1
|
Abou-El-Naga IF. Calcium/calmodulin-dependent protein kinase II in Schistosoma: Relation to praziquantel action and resistance. Mol Biochem Parasitol 2025; 263:111686. [PMID: 40414509 DOI: 10.1016/j.molbiopara.2025.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 05/07/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) performs diverse essential functions through integrating a range of calcium signals. In Schistosoma, two Calmodulin (CaM) genes are characterized. CaMKII exhibits distinct expression patterns across the developmental stages of the parasite. Its significance lies in sustaining Schistosoma survival and maintaining calcium homeostasis. As it is a calcium sensing protein, its function is closely related to the efficacy of praziquantel, the mainstay drug against schistosomiasis. The relationship between CaMKII and praziquantel involves several potential factors. Praziquantel induces an increased calcium influx into Schistosoma that binds CaM and activates CaMKII, which in turn mitigates the effect of the drug and potentially contributes to praziquantel resistance in several ways. By maintaining calcium homeostasis, CaMKII opposes the surge in calcium influx induced by praziquantel. It modulates voltage-gated calcium channels and reduces calcium influx. It also inhibits ryanodine receptors and inositol triphosphate receptors, thus preventing the release of calcium from the sarcoplasmic/endoplasmic reticulum. CaMKII activates nuclear factor-κB and subsequently activates sarco/endoplasmic reticulum calcium-ATPase (SERCA), which increases calcium uptake into the sarcoplasmic/endoplasmic reticulum and decreases cytosolic calcium. Nuclear factor-κB, activated by CaMKII may lead to up-regulation of P-glycoprotein, which facilitates praziquantel efflux. CaMKII also activates calcineurin that inhibits SERCA. Given its pivotal role in Schistosoma homeostasis and survival, CaMKII emerges as a promising target for novel anthelmintic therapies, and its modulation might enhance the efficacy of praziquantel.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
2
|
Parsons DAJ, Walker AJ, Emery AM, Allan F, Lu DB, Webster JP, Lawton SP. Evolution of antigenic diversity in the zoonotic multi-host parasite Schistosoma japonicum: implications for vaccine design. Int J Parasitol 2025:S0020-7519(25)00066-9. [PMID: 40204227 DOI: 10.1016/j.ijpara.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/05/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
The multi-host zoonotic transmission of the blood fluke Schistosoma japonicum is complex, presenting challenges for China's schistosomiasis elimination strategy. How multi-host transmission impacts the genetic diversity of S. japonicum populations is poorly understood and the extent of Schistosoma japonicum antigen coding gene (SjACG) variability remains unknown despite the implications for parasite survival, vaccine development and disease control. To address this, we sequenced the host-interacting domains of three functionally significant SjACGs previously identified as promising vaccine targets (tetraspanin 23 (TSP-23), venom allergen-like protein 7 (VAL-7), and tegument allergen-like protein 1 (TAL-1)) from FTA-archived S. japonicum miracidia sampled from natural infections amongst different definitive host species in mainland China. This work represents the first known analysis of SjACG variation among different host species. SjACGs were genetically diverse across host species, with 10-20 SjACG haplotypes identified from 60 to 81 sequences. Host-derived immune selection pressures may be driving this variation, impacting antigen protein structure, function, and antigenic propensity. Antigen haplotypes were broadly shared across host species, supporting prior suggestions of gene flow and underscoring the importance of zoonotic transmission in disseminating diversity. Some host adaptation was inferred through identification of host species-specific variation. Parasites sampled from humans displayed the greatest overall diversity of SjACGs, and humans shared haplotypes with all other host species. SjACG diversification appears to have occurred rapidly, and before modern humans arrived in China (∼1.7-0.66 million years ago (MYA)), suggesting that animal hosts have been important in the evolutionary history of these antigens. Collectively, the results expand our understanding of the impact of zoonotic transmission on the co-evolutionary processes driving antigenic variability and provide possible evidence of adaptive molecular evolution of certain antigen haplotypes to specific host species. Our findings have implications for the development of anti-schistosome vaccines and, ultimately, for control of zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Daniel A J Parsons
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, Penrhyn Road, Surrey, England KT1 2EE, United Kingdom; Natural History Museum, Cromwell Road, South Kensington, London, England SW7 5BD, United Kingdom.
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, Penrhyn Road, Surrey, England KT1 2EE, United Kingdom.
| | - Aidan M Emery
- Natural History Museum, Cromwell Road, South Kensington, London, England SW7 5BD, United Kingdom.
| | - Fiona Allan
- Natural History Museum, Cromwell Road, South Kensington, London, England SW7 5BD, United Kingdom; Scottish Oceans Institute, Department of Biology, University of St Andrews, St Andrews, Scotland KY16 8LB, United Kingdom.
| | - Da-Bing Lu
- Department of Epidemiology and Statistics, School of Public Health, Soochow University, Suzhou, China.
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hawkshead Campus, Herts, England AL9 7TA, United Kingdom.
| | - Scott P Lawton
- Centre for Epidemiology & Planetary Health, School of Veterinary Medicine & Biosciences, Scotland's Rural College, Inverness Campus, Inverness, Scotland IV2 5NA, United Kingdom.
| |
Collapse
|
3
|
Jardim Poli P, Fischer-Carvalho A, Tahira AC, Chan JD, Verjovski-Almeida S, Sena Amaral M. Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure. Noncoding RNA 2024; 10:27. [PMID: 38668385 PMCID: PMC11053911 DOI: 10.3390/ncrna10020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ.
Collapse
Affiliation(s)
- Pedro Jardim Poli
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Agatha Fischer-Carvalho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - Ana Carolina Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| | - John D. Chan
- Global Health Institute, University of Wisconsin-Madison, Madison, WI 53792, USA;
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - Murilo Sena Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo 05503-900, SP, Brazil; (P.J.P.); (A.F.-C.); (A.C.T.); (S.V.-A.)
| |
Collapse
|
4
|
Oettle RC, Dickinson HA, Fitzsimmons CM, Sacko M, Tukahebwa EM, Chalmers IW, Wilson S. Protective human IgE responses are promoted by comparable life-cycle dependent Tegument Allergen-Like expression in Schistosoma haematobium and Schistosoma mansoni infection. PLoS Pathog 2023; 19:e1011037. [PMID: 37228019 DOI: 10.1371/journal.ppat.1011037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Schistosoma haematobium is the most prevalent of the human-infecting schistosome species, causing significant morbidity in endemically exposed populations. Despite this, it has been relatively understudied compared to its fellow species, S. mansoni. Here we provide the first comprehensive characterization of the S. haematobium Tegument Allergen-Like protein family, a key protein family directly linked to protective immunity in S. mansoni infection. Comparable with observations for S. mansoni, parasite phylogenetic analysis and relative gene expression combined with host serological analysis support a cross-reactive relationship between S. haematobium TAL proteins, exposed to the host immune system as adult worms die, and closely related proteins, exposed during penetration by the infecting cercarial and early schistosomulae stages. Specifically, our results strengthen the evidence for host immunity driven by cross-reactivity between family members TAL3 and TAL5, establishing it for the first time for S. haematobium infection. Furthermore, we build upon this relationship to include the involvement of an additional member of the TAL protein family, TAL11 for both schistosome species. Finally, we show a close association between experience of infection and intensity of transmission and the development of protective IgE responses to these antigens, thus improving our knowledge of the mechanisms by which protective host immune responses develop. This knowledge will be critical in understanding how control efforts such as mass drug administration campaigns influence the development of host immunity and subsequent patterns of infection and disease within endemic populations.
Collapse
Affiliation(s)
- Rebecca C Oettle
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Moussa Sacko
- Department of Diagnostic and Biomedical Research, Institut National de Recherche en Santé Publique, Bamako, Mali
| | | | - Iain W Chalmers
- Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Shona Wilson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
6
|
Thomas CM, Timson DJ. The Mechanism of Action of Praziquantel: Can New Drugs Exploit Similar Mechanisms? Curr Med Chem 2020; 27:676-696. [DOI: 10.2174/0929867325666180926145537] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/06/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for treating infection with worms from the
genus Schistosoma. The drug is effective, cheap and has few side effects. However, despite its
use in millions of patients for over 40 years its molecular mechanism of action remains elusive.
Early studies demonstrated that PZQ disrupts calcium ion homeostasis in the worm and
the current consensus is that it antagonises voltage-gated calcium channels. It is hypothesised
that disruption of these channels results in uncontrolled calcium ion influx leading to uncontrolled
muscle contraction and paralysis. However, other experimental studies have suggested
a role for myosin regulatory light chains and adenosine uptake in the drug’s mechanism of
action. Assuming voltage-gated calcium channels do represent the main molecular target of
PZQ, the precise binding site for the drug remains to be identified. Unlike other commonly
used anti-parasitic drugs, there are few definitive reports of resistance to PZQ in the literature.
The lack of knowledge about PZQ’s molecular mechanism(s) undermines our ability to predict
how resistance might arise and also hinder our attempts to develop alternative antischistosomal
drugs which exploit the same target(s). Some PZQ derivatives have been identified
which also kill or paralyse schistosomes in culture. However, none of these are in widespread
clinical use. There is a pressing need for fundamental research into the molecular mechanism(
s) of action of PZQ. Such research would enable new avenues for antischsistosomal
drug discovery.
Collapse
Affiliation(s)
- Charlotte M. Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - David J. Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
7
|
Thomas CM, Timson DJ. The Schistosoma mansoni tegumental allergen protein, SmTAL1: Binding to an IQ-motif from a voltage-gated ion channel and effects of praziquantel. Cell Calcium 2020; 86:102161. [PMID: 31981914 DOI: 10.1016/j.ceca.2020.102161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/30/2019] [Accepted: 01/10/2020] [Indexed: 11/28/2022]
Abstract
SmTAL1 is a calcium binding protein from the parasitic worm, Schistosoma mansoni. Structurally it is comprised of two domains - an N-terminal EF-hand domain and a C-terminal dynein light chain (DLC)-like domain. The protein has previously been shown to interact with the anti-schistosomal drug, praziquantel (PZQ). Here, we demonstrated that both EF-hands in the N-terminal domain are functional calcium ion binding sites. The second EF-hand appears to be more important in dictating affinity and mediating the conformational changes which occur on calcium ion binding. There is positive cooperativity between the four calcium ion binding sites in the dimeric form of SmTAL1. Both the EF-hand domain and the DLC-domain dimerise independently suggesting that both play a role in forming the SmTAL1 dimer. SmTAL1 binds non-cooperatively to PZQ and cooperatively to an IQ-motif from SmCav1B, a voltage-gated calcium channel. PZQ tends to strengthen this interaction, although the relationship is complex. These data suggest the hypothesis that SmTAL1 regulates at least one voltage-gated calcium channel and PZQ interferes with this process. This may be important in the molecular mechanism of this drug. It also suggests that compounds which bind SmTAL1, such as six from the Medicines for Malaria Box identified in this work, may represent possible leads for the discovery of novel antagonists.
Collapse
Affiliation(s)
- Charlotte M Thomas
- School of Biological Sciences and Institute for Global Food Security, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
8
|
Abstract
Praziquantel is a remarkably effective drug for the treatment of schistosomiasis. It has few side effects, some of which have been attributed to its inactive enantiomer. Few, if any, verified cases of drug resistance have been reported in a clinical setting. The preponderance of scientific evidence suggests that the drug works by dysregulating calcium homeostasis in the worm. Voltage-gated calcium channels have been proposed as the main pharmacological target of praziquantel, although no direct evidence of interaction with this protein is available. Here, the biochemical pharmacology of praziquantel is briefly reviewed and a hypothesis for its mechanism proposed. This hypothesis suggests that the drug works, in part, by disrupting an interaction between a voltage-gated calcium channel (SmCav1B) and an accessory protein, SmTAL1.
Collapse
Affiliation(s)
- David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| |
Collapse
|
9
|
Thomas CM, Timson DJ. Calmodulins from Schistosoma mansoni: Biochemical analysis and interaction with IQ-motifs from voltage-gated calcium channels. Cell Calcium 2018; 74:1-13. [DOI: 10.1016/j.ceca.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/08/2018] [Accepted: 05/16/2018] [Indexed: 01/27/2023]
|
10
|
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms (blood flukes) of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia and, particularly, in sub-Saharan Africa. Infective larvae grow in an intermediate host (fresh-water snails) before penetrating the skin of the definitive human host. Mature adult worms reside in the mesenteric (Schistosoma mansoni and Schistosoma japonicum) or pelvic (Schistosoma haematobium) veins, where female worms lay eggs, which are secreted in stool or urine. Eggs trapped in the surrounding tissues and organs, such as the liver and bladder, cause inflammatory immune responses (including granulomas) that result in intestinal, hepato-splenic or urogenital disease. Diagnosis requires the detection of eggs in excreta or worm antigens in the serum, and sensitive, rapid, point-of-care tests for populations living in endemic areas are needed. The anti-schistosomal drug praziquantel is safe and efficacious against adult worms of all the six Schistosoma spp. infecting humans; however, it does not prevent reinfection and the emergence of drug resistance is a concern. Schistosomiasis elimination will require a multifaceted approach, including: treatment; snail control; information, education and communication; improved water, sanitation and hygiene; accurate diagnostics; and surveillance-response systems that are readily tailored to social-ecological settings.
Collapse
Affiliation(s)
- Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia.
| | - David W Dunne
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Moussa Sacko
- Department of Diagnostic and Biomedical Research, Institut National de Recherche en Santé Publique, Bamako, Mali
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Birgitte J Vennervald
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Rezende CMF, Coitinho JB, Costa M, Silva MR, Giusta M, Oliveira-Prado R, Corrêa-Oliveira R, Nagem R, Goes AM. Biochemical analysis and identification of linear B-cell epitopes from recombinant Sm21.7 antigen from Schistosoma mansoni. Mol Immunol 2018; 101:29-37. [PMID: 29857222 DOI: 10.1016/j.molimm.2018.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022]
Abstract
Schistosoma mansoni tegument is a dynamic host-interactive layer that is an essential source of parasite antigens and a relevant field for schistosome vaccine research. Sm21.7 is a cytoskeleton antigen found in S. mansoni tegument that engenders protection in experimental challenge infection. Because of its crucial role in the parasite tegument and its promising protective capability, Sm21.7 is an exciting target for the development of therapeutic strategies. The present study describes Sm21.7 structural and biophysical features using circular dichroism spectroscopy and identifies linear B-cell epitopes of Sm21.7 using in-silico methods and immunoassay. The Sm21.7 gene was cloned into the pETDEST42 vector, and the recombinant protein was overexpressed in Escherichia coli DE3. The soluble protein was purified by affinity chromatography followed by ion-exchange chromatography. Purified recombinant Sm21.7 was analyzed by circular dichroism spectroscopy which demonstrated that the rSm21.7 structure was comprised of approximately 38% α-helices and its conformation remains stable at temperatures of up to 60 °C. Prediction of rSm21.7 B-cell epitopes was based on amino acid physicochemical properties. Sixteen peptides corresponding to predicted epitopes were synthesized and immunoreactivity assessed by spot peptide array using pooled rSm21.7-immunized mice sera or patients' sera with different clinical forms of S. mansoni infection. Immunoassays revealed that sera from rSm21.7-immunized mice reacted predominantly with peptides located in the dynein-light chain domain (DLC) at the C-terminal region of rSm21.7. Comparative analysis of the antibody response of acute, intestinal and hepatosplenic patients' sera to the Sm21.7 peptides showed that a differential recognition pattern of Sm21.7-derived peptides by intestinal patients' sera might contribute to down-regulate the immune response in chronic intestinal patients. Together, the results may help the development of S. mansoni vaccine strategies based on the rSm21.7 antigen.
Collapse
Affiliation(s)
- Cíntia M F Rezende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil.
| | - Juliana B Coitinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mariana Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Marina Rodrigues Silva
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Mário Giusta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Roberta Oliveira-Prado
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Corrêa-Oliveira
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Alfredo M Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
12
|
Caraballo L, Coronado S. Parasite allergens. Mol Immunol 2018; 100:113-119. [PMID: 29588070 DOI: 10.1016/j.molimm.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/19/2018] [Indexed: 01/22/2023]
Abstract
Human IgE against helminths is a normal component of the whole protective response elicitesd during infection, when specific IgE to a great number of antigens is produced; however, few of those IgE binding components are actually allergens. In general, considering the strong Th2/IgE responses during helminth infections is intriguing that they are not usually associated with allergic symptoms, which probably (but not exclusively) depends on parasite-induced immunomodulation. However, allergic manifestations have been described during some helminth infections such as ascariasis, strongyloidiasis, anisakiasis and hydatidosis. In addition, there is evidence that helminthiases (e.g. ascariasis) can increase symptoms in allergic patients. Furthermore, allergic reactions during anti-helminth vaccination have been observed, a problem that also could be associated to the future use of parasite derived immunomodulators. Therefore, identification and characterization of helminth allergens is a matter of increasing research and a great number of IgE binding antigens have been found (www.allergen.org and www.allergome.org). Here we describe only a small group of them, for which allergenic activity (the ability to induce IgE mediated inflammation) have been clinical or experimentally demonstrated. Ascaris lumbricoides tropomyosin (Asc l 3) has strong allergenic activity; in the Tropics it has been associated with asthma and asthma severity, suggesting clinical relevance. In addition, due to its cross reactivity with mite tropomyosins this allergen could influence house dust mite (HDM) allergy diagnosis. Characterized Ascaris allergens also include the polyprotein As s 1 (ABA-1) and the Glutathione transferase As l 13. Other helminth allergens include Anisakis simplex Ani s 1, Ani s 4, Ani s 7 and Ani s 9; Necator americanus NaASP2q and Nacal1 and Schistosoma mansoni SmVAL4 and Sm22.6. Future work on helminth IgE binding antigens will help to understand several aspects of allergenicity and allergenic activity, among them the increasing finding of IgE binding molecules that not induce allergic symptoms.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia.
| | - Sandra Coronado
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
13
|
Emmanoch P, Kosa N, Vichasri-Grams S, Tesana S, Grams R, Geadkaew-Krenc A. Comparative Characterization of Four Calcium-Binding EF Hand Proteins from Opisthorchis viverrini. THE KOREAN JOURNAL OF PARASITOLOGY 2018. [PMID: 29529855 PMCID: PMC5858670 DOI: 10.3347/kjp.2018.56.1.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four isoforms of calcium binding proteins containing 2 EF hand motifs and a dynein light chain-like domain in the human liver fluke Opisthorchis viverrini, namely OvCaBP1, 2, 3, and 4, were characterized. They had molecular weights of 22.7, 21.6, 23.7, and 22.5 kDa, respectively and showed 37.2–42.1% sequence identity to CaBP22.8 of O. viverrini. All were detected in 2- and 4-week-old immature and mature parasites. Additionally, OvCaBP4 was found in newly excysted juveniles. Polyclonal antibodies against each isoform were generated to detect the native proteins in parasite extracts by Western blot analysis. All OvCaBPs were detected in soluble and insoluble crude worm extracts and in the excretory-secretory product, at approximate sizes of 21–23 kDa. The ion-binding properties of the proteins were analyzed by mobility shift assays with the divalent cations Ca2+, Mg2+, Zn2+, and Cu2+. All OvCaBPs showed mobility shifts with Ca2+ and Zn2+. OvCaBP1 showed also positive results with Mg2+ and Cu2+. As tegumental proteins, OvCaBP1, 2, and 3 are interesting drug targets for the treatment of opisthorchiasis.
Collapse
Affiliation(s)
- Palida Emmanoch
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Nanthawat Kosa
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | | | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen, 40002, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
14
|
Carson J, Thomas CM, McGinty A, Takata G, Timson DJ. The tegumental allergen-like proteins of Schistosoma mansoni: A biochemical study of SmTAL4-TAL13. Mol Biochem Parasitol 2018; 221:14-22. [PMID: 29453993 DOI: 10.1016/j.molbiopara.2018.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/20/2022]
Abstract
Schistosoma mansoni, like other trematodes, expresses a number of unusual calcium binding proteins which consist of an EF-hand domain joined to a dynein light chain-like (DLC-like) domain by a flexible linker. These proteins have been implicated in host immune responses and drug binding. Three members of this protein family from S. mansoni (SmTAL1, SmTAL2 and SmTAL3) have been well characterised biochemically. Here we characterise the remaining family members from this species (SmTAL4-13). All of these proteins form homodimers and all except SmTAL5 bind to calcium and manganese ions. SmTAL9, 10 and 11 also bind to magnesium ions. The antischistosomal drug, praziquantel interacts with SmTAL4, 5 and 8. Some family members also bind to calmodulin antagonists such as chlorpromazine and trifluoperazine. Molecular modelling suggests that all ten proteins adopt similar overall folds with the EF-hand and DLC-like domains folding discretely. Bioinformatics analyses suggest that the proteins may fall into two main categories: (i) those which bind calcium ions reversibly at the second EF-hand and may play a role in signalling (SmTAL1, 2, 8 and 12) and (ii) those which bind calcium ions at the first EF-hand and may play either signalling or structural roles (SmTAL7, 9, 10 and 13). The remaining proteins include those which do not bind calcium ions (SmTAL3 and 5) and three other proteins (SmTAL4, 6 and 11). The roles of these proteins are less clear, but they may also have structural roles.
Collapse
Affiliation(s)
- Jack Carson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Charlotte M Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK
| | - Aaron McGinty
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Whitla Medical Building, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gustavo Takata
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK.
| |
Collapse
|
15
|
Mazzucchelli G, Holzhauser T, Cirkovic Velickovic T, Diaz‐Perales A, Molina E, Roncada P, Rodrigues P, Verhoeckx K, Hoffmann‐Sommergruber K. Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Mol Nutr Food Res 2018; 62:1700278. [PMID: 28925060 PMCID: PMC5814866 DOI: 10.1002/mnfr.201700278] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/28/2017] [Indexed: 01/08/2023]
Abstract
Food allergies are recognized as a global health concern. In order to protect allergic consumers from severe symptoms, allergenic risk assessment for well-known foods and foods containing genetically modified ingredients is installed. However, population is steadily growing and there is a rising need to provide adequate protein-based foods, including novel sources, not yet used for human consumption. In this context safety issues such as a potential increased allergenic risk need to be assessed before marketing novel food sources. Therefore, the established allergenic risk assessment for genetically modified organisms needs to be re-evaluated for its applicability for risk assessment of novel food proteins. Two different scenarios of allergic sensitization have to be assessed. The first scenario is the presence of already known allergenic structures in novel foods. For this, a comparative assessment can be performed and the range of cross-reactivity can be explored, while in the second scenario allergic reactions are observed toward so far novel allergenic structures and no reference material is available. This review summarizes the current analytical methods for allergenic risk assessment, highlighting the strengths and limitations of each method and discussing the gaps in this assessment that need to be addressed in the near future.
Collapse
Affiliation(s)
- Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry – MolSysDepartment of ChemistryUniversity of LiegeLiegeBelgium
| | | | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food SciencesUniversity of Belgrade – Faculty of ChemistryBelgradeSerbia
- Ghent University Global CampusYeonsu‐guIncheonSouth Korea
| | | | | | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro SpallanzaniMilanoItaly
| | - Pedro Rodrigues
- CCMARCenter of Marine ScienceUniversity of AlgarveFaroPortugal
| | | | | |
Collapse
|
16
|
A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 2017; 44:1005-10. [PMID: 27528745 DOI: 10.1042/bst20150270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/23/2022]
Abstract
There is a family of proteins from parasitic worms which combine N-terminal EF-hand domains with C-terminal dynein light chain-like domains. Data are accumulating on the biochemistry and cell biology of these proteins. However, little is known about their functions in vivo Schistosoma mansoni expresses 13 family members (SmTAL1-SmTAL13). Three of these (SmTAL1, SmTAL2 and SmTAL3) have been subjected to biochemical analysis which demonstrated that they have different molecular properties. Although their overall folds are predicted to be similar, small changes in the EF-hand domains result in differences in their ion binding properties. Whereas SmTAL1 and SmTAL2 are able to bind calcium (and some other) ions, SmTAL3 appears to be unable to bind any divalent cations. Similar biochemical diversity has been seen in the CaBP proteins from Fasciola hepatica Four family members are known (FhCaBP1-4). All of these bind to calcium ions. However, FhCaBP4 dimerizes in the presence of calcium ions, FhCaBP3 dimerizes in the absence of calcium ions and FhCaBP2 dimerizes regardless of the prevailing calcium ion concentration. In both the SmTAL and FhCaBP families, the proteins also differ in their ability to bind calmodulin antagonists and related drugs. Interestingly, SmTAL1 interacts with praziquantel (the drug of choice for treating schistosomiasis). The pharmacological significance (if any) of this finding is unknown.
Collapse
|
17
|
Structural insights into a 20.8-kDa tegumental-allergen-like (TAL) protein from Clonorchis sinensis. Sci Rep 2017; 7:1764. [PMID: 28496122 PMCID: PMC5431922 DOI: 10.1038/s41598-017-02044-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/06/2017] [Indexed: 11/23/2022] Open
Abstract
Survival of Clonorchis sinensis, a cause of human clonorchiasis, requires tegument proteins, which are localized to the tegumental outer surface membrane. These proteins play an important role in a host response and parasite survival. Thus, these proteins are interesting molecular targets for vaccine and drug development. Here, we have determined two crystal structures of the calmodulin like domain (amino acid [aa] positions 1–81) and dynein light chain (DLC)-like domain (aa 83–177) of a 20.8-kDa tegumental-allergen-like protein from Clonorchis sinensis (CsTAL3). The calmodulin like domain has two Ca2+-binding sites (named CB1 and CB2), but Ca2+ binds to only one site, CB1. The DLC-like domain has a dimeric conformation; the interface is formed mainly by hydrogen bonds between the main chain atoms. In addition, we have determined full-length structure of CsTAL3 in solution and showed the conformational change of CsTAL3 induced by Ca2+ ion binding using small-angle X-ray scattering analysis and molecular dynamics simulations. The Ca2+-bound form has a more extended conformation than the Ca2+-free from does. These structural and biochemical analyses will advance the understanding of the biology of this liver fluke and may contribute to our understanding of the molecular mechanism of calcium-responsive and tegumental-allergen-like proteins.
Collapse
|
18
|
Kim YJ, Yoo WG, Lee MR, Kang JM, Na BK, Cho SH, Park MY, Ju JW. Molecular and Structural Characterization of the Tegumental 20.6-kDa Protein in Clonorchis sinensis as a Potential Druggable Target. Int J Mol Sci 2017; 18:E557. [PMID: 28273846 PMCID: PMC5372573 DOI: 10.3390/ijms18030557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022] Open
Abstract
The tegument, representing the membrane-bound outer surface of platyhelminth parasites, plays an important role for the regulation of the host immune response and parasite survival. A comprehensive understanding of tegumental proteins can provide drug candidates for use against helminth-associated diseases, such as clonorchiasis caused by the liver fluke Clonorchis sinensis. However, little is known regarding the physicochemical properties of C. sinensis teguments. In this study, a novel 20.6-kDa tegumental protein of the C. sinensis adult worm (CsTegu20.6) was identified and characterized by molecular and in silico methods. The complete coding sequence of 525 bp was derived from cDNA clones and encodes a protein of 175 amino acids. Homology search using BLASTX showed CsTegu20.6 identity ranging from 29% to 39% with previously-known tegumental proteins in C. sinensis. Domain analysis indicated the presence of a calcium-binding EF-hand domain containing a basic helix-loop-helix structure and a dynein light chain domain exhibiting a ferredoxin fold. We used a modified method to obtain the accurate tertiary structure of the CsTegu20.6 protein because of the unavailability of appropriate templates. The CsTegu20.6 protein sequence was split into two domains based on the disordered region, and then, the structure of each domain was modeled using I-TASSER. A final full-length structure was obtained by combining two structures and refining the whole structure. A refined CsTegu20.6 structure was used to identify a potential CsTegu20.6 inhibitor based on protein structure-compound interaction analysis. The recombinant proteins were expressed in Escherichia coli and purified by nickel-nitrilotriacetic acid affinity chromatography. In C. sinensis, CsTegu20.6 mRNAs were abundant in adult and metacercariae, but not in the egg. Immunohistochemistry revealed that CsTegu20.6 localized to the surface of the tegument in the adult fluke. Collectively, our results contribute to a better understanding of the structural and functional characteristics of CsTegu20.6 and homologs of flukes. One compound is proposed as a putative inhibitor of CsTegu20.6 to facilitate further studies for anthelmintics.
Collapse
Affiliation(s)
- Yu-Jung Kim
- Division of Malaria and Parasitic Diseases, Centre for Immunology and Pathology, Korea National Research Institute of Health, Chungbuk 28159, Korea.
| | - Won Gi Yoo
- Division of Malaria and Parasitic Diseases, Centre for Immunology and Pathology, Korea National Research Institute of Health, Chungbuk 28159, Korea.
| | - Myoung-Ro Lee
- Division of Malaria and Parasitic Diseases, Centre for Immunology and Pathology, Korea National Research Institute of Health, Chungbuk 28159, Korea.
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea.
| | - Shin-Hyeong Cho
- Division of Malaria and Parasitic Diseases, Centre for Immunology and Pathology, Korea National Research Institute of Health, Chungbuk 28159, Korea.
| | - Mi-Yeoun Park
- Division of Malaria and Parasitic Diseases, Centre for Immunology and Pathology, Korea National Research Institute of Health, Chungbuk 28159, Korea.
| | - Jung-Won Ju
- Division of Malaria and Parasitic Diseases, Centre for Immunology and Pathology, Korea National Research Institute of Health, Chungbuk 28159, Korea.
| |
Collapse
|
19
|
Li Y, Yin M, Wu Q, McManus DP, Blair D, Li H, Xu B, Mo X, Feng Z, Hu W. Genetic diversity and selection of three nuclear genes in Schistosoma japonicum populations. Parasit Vectors 2017; 10:87. [PMID: 28212676 PMCID: PMC5316221 DOI: 10.1186/s13071-017-2033-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The blood fluke, Schistosoma japonicum still causes severe disease in China, the Philippines and Indonesia. Although there have been some studies the molecular epidemiology of this persistent and harmful parasite, few have explored the possibility and implications of selection in S. japonicum populations. METHODS We analyzed diversity and looked for evidence of selection at three nuclear genes (SjIpp2, SjFabp and SjT22.6) in 13 S. japonicum populations. RESULTS SjT22.6 was found to exhibit high nucleotide diversity and was under positive selection in the mountainous region of mainland China. As a tegumental protein, its secondary and tertiary structure differed between S. japonicum strains from the mountainous and lakes regions. In contrast, SjIpp2 and SjFabp had relatively low levels of nucleotide diversity and did not show significant departure from neutrality. CONCLUSIONS As a tegument-associated antigen-encoding gene of S. japonicum, SjT22.6 has high nucleotide diversity and appears to be under positive selection in the mountainous region of mainland China.
Collapse
Affiliation(s)
- Yaqi Li
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Mingbo Yin
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Qunfeng Wu
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD 4029 Australia
| | - David Blair
- College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| | - Hongyan Li
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Rui Jin Er Road, Shanghai, 200025 China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Rui Jin Er Road, Shanghai, 200025 China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Rui Jin Er Road, Shanghai, 200025 China
| | - Wei Hu
- School of Life Science, Fudan University, Songhu Road 2005, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Rui Jin Er Road, Shanghai, 200025 China
| |
Collapse
|
20
|
Cheung S, Thomas CM, Timson DJ. FhCaBP1 (FH22): A Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Exp Parasitol 2016; 170:109-115. [PMID: 27693219 DOI: 10.1016/j.exppara.2016.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022]
Abstract
FH22 has been previously identified as a calcium-binding protein from the common liver fluke, Fasciola hepatica. It is part of a family of at least four proteins in this organism which combine an EF-hand containing N-terminal domain with a C-terminal dynein light chain-like domain. Here we report further biochemical properties of FH22, which we propose should be renamed FhCaBP1 for consistency with other family members. Molecular modelling predicted that the two domains are linked by a flexible region and that the second EF-hand in the N-terminal domain is most likely the calcium ion binding site. Native gel electrophoresis demonstrated that the protein binds both calcium and manganese ions, but not cadmium, magnesium, strontium, barium, cobalt, copper(II), iron (II), nickel, zinc, lead or potassium ions. Calcium ion binding alters the conformation of the protein and increases its stability towards thermal denaturation. FhCaBP1 is a dimer in solution and calcium ions have no detectable effect on the protein's ability to dimerise. FhCaBP1 binds to the calmodulin antagonists trifluoperazine and chlorpromazine. Overall, the FhCaBP1's biochemical properties are most similar to FhCaBP2 a fact consistent with the close sequence and predicted structural similarity between the two proteins.
Collapse
Affiliation(s)
- Sarah Cheung
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Charlotte M Thomas
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK; School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| |
Collapse
|
21
|
Labbunruang N, Phadungsil W, Tesana S, Smooker PM, Grams R. Similarity of a 16.5kDa tegumental protein of the human liver fluke Opisthorchis viverrini to nematode cytoplasmic motility protein. Mol Biochem Parasitol 2016; 207:1-9. [PMID: 27140280 DOI: 10.1016/j.molbiopara.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
Opisthorchis viverrini is the causative agent of human opisthorchiasis in Thailand and long lasting infection with the parasite has been correlated with the development of cholangiocarcinoma. In this work we have molecularly characterized the first member of a protein family carrying two DM9 repeats in this parasite (OvDM9-1). InterPro and other protein family databases describe the DM9 repeat as a protein domain of unknown function that has been first noted in Drosophila melanogaster. Two paralogous proteins have been partially characterized in the genus Fasciola, Fasciola hepatica TP16.5, a novel tegumental antigen in human fascioliasis and, recently F. gigantica DM9-1, a parenchymal protein with structural similarity to nematode cytoplasmic motility protein (MFP2). In this study, we show further evidence that this family of trematode proteins is related to MFP2 in sequence and structure. Soluble recombinant OvDM9-1 was used for structural analyses and for production of specific antisera. The native protein was detected in soluble and insoluble crude worm extracts and in seemingly various oligomeric forms in the latter. The potential for oligomerization was supported by cross-linking experiments of recombinant OvDM9-1. Structure prediction suggested a β-rich secondary structure of the protein and this was supported by a circular dichroism analysis. Molecular modeling in Phyre2 identified both MFP2 domains as distant homologs of OvDM9-1. The protein was located in tegumental type tissue and the cecal epithelium in the mature parasite. Recombinant OvDM9-1 was used as target in indirect ELISA but sera from infected hamsters showed only marginal reactivity towards it. It is proposed that OvDM9-1 and other members of this protein family have a role in cellular transport through functions on the cytoskeleton.
Collapse
Affiliation(s)
- Nipawan Labbunruang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter M Smooker
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12121, Thailand.
| |
Collapse
|
22
|
Yang Q, Wang Z, Bao Z, Zhang Z, Yang Y, Ren Q, Xing H, Dai S. New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. CHEMSUSCHEM 2016; 9:806-812. [PMID: 27061812 DOI: 10.1002/cssc.201501691] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/08/2016] [Indexed: 06/05/2023]
Abstract
The last decade saw an explosion of interest in using amine-functionalized materials for CO2 capture and conversion, and it is of great importance to elucidate the relationship between the molecular structure of amine-functionalized materials and their CO2 capacity. In this work, based on a new quantitative analysis method for the CO2 absorption mechanism of amino-acid ionic liquids (ILs) and quantum chemical calculations, we show that the small difference in the local structure of amine groups in ILs could lead to much different CO2 absorption mechanisms, which provides an opportunity for achieving higher CO2 capacity by structure design. This work revealed that the actual CO2 absorption mechanism by amino-acid ILs goes beyond the apparent CO2 /amine stoichiometry; a rigid ring structure around the amine group in ILs creates a unique electrostatic environment that inhibits the deprotonation of carbamic acid and enables actually equimolar CO2 /amine absorption.
Collapse
Affiliation(s)
- Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiping Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huabin Xing
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Colleague of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37966, United States
| |
Collapse
|
23
|
Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain. Parasitol Res 2016; 115:2879-86. [DOI: 10.1007/s00436-016-5046-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/07/2016] [Indexed: 01/06/2023]
|
24
|
FhCaBP2: a Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology 2015; 142:1375-86. [DOI: 10.1017/s0031182015000736] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYFhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.
Collapse
|