1
|
Podyacheva E, Toropova Y. The Role of NAD+, SIRTs Interactions in Stimulating and Counteracting Carcinogenesis. Int J Mol Sci 2023; 24:ijms24097925. [PMID: 37175631 PMCID: PMC10178434 DOI: 10.3390/ijms24097925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The World Health Organization has identified oncological diseases as one of the most serious health concerns of the current century. Current research on oncogenesis is focused on the molecular mechanisms of energy-biochemical reprogramming in cancer cell metabolism, including processes contributing to the Warburg effect and the pro-oncogenic and anti-oncogenic roles of sirtuins (SIRTs) and poly-(ADP-ribose) polymerases (PARPs). However, a clear understanding of the interaction between NAD+, SIRTs in cancer development, as well as their effects on carcinogenesis, has not been established, and literature data vary greatly. This work aims to provide a summary and structure of the available information on NAD+, SIRTs interactions in both stimulating and countering carcinogenesis, and to discuss potential approaches for pharmacological modulation of these interactions to achieve an anticancer effect.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, Widmann C. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. Eur J Pharm Biopharm 2023; 184:116-124. [PMID: 36709921 DOI: 10.1016/j.ejpb.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) are short (<30 amino acids), generally cationic, peptides that deliver diverse cargos into cells. CPPs access the cytosol either by direct translocation through the plasma membrane or via endocytosis followed by endosomal escape. Both direct translocation and endosomal escape can occur simultaneously, making it non-trivial to specifically study endosomal escape alone. Here we depolarize the plasma membrane and showed that it inhibits the direct translocation of several CPPs but does not affect their uptake into endosomes. Despite good endocytic uptake many CPPs previously considered to access the cytosol via endosomal escape, failed to access the cytosol once direct translocation was abrogated. Even CPPs designed for enhanced endosomal escape actually showed negligible endosomal escape into the cytosol. Our data reveal that cytosolic localization of CPPs occurs mainly by direct translocation across the plasma membrane. Cell depolarization represents a simple manipulation to stringently test the endosomal escape capacity of CPPs.
Collapse
Affiliation(s)
- Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Tara Kalia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
3
|
de Andrade JKF, da Silva Góes AJ, Barbosa VX, de Lima Silva MS, Matos Donato MA, Peixoto CA, Militão GCG, da Silva TG. Anticancer activity of β-Lapachone derivatives on human leukemic cell lines. Chem Biol Interact 2022; 365:110057. [PMID: 35934135 DOI: 10.1016/j.cbi.2022.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/18/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
β-lapachone is a 1,2-naphthoquinone of great therapeutic interest that induces cell death by autophagy and apoptosis in tumor cells due to oxidative stress increasing. However, its high toxicity in healthy tissues limits its clinical use, which stimulates the planning and synthesis of more selective analogs. The aim of this study was to investigate the cytotoxic activity of three thiosemicarbazones derived from β-lapachone (BV2, BV3 and BV5) in leukemia cells. Cytotoxicity tests were performed on tumor cells (HL-60, K562, K562-Lucena and MOLT-4) and normal peripheral blood mononuclear cells (PBMCs). Subsequently, the mode of action of compounds was accessed by optical microscopy, transmission electron microscopy or fluorescence microscopy. Flow cytometry analysis was performed to investigate apoptosis induction, cell cycle, DNA fragmentation and mitochondrial depolarization. All derivatives inhibited tumor cell growth after 72 h (IC50 < 10 μM to all cell lines, including the resistant K562-Lucena) with less toxic effects in PBMC cells, being BV3 the most selective compound with selective index (SI) of 275 for HL-60; SI of 40 to K562; SI of 10 for MOLT-4 and SI of 50 to K562-Lucena compared to β-lapachone with SI of 18 to HL-60, SI of 3.7 to K562; SI of 2.4 to MOLT-4 and SI of 0.9 to K562-Lucena. In addition, the K562 or MOLT-4 cells treated with BV3 showed characteristics of both apoptosis and autophagy cell death, mainly by autophagy. These results demonstrate the potent cytotoxic effect of thiosemicarbazones derived from β-lapachone as promising anticancer drugs candidates, encouraging the continuity of in vivo tests.
Collapse
Affiliation(s)
| | | | - Vanessa Xavier Barbosa
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, 50670-901, Brazil
| | | | - Mariana Aragão Matos Donato
- Ultrastructure Laboratory, Aggeu Magalhães Research Center of the Oswaldo Cruz Foundation, Recife, Pernambuco, 50670-901, Brazil.
| | - Christina Alves Peixoto
- Ultrastructure Laboratory, Aggeu Magalhães Research Center of the Oswaldo Cruz Foundation, Recife, Pernambuco, 50670-901, Brazil.
| | | | | |
Collapse
|
4
|
Zhang K, Wang K, Zhang X, Qian Z, Zhang W, Zheng X, Wang J, Jiang Y, Zhang W, Lu Z, Hao H, Jiang S. Discovery of Small Molecules Simultaneously Targeting NAD(P)H:Quinone Oxidoreductase 1 and Nicotinamide Phosphoribosyltransferase: Treatment of Drug-Resistant Non-small-Cell Lung Cancer. J Med Chem 2022; 65:7746-7769. [PMID: 35640078 DOI: 10.1021/acs.jmedchem.2c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting NAD+ metabolism has emerged as an effective anticancer strategy. Inspired by the synergistic antitumor effect between NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates increasing the NAD consumption and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors hampering the NAD synthesis, first-in-class small molecules simultaneously targeting NQO1 and NAMPT were identified through structure-based design. In particular, compound 10d is an excellent NQO1 substrate that is processed faster than TSA by NQO1 and exhibited a slightly decreased NAMPT inhibitory potency than that of FK866. It can selectively inhibit the proliferation of NQO1-overexpressing A549 cells and taxol-resistant A549/taxol cells and also induce cell apoptosis and inhibit cell migration in an NQO1- and NAMPT-dependent manner in A549/taxol cells. Significantly, compound 10d demonstrated excellent in vivo antitumor efficacy in the A549/taxol xenograft models with no significant toxicity. This proof-of-concept study affirms the feasibility of discovering small molecules that target NQO1 and NAMPT simultaneously, and it also provides a novel, effective, and selective anticancer strategy.
Collapse
Affiliation(s)
- Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaizhen Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenlong Qian
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenbo Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaying Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yin Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wanheng Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Lu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
ElMokh O, Matsumoto S, Biniecka P, Bellotti A, Schaeuble K, Piacente F, Gallart-Ayala H, Ivanisevic J, Stamenkovic I, Nencioni A, Nahimana A, Duchosal MA. Gut microbiota severely hampers the efficacy of NAD-lowering therapy in leukemia. Cell Death Dis 2022; 13:320. [PMID: 35396381 PMCID: PMC8993809 DOI: 10.1038/s41419-022-04763-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/10/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD+) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD+ biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones. To identify parameters that could negatively affect the therapeutic efficacy of NAMPT inhibitors and propose therapeutic strategies to circumvent such failure, we performed metabolomics analyses in tumor environment and explored the effect of the interaction between microbiota and cancer cells. Here we show that tumor environment enriched in vitamin B3 (NAM) or nicotinic acid (NA) significantly lowers the anti-tumor efficacy of APO866, a prototypic NAMPT inhibitor. Additionally, bacteria (from the gut, or in the medium) can convert NAM into NA and thus fuel an alternative NAD synthesis pathway through NA. This leads to the rescue from NAD depletion, prevents reactive oxygen species production, preserves mitochondrial integrity, blunts ATP depletion, and protects cancer cells from death. Our data in an in vivo preclinical model reveal that antibiotic therapy down-modulating gut microbiota can restore the anti-cancer efficacy of APO866. Alternatively, NAphosphoribosyltransferase inhibition may restore anti-cancer activity of NAMPT inhibitors in the presence of gut microbiota and of NAM in the diet. ![]()
Collapse
Affiliation(s)
- Oussama ElMokh
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Saki Matsumoto
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Paulina Biniecka
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Axel Bellotti
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Karin Schaeuble
- Department of Oncology UNIL CHUV, University of Lausanne, 1066, Epalinges, Switzerland
| | - Francesco Piacente
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1005, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, 1005, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Department of Formation and Research, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Aimable Nahimana
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland.
| | - Michel A Duchosal
- Central Laboratory of Hematology, Department of Medical Laboratory and Pathology, Lausanne University Hospital and University of Lausanne, 27-sud, Rue du Bugnon, CH-1011, Lausanne, Switzerland. .,Service of Hematology, Department of Oncology, Lausanne University Hospital and University of Lausanne, 46, Rue Bugnon, 1011, Lausanne, Switzerland.
| |
Collapse
|
6
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
7
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Cloux AJ, Aubry D, Heulot M, Widmann C, ElMokh O, Piacente F, Cea M, Nencioni A, Bellotti A, Bouzourène K, Pellegrin M, Mazzolai L, Duchosal MA, Nahimana A. Reactive oxygen/nitrogen species contribute substantially to the antileukemia effect of APO866, a NAD lowering agent. Oncotarget 2019; 10:6723-6738. [PMID: 31803365 PMCID: PMC6877101 DOI: 10.18632/oncotarget.27336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
APO866 is a small molecule drug that specifically inhibits nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme involved in nicotinamide adenine dinucleotide (NAD) biosynthesis from the natural precursor nicotinamide. Although, the antitumor activity of APO866 on various types of cancer models has been reported, information regarding mechanisms by which APO866 exerts its cytotoxic effects is not well defined. Here we show that APO866 induces a strong, time-dependent increase in highly reactive ROS, nitric oxide, cytosolic/mitochondrial superoxide anions and hydrogen peroxide. We provide evidence that APO866-mediated ROS production is modulated by PARP1 and triggers cell death through mitochondria depolarization and ATP loss. Genetic or pharmacologic inhibition of PARP1 prevented hydrogen peroxide accumulation, caspase activation, mitochondria depolarization, ATP loss and abrogates APO866-induced cell death, suggesting that the integrity of PARP1 status is required for cell death. Conversely, PARP1 activating drugs enhanced the anti-leukemia activity of APO866 Collectively, our studies show that APO866 induces ROS/RNS productions, which mediate its anti-leukemia effect. These results support testing new combinatorial strategies to enhance the antitumor activities of APO866.
Collapse
Affiliation(s)
- Anne-Julie Cloux
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dominique Aubry
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mathieu Heulot
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Oussama ElMokh
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Axel Bellotti
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Karima Bouzourène
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Maxime Pellegrin
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucia Mazzolai
- Division of Angiology, Heart and Vessel Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Michel A Duchosal
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Aimable Nahimana
- Central Laboratory of Hematology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Kim DW, Cho JY. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity. Int J Mol Sci 2018; 19:ijms19123813. [PMID: 30513573 PMCID: PMC6321092 DOI: 10.3390/ijms19123813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) exhibit self-renewal activity and give rise to other cell types in tumors. Due to the infinite proliferative potential of CSCs, drugs targeting these cells are necessary to completely inhibit cancer development. The β-lapachone (bL) compound is widely used to treat cancer development; however, its effect on cancer stem cells remain elusive. Thus, we investigated the effect of bL on mammosphere formation using breast-cancer stem-cell (BCSC) marker-positive cells, MDA-MB-231. MDA-MB-231 cells, which are negative for reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H):quinone oxidoreductase (NQO1) expression, were constructed to stably express NQO1 (NQO1 stable cells). The effect of bL on these cells was evaluated by wound healing and Transwell cell-culture chambers, ALDEFLUOR assay, and mammosphere formation assay. Here, we show that bL inhibited the proliferative ability of mammospheres derived from BCSC marker-positive cells, MDA-MB-231, in an NQO1-dependent manner. The bL treatment efficiently downregulated the expression level of BCSC markers cluster of differentiation 44 (CD44), aldehyde dehydrogenase 1 family member A1 (ALDH1A1), and discs large (DLG)-associated protein 5 (DLGAP5) that was recently identified as a stem-cell proliferation marker in both cultured cells and mammosphered cells. Moreover, bL efficiently downregulated cell proliferation and migration activities. These results strongly suggest that bL could be a therapeutic agent for targeting breast-cancer stem-cells with proper NQO1 expression.
Collapse
Affiliation(s)
- Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
10
|
Dias RB, de Araújo TBS, de Freitas RD, Rodrigues ACBDC, Sousa LP, Sales CBS, Valverde LDF, Soares MBP, Dos Reis MG, Coletta RD, Ramos EAG, Camara CA, Silva TMS, Filho JMB, Bezerra DP, Rocha CAG. β-Lapachone and its iodine derivatives cause cell cycle arrest at G 2/M phase and reactive oxygen species-mediated apoptosis in human oral squamous cell carcinoma cells. Free Radic Biol Med 2018; 126:87-100. [PMID: 30071298 DOI: 10.1016/j.freeradbiomed.2018.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/27/2018] [Accepted: 07/28/2018] [Indexed: 01/05/2023]
Abstract
β-Lapachone is a natural naphthoquinone originally obtained from the bark of the purple Ipe (Tabebuia avellanedae Lor, Bignoniaceae) and its therapeutic potential in human cancer cells has been evaluated in several studies. In this study, we examined the effects of β-lapachone and its 3-iodine derivatives (3-I-α-lapachone and 3-I-β-lapachone) on cell proliferation, cell death, and cancer-related gene expression in human oral squamous cell carcinoma cells. β-Lapachone and its 3-iodine derivatives showed potent cytotoxicity against different types of human cancer cell lines. Indeed, treatment with these compounds induced cell cycle arrest at G2/M phase, followed by internucleosomal DNA fragmentation, and caused significant increases in phosphatidylserine externalization, caspase-8 and -9 activation, mitochondrial membrane depolarization, reactive oxygen species (ROS) production, and apoptotic cell death morphology. The apoptosis induced by the compounds was prevented by pretreatment with a pan-caspase inhibitor (Z-VAD-FMK) and an antioxidant (N-acetyl-l-cysteine). In vivo, β-lapachone and its 3-iodine derivatives significantly reduced tumor burden and did not alter any of the biochemical, hematological, or histological parameters of the animals. Overall, β-lapachone and its 3-iodine derivatives showed promising cytotoxic activity due to their ability to induce cell cycle arrest at G2/M phase and promote caspase- and ROS-mediated apoptosis. In addition, β-lapachone and its 3-iodine derivatives were able to suppress tumor growth in vivo, indicating that these compounds may be new antitumor drug candidates.
Collapse
Affiliation(s)
- Rosane Borges Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | - Raíza Dias de Freitas
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | - Letícia Palmeira Sousa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | | | | | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia, Brazil
| | - Mitermayer Galvão Dos Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Eduardo Antônio Gonçalves Ramos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Department of Pathology and Forensic Medicine, School of Medicine of the Federal University of Bahia, Salvador, Bahia, Brazil
| | - Celso Amorim Camara
- Department of Chemistry, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - José Maria Barbosa Filho
- Pharmaceutical Technology Laboratory, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Daniel Pereira Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil.
| | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil; Laboratory of Oral Surgical Pathology, School of Dentistry of the Federal University of Bahia, Bahia, Brazil.
| |
Collapse
|
11
|
Gaikwad S, Chakraborty A, Salwe S, Patel V, Kulkarni S, Banerjee S. Juglone-ascorbic acid synergy inhibits metastasis and induces apoptotic cell death in poorly differentiated thyroid carcinoma by perturbing SOD and catalase activities. J Biochem Mol Toxicol 2018; 32:e22176. [DOI: 10.1002/jbt.22176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Sujay Gaikwad
- Radiation Medicine Centre; Bhabha Atomic Research Center, Parel; Mumbai 400012 India
- Homi Bhabha National Institute, Anushaktinagar; Mumbai India
| | - Avik Chakraborty
- Radiation Medicine Centre; Bhabha Atomic Research Center, Parel; Mumbai 400012 India
- Homi Bhabha National Institute, Anushaktinagar; Mumbai India
| | - Sukeshani Salwe
- National Institute for Research in Reproductive Health; Mumbai India
| | - Vainav Patel
- National Institute for Research in Reproductive Health; Mumbai India
| | - Savita Kulkarni
- Radiation Medicine Centre; Bhabha Atomic Research Center, Parel; Mumbai 400012 India
- Homi Bhabha National Institute, Anushaktinagar; Mumbai India
| | - Sharmila Banerjee
- Radiation Medicine Centre; Bhabha Atomic Research Center, Parel; Mumbai 400012 India
- Homi Bhabha National Institute, Anushaktinagar; Mumbai India
| |
Collapse
|
12
|
Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PWK, Gujar SA. NAD + salvage pathway in cancer metabolism and therapy. Pharmacol Res 2016; 114:274-283. [PMID: 27816507 DOI: 10.1016/j.phrs.2016.10.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme for various physiological processes including energy metabolism, DNA repair, cell growth, and cell death. Many of these pathways are typically dysregulated in cancer cells, making NAD+ an intriguing target for cancer therapeutics. NAD+ is mainly synthesized by the NAD+ salvage pathway in cancer cells, and not surprisingly, the pharmacological targeting of the NAD+ salvage pathway causes cancer cell cytotoxicity in vitro and in vivo. Several studies have described the precise consequences of NAD+ depletion on cancer biology, and have demonstrated that NAD+ depletion results in depletion of energy levels through lowered rates of glycolysis, reduced citric acid cycle activity, and decreased oxidative phosphorylation. Additionally, depletion of NAD+ causes sensitization of cancer cells to oxidative damage by disruption of the anti-oxidant defense system, decreased cell proliferation, and initiation of cell death through manipulation of cell signaling pathways (e.g., SIRT1 and p53). Recently, studies have explored the effect of well-known cancer therapeutics in combination with pharmacological depletion of NAD+ levels, and found in many cases a synergistic effect on cancer cell cytotoxicity. In this context, we will discuss the effects of NAD+ salvage pathway inhibition on cancer cell biology and provide insight on this pathway as a novel anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Barry E Kennedy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Tanveer Sharif
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Emma Martell
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Cathleen Dai
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick W K Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Shashi A Gujar
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Centre for Innovative and Collaborative Health Systems Research, IWK Health Centre, Halifax, NS, Canada.
| |
Collapse
|
13
|
Cea M, Soncini D, Gobbi M, Lemoli RM, Cagnetta A. Exploiting tumor vulnerabilities: NAD(+)-depleting agents combined with anti-tumor drugs as innovative strategy to treat hematological malignancies. Expert Rev Anticancer Ther 2016; 16:897-8. [PMID: 27433930 DOI: 10.1080/14737140.2016.1212664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Michele Cea
- a Chair of Hematology, Department of Medicine (DiMI) , University of Genoa, AOU, I.R.C.C.S. San Martino -IST , Genova , Italy
| | - Debora Soncini
- a Chair of Hematology, Department of Medicine (DiMI) , University of Genoa, AOU, I.R.C.C.S. San Martino -IST , Genova , Italy
| | - Marco Gobbi
- a Chair of Hematology, Department of Medicine (DiMI) , University of Genoa, AOU, I.R.C.C.S. San Martino -IST , Genova , Italy
| | - Roberto M Lemoli
- a Chair of Hematology, Department of Medicine (DiMI) , University of Genoa, AOU, I.R.C.C.S. San Martino -IST , Genova , Italy
| | - Antonia Cagnetta
- a Chair of Hematology, Department of Medicine (DiMI) , University of Genoa, AOU, I.R.C.C.S. San Martino -IST , Genova , Italy
| |
Collapse
|