunotherapy. Expert Opin Ther Targets 2023; 27:1299-1305. [PMID: 38069509 DOI: 10.1080/14728222.2023.2293764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/08/2023] [Indexed: 12/31/2023]
Abstract
AIMS Despite the promise of immunotherapy for gastric adenocarcinoma, resistance is common, necessitating the validation of new targets. Based on our previous bioinformatics analysis, the MUC3A antigen emerged as a promising candidate for immunotherapy against gastric adenocarcinoma. However, a comprehensive understanding of its expression at protein level remains elusive, despite its crucial role in determining clinical response. We also sought to establish a connection between the expression pattern and relevant clinical variables of the disease, whenever feasible. METHODS Immunohistochemistry was used to determine the percentage of MUC3A-positive tumor cells in primary (PT) and metastatic tumor (MT) sites of 190 gastric adenocarcinoma patients. We also evaluated the association between MUC3A expression and variables such as Lauren classification, history of neoadjuvant chemotherapy and/or radiotherapy, and overall patient survival. RESULTS Median MUC3A expression was 50% in PT and 70% in MT sites, exhibiting a positive correlation. MT intestinal type showed significantly higher MUC3A expression compared to other types. Neoadjuvant therapy history did not affect MUC3A expression. Higher MUC3A expression correlated with improved survival. CONCLUSIONS Based on our previous bioinformatics data and the consistently high expression of MUC3A on gastric tumor cells, we propose advancing experimental aspects of anti-MUC3A immunotherapy for gastric adenocarcinoma.
Collapse
Affiliation(s)
- Masoud Sotoudeh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shakeri
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Sharififard
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Sajadi
- Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Naderi
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Kwon MJ, Lee JY, Kim EJ, Ko EJ, Ryu CS, Cho HJ, Jun HH, Kim JW, Kim NK. Genetic variants of MUC4 are associated with susceptibility to and mortality of colorectal cancer and exhibit synergistic effects with LDL-C levels. PLoS One 2023; 18:e0287768. [PMID: 37384668 PMCID: PMC10310026 DOI: 10.1371/journal.pone.0287768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
As a disease with high mortality and prevalence rates worldwide, colorectal cancer (CRC) has been thoroughly investigated. Mucins are involved in the induction of CRC and the regulation of intestinal homeostasis but a member of the mucin gene family MUC4 has a controversial role in CRC. MUC4 has been associated with either decreased susceptibility to or a worse prognosis of CRC. In our study, the multifunctional aspects of MUC4 were elucidated by genetic polymorphism analysis in a case-control study of 420 controls and 464 CRC patients. MUC4 rs1104760 A>G polymorphism had a protective effect on CRC risk (AG, AOR = 0.537; GG, AOR = 0.297; dominant model, AOR = 0.493; recessive model, AOR = 0.382) and MUC4 rs2688513 A>G was associated with an increased mortality rate of CRC (5 years, GG, adjusted HR = 6.496; recessive model, adjusted HR = 5.848). In addition, MUC4 rs1104760 A>G showed a high probability of being a potential biomarker for CRC patients with low-density lipoprotein cholesterol (LDL-C) in the risk range while showing a significant synergistic effect with the LDL-C level. This is the first study to indicate a significant association between MUC4 genetic polymorphisms and CRC prevalence, suggesting a functional genetic variant with the LDL-C level, for CRC prevention.
Collapse
Affiliation(s)
- Min Jung Kwon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Jeong Yong Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Eo Jin Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Ju Ko
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| | - Hye Jung Cho
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Hak Hoon Jun
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jong Woo Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, South Korea
| |
Collapse
|
10
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
The diagnostic and prognostic potential of the EGFR/MUC4/MMP9 axis in glioma patients. Sci Rep 2022; 12:19868. [PMID: 36400876 PMCID: PMC9674618 DOI: 10.1038/s41598-022-24099-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma is the most aggressive form of brain cancer, presenting poor prognosis despite current advances in treatment. There is therefore an urgent need for novel biomarkers and therapeutic targets. Interactions between mucin 4 (MUC4) and the epidermal growth factor receptor (EGFR) are involved in carcinogenesis, and may lead to matrix metalloproteinase-9 (MMP9) overexpression, exacerbating cancer cell invasiveness. In this study, the role of MUC4, MMP9, and EGFR in the progression and clinical outcome of glioma patients was investigated. Immunohistochemistry (IHC) and immunofluorescence (IF) in fixed tissue samples of glioma patients were used to evaluate the expression and localization of EGFR, MMP9, and MUC4. Kaplan-Meier survival analysis was also performed to test the prognostic utility of the proteins for glioma patients. The protein levels were assessed with enzyme-linked immunosorbent assay (ELISA) in serum of glioma patients, to further investigate their potential as non-invasive serum biomarkers. We demonstrated that MUC4 and MMP9 are both significantly upregulated during glioma progression. Moreover, MUC4 is co-expressed with MMP9 and EGFR in the proliferative microvasculature of glioblastoma, suggesting a potential role for MUC4 in microvascular proliferation and angiogenesis. The combined high expression of MUC4/MMP9, and MUC4/MMP9/EGFR was associated with poor overall survival (OS). Finally, MMP9 mean protein level was significantly higher in the serum of glioblastoma compared with grade III glioma patients, whereas MUC4 mean protein level was minimally elevated in higher glioma grades (III and IV) compared with control. Our results suggest that MUC4, along with MMP9, might account for glioblastoma progression, representing potential therapeutic targets, and suggesting the 'MUC4/MMP9/EGFR axis' may play a vital role in glioblastoma diagnostics.
Collapse
|
12
|
Pajic P, Shen S, Qu J, May AJ, Knox S, Ruhl S, Gokcumen O. A mechanism of gene evolution generating mucin function. SCIENCE ADVANCES 2022; 8:eabm8757. [PMID: 36026444 PMCID: PMC9417175 DOI: 10.1126/sciadv.abm8757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/12/2022] [Indexed: 05/12/2023]
Abstract
How novel gene functions evolve is a fundamental question in biology. Mucin proteins, a functionally but not evolutionarily defined group of proteins, allow the study of convergent evolution of gene function. By analyzing the genomic variation of mucins across a wide range of mammalian genomes, we propose that exonic repeats and their copy number variation contribute substantially to the de novo evolution of new gene functions. By integrating bioinformatic, phylogenetic, proteomic, and immunohistochemical approaches, we identified 15 undescribed instances of evolutionary convergence, where novel mucins originated by gaining densely O-glycosylated exonic repeat domains. Our results suggest that secreted proteins rich in proline are natural precursors for acquiring mucin function. Our findings have broad implications for understanding the role of exonic repeats in the parallel evolution of new gene functions, especially those involving protein glycosylation.
Collapse
Affiliation(s)
- Petar Pajic
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Center of Excellence in Bioinformatics and Life Science, Buffalo, NY 14203, USA
| | - Alison J. May
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah Knox
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
13
|
Lema MA, Nava-Medina IB, Cerullo AR, Abdelaziz R, Jimenez SM, Geldner JB, Abdelhamid M, Kwan CS, Kharlamb L, Neary MC, Braunschweig AB. Scalable Preparation of Synthetic Mucins via Nucleophilic Ring-Opening Polymerization of Glycosylated N-Carboxyanhydrides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel A. Lema
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry, City College of New York, 160 Convent Ave, New York, New York 10031, United States
| | - Ilse B. Nava-Medina
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Antonio R. Cerullo
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Radwa Abdelaziz
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Stephanie M. Jimenez
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Jacob B. Geldner
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Mohamed Abdelhamid
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Chak-Shing Kwan
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Lily Kharlamb
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| | - Michelle C. Neary
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
| | - Adam B. Braunschweig
- Advanced Science Research Center at the Graduate Center, The City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Ave, New York, New York 10065, United States
- The PhD program in Biochemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
- The PhD program in Chemistry, Graduate Center of the City University of New York, 365 5th Ave, New York, New York 10016, United States
| |
Collapse
|
14
|
Stoup N, Liberelle M, Schulz C, Cavdarli S, Vasseur R, Magnez R, Lahdaoui F, Skrypek N, Peretti F, Frénois F, Thuru X, Melnyk P, Renault N, Jonckheere N, Lebègue N, Van Seuningen I. The EGF Domains of MUC4 Oncomucin Mediate HER2 Binding Affinity and Promote Pancreatic Cancer Cell Tumorigenesis. Cancers (Basel) 2021; 13:cancers13225746. [PMID: 34830899 PMCID: PMC8616066 DOI: 10.3390/cancers13225746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary A feature of pancreatic cancer (PC) is the frequent overexpression of tyrosine kinase membrane receptor HER2 along with its membrane partner the MUC4 oncomucin in the early stages of the pancreatic carcinogenesis. However, therapeutic approaches targeting HER2 in PC are not efficient. MUC4 could indeed represent an alternative therapeutic strategy to target HER2 signaling pathway, but this approach needs to characterize MUC4/HER2 interaction at the molecular level. In this study, we successfully showed the impact of the EGF domains of MUC4 on HER2 binding affinity and demonstrated their “growth factor-like” biological activities in PC cells. Moreover, homology models of the MUC4EGF/HER2 complexes allowed identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results allow a better understanding of the mechanisms involved in the MUC4/HER2 complex formation and may lead to the design of potential MUC4/HER2 inhibitors. Abstract The HER2 receptor and its MUC4 mucin partner form an oncogenic complex via an extracellular region of MUC4 encompassing three EGF domains that promotes tumor progression of pancreatic cancer (PC) cells. However, the molecular mechanism of interaction remains poorly understood. Herein, we decipher at the molecular level the role and impact of the MUC4EGF domains in the mediation of the binding affinities with HER2 and the PC cell tumorigenicity. We used an integrative approach combining in vitro bioinformatic, biophysical, biochemical, and biological approaches, as well as an in vivo study on a xenograft model of PC. In this study, we specified the binding mode of MUC4EGF domains with HER2 and demonstrate their “growth factor-like” biological activities in PC cells leading to stimulation of several signaling proteins (mTOR pathway, Akt, and β-catenin) contributing to PC progression. Molecular dynamics simulations of the MUC4EGF/HER2 complexes led to 3D homology models and identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results will pave the way to the design of potential MUC4/HER2 inhibitors targeting the EGF domains of MUC4. This strategy will represent a new efficient alternative to treat cancers associated with MUC4/HER2 overexpression and HER2-targeted therapy failure as a new adapted treatment to patients.
Collapse
Affiliation(s)
- Nicolas Stoup
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Maxime Liberelle
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neurosciences & Cognition, F-59000 Lille, France; (M.L.); (P.M.)
| | - Céline Schulz
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Sumeyye Cavdarli
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Romain Vasseur
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Romain Magnez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Fatima Lahdaoui
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Nicolas Skrypek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Fabien Peretti
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Frédéric Frénois
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Xavier Thuru
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neurosciences & Cognition, F-59000 Lille, France; (M.L.); (P.M.)
| | - Nicolas Renault
- Univ. Lille, Inserm, CHU Lille, U1286—INFINITE—Institute for Translational Research in Inflammation, F-59000 Lille, France;
| | - Nicolas Jonckheere
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
| | - Nicolas Lebègue
- Univ. Lille, Inserm, CHU Lille, U1172—LilNCog—Lille Neurosciences & Cognition, F-59000 Lille, France; (M.L.); (P.M.)
- Correspondence: (N.L.); (I.V.S.); Tel.: +33-32096-4977 (N.L.)
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (N.S.); (C.S.); (S.C.); (R.V.); (R.M.); (F.L.); (N.S.); (F.P.); (F.F.); (X.T.); (N.J.)
- Correspondence: (N.L.); (I.V.S.); Tel.: +33-32096-4977 (N.L.)
| |
Collapse
|
15
|
Ling F, Zhang H, Sun Y, Meng J, Sanches JGP, Huang H, Zhang Q, Yu X, Wang B, Hou L, Zhang J. AnnexinA7 promotes epithelial-mesenchymal transition by interacting with Sorcin and contributes to aggressiveness in hepatocellular carcinoma. Cell Death Dis 2021; 12:1018. [PMID: 34716295 PMCID: PMC8556303 DOI: 10.1038/s41419-021-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/29/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and metastasis is the major cause of the high mortality of HCC. In this study, we identified that AnnexinA7 (ANXA7) and Sorcin (SRI) are overexpressed and interacting proteins in HCC tissues and cells. In vitro functional investigations revealed that the interaction between ANXA7 and SRI regulated epithelial-mesenchymal transition (EMT), and then affected migration, invasion, and proliferation in HCC cells. Furthermore overexpression/knockdown of ANXA7 was remarkably effective in promoting/inhibiting tumorigenicity and EMT in vivo. Altogether, our study unveiled a mechanism that ANXA7 promotes EMT by interacting with SRI and further contributes to the aggressiveness in HCC, which provides a novel potential therapeutic target for preventing recurrence and metastasis in HCC.
Collapse
Affiliation(s)
- Fei Ling
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Huan Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yunliang Sun
- Department of Pathology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, 116033, China
| | - Jinyi Meng
- Department of Pathology, Dalian Municipal Central Hospital affiliated with Dalian Medical University, Dalian, 116033, China
| | | | - He Huang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao Yu
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bo Wang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Li Hou
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Jun Zhang
- Department of Pathology and Forensics, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
16
|
Whole Exome Sequencing Identifies Two Novel Mutations in a Patient with UC Associated with PSC and SSA. Can J Gastroenterol Hepatol 2021; 2021:9936932. [PMID: 34545326 PMCID: PMC8449715 DOI: 10.1155/2021/9936932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patients diagnosed with ulcerative colitis (UC) associated with primary sclerosis cholangitis (PSC) and sessile serrated adenoma (SSA) are rare. The present study aimed to identify the potential causative gene mutation in a patient with UC associated with PSC and SSA. METHODS DNA was extracted from the blood sample and tissue sample of SSA, followed by the whole exome sequencing (WES) analysis. Bioinformatics analysis was utilized to predict the deleteriousness of the identified variants. Multiple sequence alignment and conserved protein domain analyses were performed using online software. Sanger sequencing was used to validate the identified variants. Expression and diagnostic analysis of identified mutated genes was performed in the GSE119600 dataset (peripheral blood samples of PSC and UC) and GSE43841 dataset (tumor samples of SSA). RESULTS In the present study, a total of 842 single nucleotide variants (SNVs) in 728 genes were identified in the blood sample. Two variants, integrin beta 4 (ITGB4) (c.C2503G; p.P835A) and a mucin 3A (MUC3A) (c.C1019T; p.P340L), were further analyzed. MUC3A was associated with inflammatory bowel disease. Sanger sequence in blood revealed that the ITGB4 mutation was fully cosegregated with the result of WES in the patient. Additionally, a variant, tumor protein p53 gene (TP53) (c.86delA; p.N29Tfs ∗ 15) was identified in the tissue sample of SSA. Compared to that in normal controls, ITGB4 was upregulated in both UC and PSC, MUC3A was, respectively, upregulated and downregulated in PSC and UC, and TP53 was downregulated in SSA. ITGB4 and TP53 had a potential diagnostic value for UC, PSC and SSA. CONCLUSIONS The present study demonstrated that the ITGB4 (c.C2503G; p.P835A) and MUC3A (c.C1019T; p.P340L) mutations may be the potential causative variants in a patient with UC associated with PSC and SSA. TP53 (c.86delA; p.N29Tfs ∗ 15) mutation may be associated with SSA in this patient.
Collapse
|
17
|
Mammen MJ, Ali J, Aurora A, Sharma UC, Aalinkeel R, Mahajan SD, Sands M, Schwartz SA. IL-17 Is a Key Regulator of Mucin-Galectin-3 Interactions in Asthma. Int J Cell Biol 2021; 2021:9997625. [PMID: 34221020 PMCID: PMC8211528 DOI: 10.1155/2021/9997625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Mucus hypersecretion and chronic airway inflammation are standard characteristics of several airway diseases, such as chronic obstructive pulmonary disease and asthma. Increased mucus secretion from increased mucin gene expression in the airway epithelium is associated with poor prognosis and mortality. We previously showed that the absence of tissue inhibitor of metalloproteinase 1 (TIMP-1) enhances lung inflammation, airway hyperreactivity, and lung remodeling in asthma in an ovalbumin (OVA) asthma model of TIMP-1 knockout (TIMPKO) mice as compared to wild-type (WT) controls and mediated by increased galectin-3 (Gal-3) levels. Additionally, we have shown that in the lung epithelial cell line A549, Gal-3 inhibition increases interleukin-17 (IL-17) levels, leading to increased mucin expression in the airway epithelium. Therefore, in the current study, we further examined the relationship between Gal-3 and the production of IL-17-axis cytokines and critical members of the mucin family in the murine TIMPKO asthma model and the lung epithelium cell line A549. While Gal-3 may regulate a Th1/Th2 response, IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. Gal-3 and IL-17 interactions induce mucus expression in OVA-sensitized mice. We conclude that Gal-3 may play an essential role in the pathogenesis of asthma, and modulation of Gal-3 may prove helpful in the treatment of this disease.
Collapse
Affiliation(s)
- Manoj J. Mammen
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Jamil Ali
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Amita Aurora
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Umesh C. Sharma
- Division of Cardiology, Department of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Ravikumar Aalinkeel
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Supriya D. Mahajan
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| | - Mark Sands
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
- WNY VA Healthcare System, Buffalo, NY 14215, USA
| | - Stanley A. Schwartz
- Division of Allergy, Immunology & Rheumatology, Department of Medicine, State University of New York at Buffalo, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim Biophys Acta Rev Cancer 2021; 1876:188538. [PMID: 33862149 DOI: 10.1016/j.bbcan.2021.188538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Twenty mucin genes have been identified and classified in two groups (encoding secreted and membrane-bound proteins). Secreted mucins participate in mucus formation by assembling a 3-dimensional network via oligomerization, whereas membrane-bound mucins are anchored to the outer membrane mediating extracellular interactions and cell signaling. Both groups have been associated with carcinogenesis progression in epithelial cancers, and are therefore considered as potential therapeutic targets. In the present review, we discuss the link between mucin expression patterns and patient survival and propose mucins as prognosis biomarkers of epithelial cancers (esophagus, gastric, pancreatic, colorectal, lung, breast or ovarian cancers). We also investigate the relationship between mucin expression and overall survival in the TCGA dataset. In particular, epigenetic mechanisms regulating mucin gene expression, such as aberrant DNA methylation and histone modification, are interesting as they are also associated with diagnosis or prognosis significance. Indeed, mucin hypomethylation has been shown to be associated with carcinogenesis progression and was linked to prognosis in colon cancer or pancreatic cancer patients. Finally we describe the relationship between mucin expression and non-coding RNAs that also may serve as biomarkers. Altogether the concomitant knowledge of specific mucin-pattern expression and epigenetic regulation could be translated as biomarkers with a better specificity/sensitivity performance in several epithelial cancers.
Collapse
|
19
|
Advanced materials for drug delivery across mucosal barriers. Acta Biomater 2021; 119:13-29. [PMID: 33141051 DOI: 10.1016/j.actbio.2020.10.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Mucus is a viscoelastic gel that traps pathogens and other foreign particles to limit their penetration into the underlying epithelium. Dosage forms containing particle-based drug delivery systems are trapped in mucosal layers and will be removed by mucus turnover. Mucoadhesion avoids premature wash-off and prolongs the residence time of drugs on mucus. Moreover, mucus penetration is essential for molecules to access the underlying epithelial tissues. Various strategies have been investigated to achieve mucoadhesion and mucus penetration of drug carriers. Innovations in materials used for the construction of drug-carrier systems allowed the development of different mucoadhesion and mucus penetration delivery systems. Over the last decade, advances in the field of materials chemistry, with a focus on biocompatibility, have led to the expansion of the pool of materials available for drug delivery applications. The choice of materials in mucosal delivery is generally dependent on the intended therapeutic target and nature of the mucosa at the site of absorption. This review presents an up-to-date account of materials including synthesis, physical and chemical modifications of mucoadhesive materials, nanocarriers, viral mimics used for the construction of mucosal drug delivery systems.
Collapse
|
20
|
Salah E, Abouelfetouh MM, Pan Y, Chen D, Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf B Biointerfaces 2020; 196:111305. [DOI: 10.1016/j.colsurfb.2020.111305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
|
21
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
22
|
Alix M, Gasset E, Bardon-Albaret A, Noel J, Pirot N, Perez V, Coves D, Saulnier D, Lignot JH, Cucchi PN. Description of the unusual digestive tract of Platax orbicularis and the potential impact of Tenacibaculum maritimum infection. PeerJ 2020; 8:e9966. [PMID: 33024633 PMCID: PMC7520087 DOI: 10.7717/peerj.9966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ephippidae fish are characterized by a discoid shape with a very small visceral cavity. Among them Platax orbicularis has a high economic potential due to its flesh quality and flesh to carcass ratio. Nonetheless, the development of its aquaculture is limited by high mortality rates, especially due to Tenacibaculum maritimum infection, occurring one to three weeks after the transfer of fishes from bio-secure land-based aquaculture system to the lagoon cages for growth. Among the lines of defense against this microbial infection, the gastrointestinal tract (GIT) is less studied. The knowledge about the morphofunctional anatomy of this organ in P. orbicularis is still scarce. Therefore, the aims of this study are to characterize the GIT in non-infected P. orbicularis juveniles to then investigate the impact of T. maritimum on this multifunctional organ. Methods In the first place, the morpho-anatomy of the GIT in non-infected individuals was characterized using various histological techniques. Then, infected individuals, experimentally challenged by T. maritimum were analysed and compared to the previously established GIT reference. Results The overlapped shape of the GIT of P. orbicularis is probably due to its constrained compaction in a narrow visceral cavity. Firstly, the GIT was divided into 10 sections, from the esophagus to the rectum. For each section, the structure of the walls was characterized, with a focus on mucus secretions and the presence of the Na+/K+ ATPase pump. An identification key allowing the characterization of the GIT sections using in toto histology is given. Secondly, individuals challenged with T. maritimum exhibited differences in mucus type and proportion and, modifications in the mucosal and muscle layers. These changes could induce an imbalance in the trade-off between the GIT functions which may be in favour of protection and immunity to the disadvantage of nutrition capacities.
Collapse
Affiliation(s)
- Maud Alix
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institute of Marine Research, Bergen, Norway
| | - Eric Gasset
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Agnes Bardon-Albaret
- Ifremer, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, French Polynesia
| | - Jean Noel
- BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France.,IRCM, Université de Montpellier, ICM, INSERM, Montpellier, France
| | - Nelly Pirot
- BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France.,IRCM, Université de Montpellier, ICM, INSERM, Montpellier, France
| | - Valérie Perez
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Denis Coves
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Denis Saulnier
- Ifremer, UMR Ecosystèmes Insulaires Océaniens, UPF, ILM, IRD, Tahiti, French Polynesia
| | | | | |
Collapse
|
23
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
24
|
Denneny E, Sahota J, Beatson R, Thornton D, Burchell J, Porter J. Mucins and their receptors in chronic lung disease. Clin Transl Immunology 2020; 9:e01120. [PMID: 32194962 PMCID: PMC7077995 DOI: 10.1002/cti2.1120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing recognition that mucus and mucin biology have a considerable impact on respiratory health, and subsequent global morbidity and mortality. Mucins play a critical role in chronic lung disease, not only by providing a physical barrier and clearing pathogens, but also in immune homeostasis. The aim of this review is to familiarise the reader with the role of mucins in both lung health and disease, with particular focus on function in immunity, infection and inflammation. We will also discuss their receptors, termed glycan-binding proteins, and how they provide an attractive prospect for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Denneny
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Jagdeep Sahota
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| | - Richard Beatson
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - David Thornton
- Wellcome Trust Centre for Cell-Matrix Research School of Biological Sciences Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester Manchester UK
| | - Joy Burchell
- Breast Cancer Biology Group Division of Cancer Studies King's College London Guy's Hospital London UK
| | - Joanna Porter
- Leukocyte Trafficking Laboratory Centre for Inflammation and Tissue Repair UCL Respiratory Rayne Institute University College London London UK
| |
Collapse
|
25
|
Liberelle M, Jonckheere N, Melnyk P, Van Seuningen I, Lebègue N. EGF-Containing Membrane-Bound Mucins: A Hidden ErbB2 Targeting Pathway? J Med Chem 2020; 63:5074-5088. [PMID: 32027502 DOI: 10.1021/acs.jmedchem.9b02001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Membrane-bound mucins belong to a heterogeneous family of large O-glycoproteins involved in numerous cancers and inflammatory diseases of the epithelium. Some of them are also involved in protein-protein interactions, with receptor tyrosine kinase ErbB2, and fundamental and clinical data showed that these complexes have a detrimental impact on cancer outcome, thus raising interest in therapeutic targeting. This paper aims to demonstrate that MUC3, MUC4, MUC12, MUC13, and MUC17 have a common evolutionary origin and share a common structural organization with EGF-like and SEA domains. Theoretical structure-function relationship analysis of the conserved domains indicated that the studied membrane-bound mucins share common biological properties along with potential specific functions. Finally, the potential druggability of these complexes is discussed, revealing ErbB2-related pathways of cell signaling to be targeted.
Collapse
Affiliation(s)
- Maxime Liberelle
- Univ. Lille, Inserm CHU Lille, UMR-S1172-JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LiNC-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Jonckheere
- Univ. Lille, Inserm CHU Lille, UMR-S1172-JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm CHU Lille, UMR-S1172-JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LiNC-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm CHU Lille, UMR-S1172-JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Nicolas Lebègue
- Univ. Lille, Inserm CHU Lille, UMR-S1172-JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.,Univ. Lille, Inserm, CHU Lille, UMR-S 1172-LiNC-Lille Neuroscience & Cognition, F-59000 Lille, France
| |
Collapse
|
26
|
Reynolds IS, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Burke JP. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev 2020; 38:237-257. [PMID: 30680581 DOI: 10.1007/s10555-019-09781-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of mucin glycoproteins has been demonstrated in many epithelial-derived cancers. The significance of this overexpression remains uncertain. The aim of this paper was to define the association of mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers by performing a systematic review of all published data. A systematic review of PubMed, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify all papers that evaluated the association between mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers. PRISMA guidelines were adhered to. Results of individual studies were extracted and pooled together based on the organ in which the cancer was derived from. The initial search revealed 2031 papers, of which 90 were deemed eligible for inclusion in the study. The studies included details on MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16. The majority of studies evaluated MUC1. MUC1 overexpression was consistently associated with resistance to apoptosis and resistance to chemotherapy. There was also evidence that overexpression of MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16 conferred resistance to apoptosis in epithelial-derived cancers. The overexpression of mucin glycoproteins is associated with resistance to apoptosis in numerous epithelial cancers. They cause resistance through diverse signaling pathways. Targeting the expression of mucin glycoproteins represents a potential therapeutic target in the treatment of epithelial-derived cancers.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Michael Fichtner
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
27
|
Kebouchi M, Hafeez Z, Le Roux Y, Dary-Mourot A, Genay M. Importance of digestive mucus and mucins for designing new functional food ingredients. Food Res Int 2020; 131:108906. [PMID: 32247482 DOI: 10.1016/j.foodres.2019.108906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
Abstract
The mucus, mainly composed of the glycoproteins mucins, is a rheological substance that covers the intestinal epithelium and acts as a protective barrier against a variety of harmful molecules, microbial infection and varying lumen environment conditions. Alterations in the composition or structure of the mucus could lead to various diseases such as inflammatory bowel disease or colorectal cancer. Recent studies revealed that an exogenous intake of probiotic bacteria or other dietary components (such as bioactive peptides and probiotics) derived from food influence mucus layer properties as well as modulate gene expression and secretion of mucins. Therefore, the use of such components for designing new functional ingredients and then foods, could constitute a novel approach to preserve the properties of mucus. After presenting some aspects of the mucus and mucins in the gastrointestinal tract as well as mucus role in the gut health, this review will address role of dietary ingredients in improving mucus/mucin production and provides new suggestions for further investigations of how dietary ingredients/probiotics based functional foods can be developed to maintain or improve the gut health.
Collapse
Affiliation(s)
- Mounira Kebouchi
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France; Université de Lorraine, INRA, URAFPA, F-54000 Nancy, France
| | - Zeeshan Hafeez
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France
| | - Yves Le Roux
- Université de Lorraine, INRA, URAFPA, F-54000 Nancy, France
| | | | - Magali Genay
- Université de Lorraine, CALBINOTOX, F-54000 Nancy, France.
| |
Collapse
|
28
|
MUC4-ErbB2 Oncogenic Complex: Binding studies using Microscale Thermophoresis. Sci Rep 2019; 9:16678. [PMID: 31723153 PMCID: PMC6853952 DOI: 10.1038/s41598-019-53099-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
The MUC4 membrane-bound mucin is a large O-glycoprotein involved in epithelial homeostasis. At the cancer cell surface MUC4 interacts with ErbB2 receptor via EGF domains to promote cell proliferation and migration. MUC4 is highly regarded as a therapeutic target in pancreatic cancer as it is not expressed in healthy pancreas, while it is neoexpressed in early preneoplastic stages (PanINs). However, the association/dissociation constant of MUC4-ErbB2 complex is unknown. Protein-protein interactions (PPIs) have become a major area of research in the past years and the characterization of their interactions, especially by biophysical methods, is intensively used in drug discovery. To characterize the MUC4-ErbB2 interaction, we used MicroScale Thermophoresis (MST), a powerful method for quantitative protein interaction analysis under challenging conditions. We worked with CHO cell lysates containing either the transmembrane β subunit of MUC4 (MUC4β) or a truncated mutant encompassing only the EGF domains (MUC4EGF3+1+2). MST studies have led to the characterization of equilibrium dissociation constants (Kd) for MUC4β-ErbB2 (7–25 nM) and MUC4EGF3+1+2/ErbB2 (65–79 nM) complexes. This work provides new information regarding the MUC4-ErbB2 interaction at the biophysical level and also confirms that the presence of the three EGF domains of MUC4 is sufficient to provide efficient interaction. This technological approach will be very useful in the future to validate small molecule binding affinities targeting MUC4-ErbB2 complex for drug discovery development in cancer. It will also be of high interest for the other known membrane mucins forming oncogenic complexes with ErbBs at the cancer cell surface.
Collapse
|
29
|
Pinzón Martín S, Seeberger PH, Varón Silva D. Mucins and Pathogenic Mucin-Like Molecules Are Immunomodulators During Infection and Targets for Diagnostics and Vaccines. Front Chem 2019; 7:710. [PMID: 31696111 PMCID: PMC6817596 DOI: 10.3389/fchem.2019.00710] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mucins and mucin-like molecules are highly O-glycosylated proteins present on the cell surface of mammals and other organisms. These glycoproteins are highly diverse in the apoprotein and glycan cores and play a central role in many biological processes and diseases. Mucins are the most abundant macromolecules in mucus and are responsible for its biochemical and biophysical properties. Mucin-like molecules cover various protozoan parasites, fungi and viruses. In humans, modifications in mucin glycosylation are associated with tumors in epithelial tissue. These modifications allow the distinction between normal and abnormal cell conditions and represent important targets for vaccine development against some cancers. Mucins and mucin-like molecules derived from pathogens are potential diagnostic markers and targets for therapeutic agents. In this review, we summarize the distribution, structure, role as immunomodulators, and the correlation of human mucins with diseases and perform a comparative analysis of mucins with mucin-like molecules present in human pathogens. Furthermore, we review the methods to produce pathogenic and human mucins using chemical synthesis and expression systems. Finally, we present applications of mucin-like molecules in diagnosis and prevention of relevant human diseases.
Collapse
Affiliation(s)
- Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
Single nucleotide polymorphisms within MUC4 are associated with colorectal cancer survival. PLoS One 2019; 14:e0216666. [PMID: 31091244 PMCID: PMC6519901 DOI: 10.1371/journal.pone.0216666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Mucins and their glycosylation have been suggested to play an important role in colorectal carcinogenesis. We examined potentially functional genetic variants in the mucin genes or genes involved in their glycosylation with respect to colorectal cancer (CRC) risk and clinical outcome. We genotyped 23 single nucleotide polymorphisms (SNPs) covering 123 SNPs through pairwise linkage disequilibrium (r2>0.80) in the MUC1, MUC2, MUC4, MUC5AC, MUC6, and B3GNT6 genes in a hospital-based case-control study of 1532 CRC cases and 1108 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 672 patients. Among patients without distant metastasis at the time of diagnosis, two MUC4 SNPs, rs3107764 and rs842225, showed association with overall survival (HR 1.40, 95%CI 1.08-1.82, additive model, log-rank p = 0.004 and HR 0.64, 95%CI 0.42-0.99, recessive model, log-rank p = 0.01, respectively) and event-free survival (HR 1.31, 95%CI 1.03-1.68, log-rank p = 0.004 and HR 0.64, 95%CI 0.42-0.96, log-rank p = 0.006, respectively) after adjustment for age, sex and TNM stage. Our data suggest that genetic variation especially in the transmembrane mucin gene MUC4 may play a role in the survival of CRC and further studies are warranted.
Collapse
|
31
|
Kasprzak A, Adamek A. Mucins: the Old, the New and the Promising Factors in Hepatobiliary Carcinogenesis. Int J Mol Sci 2019; 20:ijms20061288. [PMID: 30875782 PMCID: PMC6471604 DOI: 10.3390/ijms20061288] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/13/2022] Open
Abstract
Mucins are large O-glycoproteins with high carbohydrate content and marked diversity in both the apoprotein and the oligosaccharide moieties. All three mucin types, trans-membrane (e.g., MUC1, MUC4, MUC16), secreted (gel-forming) (e.g., MUC2, MUC5AC, MUC6) and soluble (non-gel-forming) (e.g., MUC7, MUC8, MUC9, MUC20), are critical in maintaining cellular functions, particularly those of epithelial surfaces. Their aberrant expression and/or altered subcellular localization is a factor of tumour growth and apoptosis induced by oxidative stress and several anti-cancer agents. Abnormal expression of mucins was observed in human carcinomas that arise in various gastrointestinal organs. It was widely believed that hepatocellular carcinoma (HCC) does not produce mucins, whereas cholangiocarcinoma (CC) or combined HCC-CC may produce these glycoproteins. However, a growing number of reports shows that mucins can be produced by HCC cells that do not exhibit or are yet to undergo, morphological differentiation to biliary phenotypes. Evaluation of mucin expression levels in precursors and early lesions of CC, as well as other types of primary liver cancer (PLC), conducted in in vitro and in vivo models, allowed to discover the mechanisms of their action, as well as their participation in the most important signalling pathways of liver cystogenesis and carcinogenesis. Analysis of mucin expression in PLC has both basic research and clinical value. Mucins may act as oncogenes and tumour-promoting (e.g., MUC1, MUC13), and/or tumour-suppressing factors (e.g., MUC15). Given their role in promoting PLC progression, both classic (MUC1, MUC2, MUC4, MUC5AC, MUC6) and currently tested mucins (e.g., MUC13, MUC15, MUC16) have been proposed to be important diagnostic and prognostic markers. The purpose of this review was to summarize and update the role of classic and currently tested mucins in pathogenesis of PLC, with explaining the mechanisms of their action in HCC carcinogenesis. It also focuses on determination of the diagnostic and prognostic role of these glycoproteins in PLC, especially focusing on HCC, CC and other hepatic tumours with- and without biliary differentiation.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecicki Street 6, 60-781 Poznań, Poland.
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland.
| |
Collapse
|
32
|
Karaś M. Influence of physiological and chemical factors on the absorption of bioactive peptides. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Monika Karaś
- Department of Biochemistry and Food Chemistry University of Life Sciences Skromna Str. 8 20‐704 Lublin Poland
| |
Collapse
|
33
|
Jonckheere N, Van Seuningen I. Integrative analysis of the cancer genome atlas and cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20 signature is associated with poor survival in human carcinomas. J Transl Med 2018; 16:259. [PMID: 30236127 PMCID: PMC6149062 DOI: 10.1186/s12967-018-1632-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MUC4 is a membrane-bound mucin that promotes carcinogenetic progression and is often proposed as a promising biomarker for various carcinomas. In this manuscript, we analyzed large scale genomic datasets in order to evaluate MUC4 expression, identify genes that are correlated with MUC4 and propose new signatures as a prognostic marker of epithelial cancers. METHODS Using cBioportal or SurvExpress tools, we studied MUC4 expression in large-scale genomic public datasets of human cancer (the cancer genome atlas, TCGA) and cancer cell line encyclopedia (CCLE). RESULTS We identified 187 co-expressed genes for which the expression is correlated with MUC4 expression. Gene ontology analysis showed they are notably involved in cell adhesion, cell-cell junctions, glycosylation and cell signaling. In addition, we showed that MUC4 expression is correlated with MUC16 and MUC20, two other membrane-bound mucins. We showed that MUC4 expression is associated with a poorer overall survival in TCGA cancers with different localizations including pancreatic cancer, bladder cancer, colon cancer, lung adenocarcinoma, lung squamous adenocarcinoma, skin cancer and stomach cancer. We showed that the combination of MUC4, MUC16 and MUC20 signature is associated with statistically significant reduced overall survival and increased hazard ratio in pancreatic, colon and stomach cancer. CONCLUSIONS Altogether, this study provides the link between (i) MUC4 expression and clinical outcome in cancer and (ii) MUC4 expression and correlated genes involved in cell adhesion, cell-cell junctions, glycosylation and cell signaling. We propose the MUC4/MUC16/MUC20high signature as a marker of poor prognostic for pancreatic, colon and stomach cancers.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, CHU Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", Univ. Lille, 59000, Lille, France.
| | - Isabelle Van Seuningen
- Inserm, CHU Lille, UMR-S 1172-JPARC-Jean-Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", Univ. Lille, 59000, Lille, France.
| |
Collapse
|
34
|
Increased expression of MUC3A is associated with poor prognosis in localized clear-cell renal cell carcinoma. Oncotarget 2018; 7:50017-50026. [PMID: 27374181 PMCID: PMC5226565 DOI: 10.18632/oncotarget.10312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/13/2016] [Indexed: 01/04/2023] Open
Abstract
MUC3A is a membrane-associated mucin that recent evidence reveals the role of MUC3A in pathogenesis and progression of cancers. To evaluate the association between MUC3A expression with overall survival (OS) and recurrence-free survival (RFS) in patients with localized clear-cell renal cell carcinoma (ccRCC), we retrospectively detected MUC3A expression in samples of 384 postoperative localized ccRCC patients by immunohistochemistry. Median follow-up was 73 months (range: 42 – 74 mo). Overall, 41 patients died, 47 experienced recurrence. High MUC3A expression occurred in 45.8% of localized ccRCC cases, which was significantly associated with high pT-stage, high Fuhrman grade, high frequency of necrosis and LVI, and increased risk of recurrence and death (Logrank test P < 0.001 and P < 0.001, respectively). By multivariate analysis, MUC3A expression was confirmed as an adverse independent prognostic factor for OS and RFS. The prognostic accuracy of UISS, SSIGN, Leibovich models was significantly increased when MUC3A expression was integrated. Meanwhile, MUC3A was enrolled into a newly built nomogram with other factors selected by multivariate analysis. Calibration curves revealed optimal consistency between observations and prognosis. In conclusion, high MUC3A expression is an adverse prognostic biomarker for OS and RFS in postoperative localized ccRCC patients.
Collapse
|
35
|
Alves RN, Sundell KS, Anjos L, Sundh H, Harboe T, Norberg B, Power DM. Structural and functional maturation of skin during metamorphosis in the Atlantic halibut (Hippoglossus hippoglossus). Cell Tissue Res 2018; 372:469-492. [PMID: 29464365 DOI: 10.1007/s00441-018-2794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022]
Abstract
To establish if the developmental changes in the primary barrier and osmoregulatory capacity of Atlantic halibut skin are modified during metamorphosis, histological, histochemical, gene expression and electrophysiological measurements were made. The morphology of the ocular and abocular skin started to diverge during the metamorphic climax and ocular skin appeared thicker and more stratified. Neutral mucins were the main glycoproteins produced by the goblet cells in skin during metamorphosis. Moreover, the number of goblet cells producing neutral mucins increased during metamorphosis and asymmetry in their abundance was observed between ocular and abocular skin. The increase in goblet cell number and their asymmetric abundance in skin was concomitant with the period that thyroid hormones (THs) increase and suggests that they may be under the control of these hormones. Several mucin transcripts were identified in metamorphosing halibut transcriptomes and Muc18 and Muc5AC were characteristic of the body skin. Na+, K+-ATPase positive (NKA) cells were observed in skin of all metamorphic stages but their number significantly decreased with the onset of metamorphosis. No asymmetry was observed between ocular and abocular skin in NKA cells. The morphological changes observed were linked to modified skin barrier function as revealed by modifications in its electrophysiological properties. However, the maturation of the skin functional characteristics preceded structural maturation and occurred at stage 8 prior to the metamorphic climax. Treatment of Atlantic halibut with the THs disrupter methimazole (MMI) affected the number of goblet cells producing neutral mucins and the NKA cells. The present study reveals that the asymmetric development of the skin in Atlantic halibut is TH sensitive and is associated with metamorphosis and that this barrier's functional properties mature earlier and are independent of metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group (CEIB), CCMAR, CIMAR Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kristina S Sundell
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology Group (CEIB), CCMAR, CIMAR Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Henrik Sundh
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Gothenburg, Sweden
| | - Torstein Harboe
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group (CEIB), CCMAR, CIMAR Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
36
|
Depletion of MUC5B mucin in gastrointestinal cancer cells alters their tumorigenic properties: implication of the Wnt/β-catenin pathway. Biochem J 2017; 474:3733-3746. [PMID: 28972071 DOI: 10.1042/bcj20170348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Abstract
Secreted mucins are large O-glycosylated proteins that participate in the protection/defence of underlying mucosae in normal adults. Alteration of their expression is a hallmark of numerous epithelial cancers and has often been correlated to bad prognosis of the tumour. The secreted mucin MUC5B is overexpressed in certain subtypes of gastric and intestinal cancers, but the consequences of this altered expression on the cancer cell behaviour are not known. To investigate the role of MUC5B in carcinogenesis, its expression was knocked-down in the human gastric cancer cell line KATO-III and in the colonic cancer cell line LS174T by using transient and stable approaches. Consequences of MUC5B knocking-down on cancer cells were studied with respect to in vitro proliferation, migration and invasion, and in vivo on tumour growth using a mouse subcutaneous xenograft model. Western blotting, luciferase assay and qRT-PCR were used to identify proteins and signalling pathways involved. In vitro MUC5B down-regulation leads to a decrease in proliferation, migration and invasion properties in both cell lines. Molecular mechanisms involved the alteration of β-catenin expression, localization and activity and decreased expression of several of its target genes. In vivo xenografts of MUC5B-deficient cells induced a decrease in tumour growth when compared with MUC5B-expressing Mock cells. Altogether, the present study shows that down-regulation of MUC5B profoundly alters proliferation, migration and invasion of human gastrointestinal cancer cells and that these alterations may be, in part, mediated by the Wnt/β-catenin pathway emphasizing the potential of MUC5B as an actor of gastrointestinal carcinogenesis.
Collapse
|
37
|
Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas. Oncotarget 2017; 8:14147-14157. [PMID: 27829225 PMCID: PMC5355169 DOI: 10.18632/oncotarget.13122] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022] Open
Abstract
The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer.
Collapse
|
38
|
Sicard JF, Le Bihan G, Vogeleer P, Jacques M, Harel J. Interactions of Intestinal Bacteria with Components of the Intestinal Mucus. Front Cell Infect Microbiol 2017; 7:387. [PMID: 28929087 PMCID: PMC5591952 DOI: 10.3389/fcimb.2017.00387] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
The human gut is colonized by a variety of large amounts of microbes that are collectively called intestinal microbiota. Most of these microbial residents will grow within the mucus layer that overlies the gut epithelium and will act as the first line of defense against both commensal and invading microbes. This mucus is essentially formed by mucins, a family of highly glycosylated protein that are secreted by specialize cells in the gut. In this Review, we examine how commensal members of the microbiota and pathogenic bacteria use mucus to their advantage to promote their growth, develop biofilms and colonize the intestine. We also discuss how mucus-derived components act as nutrient and chemical cues for adaptation and pathogenesis of bacteria and how bacteria can influence the composition of the mucus layer.
Collapse
Affiliation(s)
- Jean-Félix Sicard
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Guillaume Le Bihan
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Philippe Vogeleer
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| | - Josée Harel
- Centre de Recherche en Infectiologie Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de MontréalSaint-Hyacinthe, QC, Canada
| |
Collapse
|
39
|
Pei J, Grishin NV. Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54. Protein Sci 2017; 26:617-630. [PMID: 27977898 DOI: 10.1002/pro.3096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
Abstract
SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans.
Collapse
Affiliation(s)
| | - Nick V Grishin
- Howard Hughes Medical Institute.,Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| |
Collapse
|
40
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
41
|
Nie M, Bal MS, Yang Z, Liu J, Rivera C, Wenzel A, Beck BB, Sakhaee K, Marciano DK, Wolf MTF. Mucin-1 Increases Renal TRPV5 Activity In Vitro, and Urinary Level Associates with Calcium Nephrolithiasis in Patients. J Am Soc Nephrol 2016; 27:3447-3458. [PMID: 27036738 PMCID: PMC5084893 DOI: 10.1681/asn.2015101100] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/24/2016] [Indexed: 11/03/2022] Open
Abstract
Hypercalciuria is a major risk factor for nephrolithiasis. We previously reported that Uromodulin (UMOD) protects against nephrolithiasis by upregulating the renal calcium channel TRPV5. This channel is crucial for calcium reabsorption in the distal convoluted tubule (DCT). Recently, mutations in the gene encoding Mucin-1 (MUC1) were found to cause autosomal dominant tubulointerstitial kidney disease, the same disease caused by UMOD mutations. Because of the similarities between UMOD and MUC1 regarding associated disease phenotype, protein structure, and function as a cellular barrier, we examined whether urinary MUC1 also enhances TRPV5 channel activity and protects against nephrolithiasis. We established a semiquantitative assay for detecting MUC1 in human urine and found that, compared with controls (n=12), patients (n=12) with hypercalciuric nephrolithiasis had significantly decreased levels of urinary MUC1. Immunofluorescence showed MUC1 in the thick ascending limb, DCT, and collecting duct. Applying whole-cell patch-clamp recording of HEK cells, we found that wild-type but not disease mutant MUC1 increased TRPV5 activity by impairing dynamin-2- and caveolin-1-mediated endocytosis of TRPV5. Coimmunoprecipitation confirmed a physical interaction between TRPV5 and MUC1. However, MUC1 did not increase the activity of N-glycan-deficient TRPV5. MUC1 is characterized by variable number tandem repeats (VNTRs) that bind the lectin galectin-3; galectin-3 siRNA but not galectin-1 siRNA prevented MUC1-induced upregulation of TRPV5 activity. Additionally, MUC1 lacking VNTRs did not increase TRPV5 activity. Our results suggest that MUC1 forms a lattice with the N-glycan of TRPV5 via galectin-3, which impairs TRPV5 endocytosis and increases urinary calcium reabsorption.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrea Wenzel
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Khashayar Sakhaee
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | | | | |
Collapse
|
42
|
Abstract
Sialidases are a large group of enzymes, the majority of which catalyses the cleavage of terminal sialic acids from complex carbohydrates on glycoproteins or glycolipids. In the gastrointestinal (GI) tract, sialic acid residues are mostly found in terminal location of mucins via α2-3/6 glycosidic linkages. Many enteric commensal and pathogenic bacteria can utilize sialic acids as a nutrient source, but not all express the sialidases that are required to release free sialic acid. Sialidases encoded by gut bacteria vary in terms of their substrate specificity and their enzymatic reaction. Most are hydrolytic sialidases, which release free sialic acid from sialylated substrates. However, there are also examples with transglycosylation activities. Recently, a third class of sialidases, intramolecular trans-sialidase (IT-sialidase), has been discovered in gut microbiota, releasing (2,7-anhydro-Neu5Ac) 2,7-anydro-N-acetylneuraminic acid instead of sialic acid. Reaction specificity varies, with hydrolytic sialidases demonstrating broad activity against α2,3-, α2,6- and α2,8-linked substrates, whereas IT-sialidases tend to be specific for α2,3-linked substrates. In this mini-review, we summarize the current knowledge on the structural and biochemical properties of sialidases involved in the interaction between gut bacteria and epithelial surfaces.
Collapse
|
43
|
Ablamowicz AF, Nichols JJ. Ocular Surface Membrane-Associated Mucins. Ocul Surf 2016; 14:331-41. [PMID: 27154035 DOI: 10.1016/j.jtos.2016.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 03/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Ocular surface epithelial cells produce and secrete mucins that form a hydrophilic barrier for protection and lubrication of the eye. This barrier, the glycocalyx, is formed by high molecular weight heavily glycosylated membrane-associated mucins (MAMs) that include MUC1, MUC4, and MUC16. These mucins extend into the tear film from the anterior surfaces of the conjunctiva and cornea, and, through interactions with galectin-3, prevent penetrance of pathogens into the eye. Due primarily to the glycosylation of the mucins, the glycocalyx also creates less friction during blinking and enables the tear film to maintain wetting of the eye. The secretory mucins include soluble MUC7 and gel-forming MUC5AC. These mucins, particularly MUC5AC, assist with removal of debris from the tear film and contribute to the hydrophilicity of the tear film. While new methodologies and cell culture models have expanded our understanding of mucin structure and function on the ocular surface, there is still a paucity of studies characterizing the glycosylation of MAMs on a normal ocular surface and a diseased ocular surface. Although studies have shown alterations in mucin production and expression in dry eye diseases, the relationship between changes in mucins and functional consequences is unclear. This review focuses on comparing what is known about MAMs in wet-surfaced epithelia of the body to what has been studied on the eye.
Collapse
Affiliation(s)
- Anna F Ablamowicz
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason J Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
44
|
Graziani F, Pujol A, Nicoletti C, Dou S, Maresca M, Giardina T, Fons M, Perrier J. Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. J Appl Microbiol 2016; 120:1403-17. [PMID: 26868655 DOI: 10.1111/jam.13095] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/15/2016] [Accepted: 02/07/2016] [Indexed: 12/16/2022]
Abstract
AIMS The molecular cross-talk between commensal bacteria and the gut play an important role in the maintenance of the intestinal homeostasis and general health. Here, we studied the impact of a major Gram-positive anaerobic bacterium of the human gut microbiota, that is, Ruminococcus gnavus on the glycosylation pattern and the production of intestinal mucus by the goblet cells. METHODS AND RESULTS Our results showed that R. gnavus E1 specifically increases the expression and the glycosylation level of the intestinal glyco-conjugates by goblet cells in the colonic mucosa of mono-associated mice with R. gnavus E1 as well as in human HT29-MTX cells. Such an effect was mediated through induction of the level of mRNA encoding for the major intestinal gel-forming mucin such as MUC2 and various glycosyltransferase enzymes. CONCLUSIONS This study demonstrates for the first time that R. gnavus E1 possess the ability to modulate the glycosylation profile of the glyco-conjugate molecules and mucus in goblet cells. SIGNIFICANCE AND IMPACT OF THE STUDY Furthermore, we demonstrated that R. gnavus E1 modified specifically the glycosylation pattern and MUC2 expression by means of a small soluble factor of peptidic nature (<3 kDa) and heat stable in the HT29-MTX cell.
Collapse
Affiliation(s)
- F Graziani
- iSm2 UMR 7313, CNRS, Centrale Marseille, Aix Marseille Université, Marseille, France
| | - A Pujol
- iSm2 UMR 7313, CNRS, Centrale Marseille, Aix Marseille Université, Marseille, France
| | - C Nicoletti
- iSm2 UMR 7313, CNRS, Centrale Marseille, Aix Marseille Université, Marseille, France
| | - S Dou
- UP 2012.10.120.EGEAL, Institut Polytechnique, La Salle Beauvais, France
| | - M Maresca
- iSm2 UMR 7313, CNRS, Centrale Marseille, Aix Marseille Université, Marseille, France
| | - T Giardina
- iSm2 UMR 7313, CNRS, Centrale Marseille, Aix Marseille Université, Marseille, France
| | - M Fons
- IMM UMR 7283, CNRS, Aix Marseille Université, Marseille, France
| | - J Perrier
- iSm2 UMR 7313, CNRS, Centrale Marseille, Aix Marseille Université, Marseille, France
| |
Collapse
|
45
|
Piché A. Pathobiological role of MUC16 mucin (CA125) in ovarian cancer: Much more than a tumor biomarker. World J Obstet Gynecol 2016; 5:39-49. [DOI: 10.5317/wjog.v5.i1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 02/05/2023] Open
Abstract
MUC16 (CA125) has remained the mainstay for ovarian cancer assessment and management since the early 1980’s. With the exception of HE4, it is the only reliable serum biomarker for ovarian cancer. MUC16 belongs to a family of high-molecular weight glycoproteins known as mucins. The mucin family is comprised of large secreted transmembrane proteins that includes MUC1, MUC4 and MUC16. These mucins are often overexpressed in a variety of malignancies. MUC1 and MUC4 have been shown to contribute to breast and pancreatic tumorigenesis. Recent studies have uncovered unique biological functions for MUC16 that go beyond its role as a biomarker for ovarian cancer. Here, we provide an overview of the literature to highlight the importance of MUC16 in ovarian cancer tumorigenesis. We focus on the growing literature describing the role of MUC16 in proliferation, migration, metastasis, tumorigenesis and drug resistance. Accumulating experimental evidence suggest that the C-terminal domain of MUC16 is critical to mediate theses effects. The importance of MUC16 in the pathogenesis of ovarian cancer emphasizes the need to fully understand the signaling capabilities of MUC16 C-terminal domain to develop more efficient strategies for the successful treatment of ovarian cancer.
Collapse
|
46
|
Pai P, Rachagani S, Dhawan P, Batra SK. Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 2016; 37:223-32. [PMID: 26762229 DOI: 10.1093/carcin/bgw005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and β-catenin. In the current review, we summarize several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
47
|
Catecholamine-Directed Epithelial Cell Interactions with Bacteria in the Intestinal Mucosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:79-99. [DOI: 10.1007/978-3-319-20215-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Vasseur R, Skrypek N, Duchêne B, Renaud F, Martínez-Maqueda D, Vincent A, Porchet N, Van Seuningen I, Jonckheere N. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1375-84. [PMID: 26477488 DOI: 10.1016/j.bbagrm.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.
Collapse
Affiliation(s)
- Romain Vasseur
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicolas Skrypek
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Belinda Duchêne
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Florence Renaud
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France; Institut de Pathologie, Centre de Biologie Pathologie, Boulevard du Professeur Jules Leclercq, 59037 Lille Cedex, France
| | - Daniel Martínez-Maqueda
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France
| | - Audrey Vincent
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicole Porchet
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicolas Jonckheere
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| |
Collapse
|
49
|
Gamazo C, Martín-Arbella N, Brotons A, Camacho AI, Irache JM. Mimicking microbial strategies for the design of mucus-permeating nanoparticles for oral immunization. Eur J Pharm Biopharm 2015; 96:454-63. [PMID: 25615880 PMCID: PMC7126451 DOI: 10.1016/j.ejpb.2015.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
Abstract
Dealing with mucosal delivery systems means dealing with mucus. The name mucosa comes from mucus, a dense fluid enriched in glycoproteins, such as mucin, which main function is to protect the delicate mucosal epithelium. Mucus provides a barrier against physiological chemical and physical aggressors (i.e., host secreted digestive products such as bile acids and enzymes, food particles) but also against the potentially noxious microbiota and their products. Intestinal mucosa covers 400m(2) in the human host, and, as a consequence, is the major portal of entry of the majority of known pathogens. But, in turn, some microorganisms have evolved many different approaches to circumvent this barrier, a direct consequence of natural co-evolution. The understanding of these mechanisms (known as virulence factors) used to interact and/or disrupt mucosal barriers should instruct us to a rational design of nanoparticulate delivery systems intended for oral vaccination and immunotherapy. This review deals with this mimetic approach to obtain nanocarriers capable to reach the epithelial cells after oral delivery and, in parallel, induce strong and long-lasting immune and protective responses.
Collapse
Affiliation(s)
- Carlos Gamazo
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - Nekane Martín-Arbella
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana Brotons
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain
| | - Ana I Camacho
- Department of Microbiology, University of Navarra, Pamplona, Spain
| | - J M Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
50
|
Kiwamoto T, Katoh T, Evans CM, Janssen WJ, Brummet ME, Hudson SA, Zhu Z, Tiemeyer M, Bochner BS. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J Allergy Clin Immunol 2015; 135:1329-1340.e9. [PMID: 25497369 PMCID: PMC4433759 DOI: 10.1016/j.jaci.2014.10.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sialic acid-binding, immunoglobulin-like lectin (Siglec) F is a glycan-binding protein selectively expressed on mouse eosinophils. Its engagement induces apoptosis, suggesting a pathway for ameliorating eosinophilia in the setting of asthma and other eosinophil-associated diseases. Siglec-F recognizes sialylated sulfated glycans in glycan-binding assays, but the identities of endogenous sialoside ligands and their glycoprotein carriers in vivo are unknown. OBJECTIVES To use mouse lung-derived materials to isolate, biochemically identify, and biologically characterize naturally occurring endogenous glycan ligands for Siglec-F. METHODS Lungs from normal and mucin-deficient mice, as well as mouse tracheal epithelial cells, were investigated in vitro and in vivo for the expression of Siglec-F ligands. Western blotting and cytochemistry used Siglec-F-Fc as a probe for directed purification, followed by liquid chromatography-tandem mass spectrometry of recognized glycoproteins. Purified components were tested in mouse eosinophil-binding assays and flow cytometry-based cell death assays. RESULTS We detected mouse lung glycoproteins that bound to Siglec-F; binding was sialic acid dependent. Proteomic analysis of Siglec-F binding material identified Muc5b and Muc4. Cross-affinity enrichment and histochemical analysis of lungs from mucin-deficient mice assigned and validated the identity of Muc5b as one glycoprotein ligand for Siglec-F. Purified mucin preparations carried sialylated and sulfated glycans, bound to eosinophils and induced their death in vitro. Mice conditionally deficient in Muc5b displayed exaggerated eosinophilic inflammation in response to intratracheal installation of IL-13. CONCLUSIONS These data identify a previously unrecognized endogenous anti-inflammatory property of airway mucins by which their glycans can control lung eosinophilia through engagement of Siglec-F.
Collapse
Affiliation(s)
- Takumi Kiwamoto
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Toshihiko Katoh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Medicine, University of Colorado School of Medicine, Denver, CO 80045
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary Medicine, University of Colorado School of Medicine, Denver, CO 80045
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206
| | - Mary E. Brummet
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Sherry A. Hudson
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Zhou Zhu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Bruce S. Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|