1
|
Ge S, Guan M, Pan F, Wang Y, Pan D, Zhang C, Gao X, Dang Y. Novel strategy for screening aptamers of Staphylococcus aureus enterotoxin A based on active fragments and fusion design. Anal Chim Acta 2025; 1360:344135. [PMID: 40409900 DOI: 10.1016/j.aca.2025.344135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Staphylococcus aureus enterotoxin A (SEA) is the major toxin responsible for food poisoning caused by Staphylococcus aureus infection. Aptamers are an ideal solution for visual detection of SEA. However, screening for aptamers is generally expensive and time-consuming. Therefore, a new method for efficient screening of high-affinity SEA aptamers needs to be established and supplemented with smartphone image recognition to enable visual and rapid detection of SEA. RESULTS A new aptamer for sensitive detection of SEA was screened using active fragments and fusion design. The novel high-affinity aptamer (BX1) was derived by intercepting active nucleotide fragments of several aptamers and fusing them; it was verified to have high affinity, with a Kd value of 4.16 ± 0.22 nM. Molecular dynamic simulation illustrated that BX1 formed a stable complex conformation with SEA, which maintained its stability for 200 ns. This novel aptamer can be used for visual inspection of SEA. A smartphone-assisted aptasensor was designed to sensitively detect SEA in milk with a wide linear range (1-250 ng/mL), low detection limit (0.42 ng/mL), and satisfactory spiked recovery. SIGNIFICANCE A new method for screening SEA aptamers based on active fragments and fusion design was developed, which can rapidly screen high-affinity aptamers in a short duration and at a low expenditure. In addition, a new strategy for the rapid detection of SEA using a smartphone-assisted colorimetric aptamer sensor was successfully applied. This research method may provide a reference for the highly sensitive detection of other biotoxins.
Collapse
Affiliation(s)
- Shujing Ge
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Mengyao Guan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yanli Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Daodong Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, China
| | - Chaoying Zhang
- Department of Quality and Safety, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yali Dang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Food Science and Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Driscoll J, Gondaliya P, Zinn DA, Jain R, Yan IK, Dong H, Patel T. Using aptamers for targeted delivery of RNA therapies. Mol Ther 2025; 33:1344-1367. [PMID: 40045577 PMCID: PMC11997499 DOI: 10.1016/j.ymthe.2025.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025] Open
Abstract
RNA-based treatments that can silence, introduce, or restore gene expression to target human diseases are emerging as a new class of therapeutics. Despite their potential for use in broad applications, their clinical translation has been hampered by a need for delivery to specific cells and tissues. Cell targeting based on the use of aptamers provides an approach for improving their delivery to the desired sites of action. Aptamers are nucleic acid oligonucleotides with structural conformations that provide a robust capacity for the recognition of cell surface molecules and that can be used for directed targeting. Aptamers can be directly conjugated to therapeutic RNA molecules, in the form of aptamer-oligonucleotide chimeras, or incorporated into nanoparticles used as vehicles for the delivery of these therapeutics. Herein, we discuss the use of aptamers for cell-directed RNA therapies, provide an overview of different types of aptamer-targeting RNA therapeutics, and review examples of their therapeutic applications. Challenges associated with manufacturing and scaling up production, and key considerations for their clinical implementation, are also outlined.
Collapse
Affiliation(s)
- Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Dylan A Zinn
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Rupesh Jain
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Irene K Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
3
|
Goto K, Amano R, Ichinose A, Michishita A, Hamada M, Nakamura Y, Takahashi M. Generation of RNA aptamers against chikungunya virus E2 envelope protein. J Virol 2025; 99:e0209524. [PMID: 39927773 PMCID: PMC11915788 DOI: 10.1128/jvi.02095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Nucleic acid aptamers are a promising drug modality, whereas the generation of virus-neutralizing aptamers has remained difficult due to the lack of a robust system for targeting the viral particles of interest. Here, we took advantage of our latest platform technology of Systematic Evolution of Ligands by EXponential enrichment (SELEX) with virus-like particles (VLPs) and targeted chikungunya virus (CHIKV) as a model, the pathogenic reemerging virus with an unmet need for control. The identified aptamer against CHIKV-VLPs, Apt#1, and its truncated derivatives showed neutralizing activity with nanomolar IC50 values in a cell-based assay system using a pseudoviral particle of CHIKV (CHIKVpp). An antiviral-based chemical genetics approach revealed significant competition of Apt#1 with suramin, a reported interactant with domain A of the E2 envelope protein (E2DA), in both CHIKVpp and surface plasmon resonance (SPR) analyses, predicting E2DA to be the Apt#1 interface. In addition, Apt#1 interfered with the attachment of CHIKVpp, collectively suggesting its property as an attachment inhibitor via E2DA of CHIKV. Thus, the generation of the VLP-targeted aptamers proved to contribute to anti-CHIKV strategies and confirmed the utility of the platform as a novel and viable option for the development of neutralizing agents against viral particles of interest.IMPORTANCEOur latest SELEX technology using VLPs has generated aptamers that bind the native conformation of the incorporated envelope protein and achieve the virus binding and neutralizing effects. Indeed, the aptamer-probed target E2DA is a representative neutralization site on the surface of the viral particle, validating the utility of the VLP-driven procedure. Simultaneously, the enhanced antiviral effects of the aptamer in combination with approved drugs using the CHIKVpp assay with human cells indicated potential therapeutic strategies that are expected to help address unmet needs in CHIKV control. The robust affinity of the aptamer to viral particles demonstrated by SPR analysis can also lead to conjugates with antivirals as guiding molecules and aptasensors for diagnostic tools. Overall, our VLP-based method provided anti-CHIKV as well as a versatile platform applicable to other emerging and reemerging viruses, in preparation for outbreaks with the need for rapid development of antiviral strategies as next-generation theranostics.
Collapse
Affiliation(s)
- Kaku Goto
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryo Amano
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Ichinose
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Akiya Michishita
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshikazu Nakamura
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- RIBOMIC Inc., Tokyo, Japan
| | - Masaki Takahashi
- Project Division of RNA Medical Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Li T, Liu X, Qian H, Zhang S, Hou Y, Zhang Y, Luo G, Zhu X, Tao Y, Fan M, Wang H, Sha C, Lin A, Qin J, Gu K, Chen W, Fu T, Wang Y, Wei Y, Wu Q, Tan W. Blocker-SELEX: a structure-guided strategy for developing inhibitory aptamers disrupting undruggable transcription factor interactions. Nat Commun 2024; 15:6751. [PMID: 39117705 PMCID: PMC11310338 DOI: 10.1038/s41467-024-51197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Despite the well-established significance of transcription factors (TFs) in pathogenesis, their utilization as pharmacological targets has been limited by the inherent challenges in modulating their protein interactions. The lack of defined small-molecule binding pockets and the nuclear localization of TFs do not favor the use of traditional tools. Aptamers possess large molecular weights, expansive blocking surfaces and efficient cellular internalization, making them compelling tools for modulating TF interactions. Here, we report a structure-guided design strategy called Blocker-SELEX to develop inhibitory aptamers (iAptamers) that selectively block TF interactions. Our approach leads to the discovery of iAptamers that cooperatively disrupt SCAF4/SCAF8-RNAP2 interactions, dysregulating RNAP2-dependent gene expression, which impairs cell proliferation. This approach is further applied to develop iAptamers blocking WDR5-MYC interactions. Overall, our study highlights the potential of iAptamers in disrupting pathogenic TF interactions, implicating their potential utility in studying the biological functions of TF interactions and in nucleic acids drug discovery.
Collapse
Affiliation(s)
- Tongqing Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Xueying Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Haifeng Qian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Sheyu Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yu Hou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Guoyan Luo
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Xun Zhu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yanxin Tao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Mengyang Fan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Hong Wang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Chulin Sha
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ailan Lin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jingjing Qin
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Kedan Gu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Weichang Chen
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Ting Fu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yajun Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
| | - Qin Wu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Weihong Tan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
5
|
Mahmoudian F, Ahmari A, Shabani S, Sadeghi B, Fahimirad S, Fattahi F. Aptamers as an approach to targeted cancer therapy. Cancer Cell Int 2024; 24:108. [PMID: 38493153 PMCID: PMC10943855 DOI: 10.1186/s12935-024-03295-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Conventional cancer treatments can cause serious side effects because they are not specific to cancer cells and can damage healthy cells. Aptamers often are single-stranded oligonucleotides arranged in a unique architecture, allowing them to bind specifically to target sites. This feature makes them an ideal choice for targeted therapeutics. They are typically produced through the systematic evolution of ligands by exponential enrichment (SELEX) and undergo extensive pharmacological revision to modify their affinity, specificity, and therapeutic half-life. Aptamers can act as drugs themselves, directly inhibiting tumor cells. Alternatively, they can be used in targeted drug delivery systems to transport drugs directly to tumor cells, minimizing toxicity to healthy cells. In this review, we will discuss the latest and most advanced approaches to using aptamers for cancer treatment, particularly targeted therapy overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Azin Ahmari
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Radiation Oncology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shiva Shabani
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Infectious Diseases, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Bahman Sadeghi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
- Department of Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Fahimeh Fattahi
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sabbih GO, Wijesinghe KM, Algama C, Dhakal S, Danquah MK. Computational generation and characterization of IsdA-binding aptamers with single-molecule FRET analysis. Biotechnol J 2023; 18:e2300076. [PMID: 37593983 DOI: 10.1002/biot.202300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Staphylococcus aureus is a major foodborne bacterial pathogen. Early detection of S. aureus is crucial to prevent infections and ensure food quality. The iron-regulated surface determinant protein A (IsdA) of S. aureus is a unique surface protein necessary for sourcing vital iron from host cells for the survival and colonization of the bacteria. The function, structure, and location of the IsdA protein make it an important protein for biosensing applications relating to the pathogen. Here, we report an in-silico approach to develop and validate high-affinity binding aptamers for the IsdA protein detection using custom-designed in-silico tools and single-molecule Fluorescence Resonance Energy Transfer (smFRET) measurements. We utilized in-silico oligonucleotide screening methods and metadynamics-based methods to generate 10 aptamer candidates and characterized them based on the Dissociation Free Energy (DFE) of the IsdA-aptamer complexes. Three of the aptamer candidates were shortlisted for smFRET experimental analysis of binding properties. Limits of detection in the low picomolar range were observed for the aptamers, and the results correlated well with the DFE calculations, indicating the potential of the in-silico approach to support aptamer discovery. This study showcases a computational SELEX method in combination with single-molecule binding studies deciphering effective aptamers against S. aureus IsdA, protein. The established approach demonstrates the ability to expedite aptamer discovery that has the potential to cut costs and predict binding efficacy. The application can be extended to designing aptamers for various protein targets, enhancing molecular recognition, and facilitating the development of high-affinity aptamers for multiple uses.
Collapse
Affiliation(s)
| | | | - Chamika Algama
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Soma Dhakal
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael K Danquah
- University of Tennessee, Chattanooga, Tennessee, USA
- University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Sato K, Hamada M. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief Bioinform 2023; 24:bbad186. [PMID: 37232359 PMCID: PMC10359090 DOI: 10.1093/bib/bbad186] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Computational analysis of RNA sequences constitutes a crucial step in the field of RNA biology. As in other domains of the life sciences, the incorporation of artificial intelligence and machine learning techniques into RNA sequence analysis has gained significant traction in recent years. Historically, thermodynamics-based methods were widely employed for the prediction of RNA secondary structures; however, machine learning-based approaches have demonstrated remarkable advancements in recent years, enabling more accurate predictions. Consequently, the precision of sequence analysis pertaining to RNA secondary structures, such as RNA-protein interactions, has also been enhanced, making a substantial contribution to the field of RNA biology. Additionally, artificial intelligence and machine learning are also introducing technical innovations in the analysis of RNA-small molecule interactions for RNA-targeted drug discovery and in the design of RNA aptamers, where RNA serves as its own ligand. This review will highlight recent trends in the prediction of RNA secondary structure, RNA aptamers and RNA drug discovery using machine learning, deep learning and related technologies, and will also discuss potential future avenues in the field of RNA informatics.
Collapse
Affiliation(s)
- Kengo Sato
- School of System Design and Technology, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan
| | - Michiaki Hamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, 55N-06-10, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) , National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
8
|
Arese M, Mahmoudian M, Bussolino F. RNA aptamer-mediated gene therapy of prostate cancer: lessons from the past and future directions. Expert Opin Drug Deliv 2023; 20:1609-1621. [PMID: 38058168 DOI: 10.1080/17425247.2023.2292691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most prevalent cancers in the world, and the fifth cause of death from cancer in men. Among the non-surgical treatments for PCa, gene therapy strategies are in the early stages of development and recent clinical trials have provided new insights suggesting promising future. AREAS COVERED Recently, the creation of targeted gene delivery systems, based on specific PCa cell surface markers, has been viewed as a viable therapeutic approach. Prostate-specific membrane antigen (PSMA) is vastly expressed in nearly all prostate malignancies, and the intensity of expression increases with tumor aggressiveness, androgen independence, and metastasis. RNA aptamers are short and single-stranded oligonucleotides, which selectively bind to a specific ligand on the surface of the cells, which makes them fascinating small molecules for target delivery of therapeutics. PSMA-selective RNA aptamers represent great potential for developing targeted-gene delivery tools for PCa. EXPERT OPINION This review provides a thorough horizon for the researchers interested in developing targeted gene delivery systems for PCa via PSMA RNA aptamers. In addition, we provided general information about different prospects of RNA aptamers including discovery approaches, stability, safety, and pharmacokinetics.
Collapse
Affiliation(s)
- Marco Arese
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Mohammad Mahmoudian
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
9
|
Zhou T, Dai N, Li S, Ward M, Mathews DH, Huang L. RNA design via structure-aware multifrontier ensemble optimization. Bioinformatics 2023; 39:i563-i571. [PMID: 37387188 DOI: 10.1093/bioinformatics/btad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION RNA design is the search for a sequence or set of sequences that will fold to desired structure, also known as the inverse problem of RNA folding. However, the sequences designed by existing algorithms often suffer from low ensemble stability, which worsens for long sequence design. Additionally, for many methods only a small number of sequences satisfying the MFE criterion can be found by each run of design. These drawbacks limit their use cases. RESULTS We propose an innovative optimization paradigm, SAMFEO, which optimizes ensemble objectives (equilibrium probability or ensemble defect) by iterative search and yields a very large number of successfully designed RNA sequences as byproducts. We develop a search method which leverages structure level and ensemble level information at different stages of the optimization: initialization, sampling, mutation, and updating. Our work, while being less complicated than others, is the first algorithm that is able to design thousands of RNA sequences for the puzzles from the Eterna100 benchmark. In addition, our algorithm solves the most Eterna100 puzzles among all the general optimization based methods in our study. The only baseline solving more puzzles than our work is dependent on handcrafted heuristics designed for a specific folding model. Surprisingly, our approach shows superiority on designing long sequences for structures adapted from the database of 16S Ribosomal RNAs. AVAILABILITY AND IMPLEMENTATION Our source code and data used in this article is available at https://github.com/shanry/SAMFEO.
Collapse
Affiliation(s)
- Tianshuo Zhou
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| | - Ning Dai
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| | - Sizhen Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| | - Max Ward
- Department of Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, United States
- Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, United States
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - Liang Huang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvalli OR 97330, United States
| |
Collapse
|
10
|
Kou HS, Lo ST, Wang CC. One Single Tube Reaction of Aptasensor-Based Magnetic Sensing System for Selective Fluorescent Detection of VEGF in Plasma. BIOSENSORS 2023; 13:574. [PMID: 37366939 DOI: 10.3390/bios13060574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
In this study, a simple, easy and convenient fluorescent sensing system for the detection of the vascular endothelial growth factor (VEGF) based on VEGF aptamers, aptamer-complementary fluorescence-labeled probe and streptavidin magnetic beads was developed in one single tube. The VEGF is the most important biomarker in cancer, and it is investigated that the serum VEGF level varied according to the different types and courses of cancers. Hence, efficient quantification of VEGF is able to improve the accuracy of cancer diagnoses and the precision of disease surveillance. In this research, the VEGF aptamer was designed to be able to bind with the VEGF by forming G-quadruplex secondary structures; then, the magnetic beads would capture the non-binding aptamers due to non-steric interference; and finally, the fluorescence-labeled probes were hybridized with the aptamers captured by the magnetic beads. Therefore, the fluorescent intensity in the supernatant would specifically reflect the present VEGF. After an overall optimization, the optimal conditions for the detection of VEGF were as followed, KCl, 50 μM; pH 7.0; aptamer, 0.1 μM; and magnetic beads, 10 μL (4 μg/μL). The VEGF could be well quantified within a range of 0.2-2.0 ng/mL in plasma, and the calibration curve possessed a good linearity (y = 1.0391x + 0.5471, r = 0.998). The detection limit (LOD) was calculated to be 0.0445 ng/mL according to the formula (LOD = 3.3 × σ/S). The specificity of this method was also investigated under the appearance of many other serum proteins, and the data showed good specificity in this aptasensor-based magnetic sensing system. This strategy provided a simple, sensitive and selective biosensing platform for the detection of serum VEGF. Finally, it was expected that this detection technique can be used to promote more clinical applications.
Collapse
Affiliation(s)
- Hwang-Shang Kou
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shao-Tsung Lo
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Selvam R, Lim IHY, Lewis JC, Lim CH, Yap MKK, Tan HS. Selecting antibacterial aptamers against the BamA protein in Pseudomonas aeruginosa by incorporating genetic algorithm to optimise computational screening method. Sci Rep 2023; 13:7582. [PMID: 37164985 PMCID: PMC10170454 DOI: 10.1038/s41598-023-34643-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Antibiotic resistance is one of the biggest threats to global health resulting in an increasing number of people suffering from severe illnesses or dying due to infections that were once easily curable with antibiotics. Pseudomonas aeruginosa is a major pathogen that has rapidly developed antibiotic resistance and WHO has categorised this pathogen under the critical list. DNA aptamers can act as a potential candidate for novel antimicrobial agents. In this study, we demonstrated that an existing aptamer is able to affect the growth of P. aeruginosa. A computational screen for aptamers that could bind to a well-conserved and essential outer membrane protein, BamA in Gram-negative bacteria was conducted. Molecular docking of about 100 functional DNA aptamers with BamA protein was performed via both local and global docking approaches. Additionally, genetic algorithm analysis was carried out to rank the aptamers based on their binding affinity. The top hits of aptamers with good binding to BamA protein were synthesised to investigate their in vitro antibacterial activity. Among all aptamers, Apt31, which is known to bind to an antitumor, Daunomycin, exhibited the highest HADDOCK score and resulted in a significant (p < 0.05) reduction in P. aeruginosa growth. Apt31 also induced membrane disruption that resulted in DNA leakage. Hence, computational screening may result in the identification of aptamers that bind to the desired active site with high affinity.
Collapse
Affiliation(s)
- Rupany Selvam
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Ian Han Yan Lim
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Chern Hong Lim
- School of Information Technology, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Hock Siew Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
12
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Lee SJ, Cho J, Lee BH, Hwang D, Park JW. Design and Prediction of Aptamers Assisted by In Silico Methods. Biomedicines 2023; 11:356. [PMID: 36830893 PMCID: PMC9953197 DOI: 10.3390/biomedicines11020356] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
An aptamer is a single-stranded DNA or RNA that binds to a specific target with high binding affinity. Aptamers are developed through the process of systematic evolution of ligands by exponential enrichment (SELEX), which is repeated to increase the binding power and specificity. However, the SELEX process is time-consuming, and the characterization of aptamer candidates selected through it requires additional effort. Here, we describe in silico methods in order to suggest the most efficient way to develop aptamers and minimize the laborious effort required to screen and optimise aptamers. We investigated several methods for the estimation of aptamer-target molecule binding through conformational structure prediction, molecular docking, and molecular dynamic simulation. In addition, examples of machine learning and deep learning technologies used to predict the binding of targets and ligands in the development of new drugs are introduced. This review will be helpful in the development and application of in silico aptamer screening and characterization.
Collapse
Affiliation(s)
- Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Junmin Cho
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Byung-Hoon Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Donghwan Hwang
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
14
|
Singh S, Chowdhury P, Ghosh A, Nara S. Virtual screening of truncated single stranded DNA aptamers for Staphylococcal enterotoxin type A. J Biomol Struct Dyn 2023; 41:11862-11871. [PMID: 36597903 DOI: 10.1080/07391102.2022.2164057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Single stranded DNA (ssDNA)/RNA aptamers, are screened through the labor intensive, iterative Systematic Evolution of Ligand by Exponential Enrichment process (SELEX) method. Complete sequence of screened aptamers never interacts with target or participates in final structure. Hence, in silico tools can be used to redesign a short length aptamer from previously reported aptamers which can have high affinity and specificity to the target. This approach is fast, cost effective, and less laborious than in vitro SELEX towards finding an aptamer sequence with better affinity with the target. Here, Staphylococcal enterotoxin type A (SEA) was used as target. A total of nine aptamers reported for different Staphylococcal food poisoning (SFP) enterotoxins were used as a starting pool. The aptamers were variously truncations and thoroughly analyzed through in silico methods. Three truncated aptamers namely AptSEA1.4, AptSEA2.4 and AptSEA8.4 were found to show higher affinity with target SEA. The computational data was also validated with DOT BLOT assay complemented with image analysis. These results also confirmed that the % specific binding and the dissociation constant (Kd) of truncated aptamers AptSEA1.4, AptSEA2.4 and AptSEA8.4 was better than their original counterparts. The truncated aptamers showed great promise to be used as a capture reagent in developing a sensitive assay for detection of SEA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Smriti Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Papia Chowdhury
- Department of Physics and Material Science, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Guwahati University, Guwahati, Assam, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
15
|
Kramer ST, Gruenke PR, Alam KK, Xu D, Burke DH. FASTAptameR 2.0: A web tool for combinatorial sequence selections. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:862-870. [PMID: 36159593 PMCID: PMC9464650 DOI: 10.1016/j.omtn.2022.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/12/2022]
Abstract
Combinatorial selections are powerful strategies for identifying biopolymers with specific biological, biomedical, or chemical characteristics. Unfortunately, most available software tools for high-throughput sequencing analysis have high entrance barriers for many users because they require extensive programming expertise. FASTAptameR 2.0 is an R-based reimplementation of FASTAptamer designed to minimize this barrier while maintaining the ability to answer complex sequence-level and population-level questions. This open-source toolkit features a user-friendly web tool, interactive graphics, up to 100 times faster clustering, an expanded module set, and an extensive user guide. FASTAptameR 2.0 accepts diverse input polymer types and can be applied to any sequence-encoded selection.
Collapse
|
16
|
Cruz-Hernández CD, Rodríguez-Martínez G, Cortés-Ramírez SA, Morales-Pacheco M, Cruz-Burgos M, Losada-García A, Reyes-Grajeda JP, González-Ramírez I, González-Covarrubias V, Camacho-Arroyo I, Cerbón M, Rodríguez-Dorantes M. Aptamers as Theragnostic Tools in Prostate Cancer. Biomolecules 2022; 12:biom12081056. [PMID: 36008950 PMCID: PMC9406110 DOI: 10.3390/biom12081056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Despite of the capacity that several drugs have for specific inhibition of the androgen receptor (AR), in most cases, PCa progresses to an androgen-independent stage. In this context, the development of new targeted therapies for prostate cancer (PCa) has remained as a challenge. To overcome this issue, new tools, based on nucleic acids technology, have been developed. Aptamers are small oligonucleotides with a three-dimensional structure capable of interacting with practically any desired target, even large targets such as mammalian cells or viruses. Recently, aptamers have been studied for treatment and detection of many diseases including cancer. In PCa, numerous works have reported their use in the development of new approaches in diagnostics and treatment strategies. Aptamers have been joined with drugs or other specific molecules such as silencing RNAs (aptamer–siRNA chimeras) to specifically reduce the expression of oncogenes in PCa cells. Even though these studies have shown good results in the early stages, more research is still needed to demonstrate the clinical value of aptamers in PCa. The aim of this review was to compile the existing scientific literature regarding the use of aptamers in PCa in both diagnosis and treatment studies. Since Prostate-Specific Membrane Antigen (PSMA) aptamers are the most studied type of aptamers in this field, special emphasis was given to these aptamers.
Collapse
Affiliation(s)
- Carlos David Cruz-Hernández
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Sergio A. Cortés-Ramírez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Marian Cruz-Burgos
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Alberto Losada-García
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
| | - Juan Pablo Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana–Xochimilco, Mexico City 04960, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (I.C.-A.); (M.C.)
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico; (C.D.C.-H.); (G.R.-M.); (S.A.C.-R.); (M.M.-P.); (M.C.-B.); (A.L.-G.)
- Correspondence:
| |
Collapse
|
17
|
Zhang L, Zhao M, Xiao M, Im MH, Abd El-Aty AM, Shao H, She Y. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. BIOSENSORS 2022; 12:402. [PMID: 35735550 PMCID: PMC9220870 DOI: 10.3390/bios12060402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
The presence of pyrethroids in food and the environment due to their excessive use and extensive application in the agriculture industry represents a significant threat to public health. Therefore, the determination of the presence of pyrethroids in foods by simple, rapid, and sensitive methods is warranted. Herein, recognition methods for pyrethroids based on electrochemical and optical biosensors from the last five years are reviewed, including surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), chemiluminescence, biochemical, fluorescence, and colorimetric methods. In addition, recognition elements used for pyrethroid detection, including enzymes, antigens/antibodies, aptamers, and molecular-imprinted polymers, are classified and discussed based on the bioreceptor types. The current research status, the advantages and disadvantages of existing methods, and future development trends are discussed. The research progress of rapid pyrethroid detection in our laboratory is also presented.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Mingqi Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Ming Xiao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810000, China;
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongsan 38453, Korea;
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Hua Shao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| |
Collapse
|
18
|
Nucleic Acid Aptamers Emerging as Modulators of G-Protein-Coupled Receptors: Challenge to Difficult Cell Surface Proteins. Cells 2022; 11:cells11111825. [PMID: 35681520 PMCID: PMC9180700 DOI: 10.3390/cells11111825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
G-protein-coupled receptors (GPCRs), among various cell surface proteins, are essential targets in the fields of basic science and drug discovery. The discovery and development of modulators for the receptors have provided deep insights into the mechanism of action of receptors and have led to a new therapeutic option for human diseases. Although various modulators against GPCRs have been developed to date, the identification of new modulators for GPCRs remains a challenge due to several technical problems and limitations. To overcome this situation, a variety of strategies have been developed by several modalities, including nucleic acid aptamers, which are emerging as unique molecules isolated by a repetitive selection process against various types of targets from an enormous combinatorial library. This review summarized the achievements in the development of aptamers targeting GPCRs, and discussed their isolation methods and the diverse functional features of aptamers against GPCRs.
Collapse
|
19
|
Evtugyn G, Porfireva A, Tsekenis G, Oravczova V, Hianik T. Electrochemical Aptasensors for Antibiotics Detection: Recent Achievements and Applications for Monitoring Food Safety. SENSORS (BASEL, SWITZERLAND) 2022; 22:3684. [PMID: 35632093 PMCID: PMC9143886 DOI: 10.3390/s22103684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics are often used in human and veterinary medicine for the treatment of bacterial diseases. However, extensive use of antibiotics in agriculture can result in the contamination of common food staples such as milk. Consumption of contaminated products can cause serious illness and a rise in antibiotic resistance. Conventional methods of antibiotics detection such are microbiological assays chromatographic and mass spectroscopy methods are sensitive; however, they require qualified personnel, expensive instruments, and sample pretreatment. Biosensor technology can overcome these drawbacks. This review is focused on the recent achievements in the electrochemical biosensors based on nucleic acid aptamers for antibiotic detection. A brief explanation of conventional methods of antibiotic detection is also provided. The methods of the aptamer selection are explained, together with the approach used for the improvement of aptamer affinity by post-SELEX modification and computer modeling. The substantial focus of this review is on the explanation of the principles of the electrochemical detection of antibiotics by aptasensors and on recent achievements in the development of electrochemical aptasensors. The current trends and problems in practical applications of aptasensors are also discussed.
Collapse
Affiliation(s)
- Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (G.E.); (A.P.)
| | - George Tsekenis
- Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Veronika Oravczova
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Mlynska Dolina F1, 842 48 Bratislava, Slovakia;
| |
Collapse
|
20
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
21
|
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2022; 298:101478. [PMID: 34896392 PMCID: PMC8728582 DOI: 10.1016/j.jbc.2021.101478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naotaka Izuo
- Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
22
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
23
|
Nosrati M, Amani J. In silico screening of ssDNA aptamer against Escherichia coli O157:H7: A machine learning and the Pseudo K-tuple nucleotide composition based approach. Comput Biol Chem 2021; 95:107568. [PMID: 34543910 DOI: 10.1016/j.compbiolchem.2021.107568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
This study was planned to in silico screening of ssDNA aptamer against Escherichia coli O157:H7 by combination of machine learning and the PseKNC approach. For this, firstly a total numbers of 47 validated ssDNA aptamers as well as 498 random DNA sequences were considered as positive and negative training data respectively. The sequences then converted to numerical vectors using PseKNC method through Pse-in-one 2.0 web server. After that, the numerical vectors were subjected to classification by the SVM, ANN and RF algorithms available in Orange 3.2.0 software. The performances of the tested models were evaluated using cross-validation, random sampling and ROC curve analyzes. The primary results demonstrated that the ANN and RF algorithms have appropriate performances for the data classification. To improve the performances of mentioned classifiers the positive training data was triplicated and re-training process was also performed. The results confirmed that data size improvement had significant effect on the accuracy of data classification especially about RF model. Subsequently, the RF algorithm with accuracy of 98% was selected for aptamer screening. The thermodynamics details of folding process as well as secondary structures of the screened aptamers were also considered as final evaluations. The results confirmed that the selected aptamers by the proposed method had appropriate structure properties and there is no thermodynamics limit for the aptamers folding.
Collapse
Affiliation(s)
- Mokhtar Nosrati
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach. PLoS One 2021; 16:e0253760. [PMID: 34170922 PMCID: PMC8232527 DOI: 10.1371/journal.pone.0253760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-stranded fragment, feature various characteristics with respect to size, toxicity, and permeability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and are materials that can be produced through relatively simple experiments. Systematic evolution of ligands by exponential enrichment (SELEX) is one of the most widely used experimental methods for generating aptamers; however, it is highly expensive and time-consuming. To reduce the related costs, recent studies have used in silico approaches, such as aptamer-protein interaction (API) classifiers that use sequence patterns to determine the binding affinity between RNA aptamers and proteins. Some of these methods generate candidate RNA aptamer sequences that bind to a target protein, but they are limited to producing candidates of a specific size. In this study, we present a machine learning approach for selecting candidate sequences of various sizes that have a high binding affinity for a specific sequence of a target protein. We applied the Monte Carlo tree search (MCTS) algorithm for generating the candidate sequences using a score function based on an API classifier. The tree structure that we designed with MCTS enables nucleotide sequence sampling, and the obtained sequences are potential aptamer candidates. We performed a quality assessment using the scores of docking simulations. Our validation datasets revealed that our model showed similar or better docking scores in ZDOCK docking simulations than the known aptamers. We expect that our method, which is size-independent and easy to use, can provide insights into searching for an appropriate aptamer sequence for a target protein during the simulation step of SELEX.
Collapse
|
25
|
De La Fuente A, Zilio S, Caroli J, Van Simaeys D, Mazza EMC, Ince TA, Bronte V, Bicciato S, Weed DT, Serafini P. Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Sci Transl Med 2021; 12:12/548/eaav9760. [PMID: 32554710 DOI: 10.1126/scitranslmed.aav9760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Local delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models. In the 4T1 mammary carcinoma model, these doxorubicin-conjugated aptamers outperformed Doxil, the first clinically approved highly optimized nanoparticle for targeted chemotherapy, promoting tumor regression after just three administrations with no detected changes in weight loss or blood chemistry. These RNA aptamers recognized tumor infiltrating myeloid cells in a variety of mouse tumors in vivo and from human HNSCC ex vivo. This work suggests the use of RNA aptamers for the detection of myeloid-derived suppressor cells in humans and for a targeted delivery of chemotherapy to the tumor microenvironment in multiple malignancies.
Collapse
Affiliation(s)
- Adriana De La Fuente
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Dimitri Van Simaeys
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Tan A Ince
- Department of Pathology, Weill Cornell Medicine, Cornell University and New York Presbyterian Brooklyn Methodist Hospital, NY 11215, USA
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, Verona 37100, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Donald T Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA. .,Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
26
|
Jalali T, Salehi-Vaziri M, Pouriayevali MH, Gargari SLM. Aptamer based diagnosis of crimean-congo hemorrhagic fever from clinical specimens. Sci Rep 2021; 11:12639. [PMID: 34135365 PMCID: PMC8209218 DOI: 10.1038/s41598-021-91826-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease. The widespread geographic distribution of the disease and the increase in the incidence of the disease from new regions, placed CCHF in a list of public health emergency contexts. The rapid diagnosis, in rural and remote areas where the majority of cases occur, is essential for patient management. Aptamers are considered as a specific and sensitive tool for being used in rapid diagnostic methods. The Nucleoprotein (NP) of the CCHF virus (CCHFV) was selected as the target for the isolation of aptamers based on its abundance and conservative structure, among other viral proteins. A total of 120 aptamers were obtained through 9 rounds of SELEX (Systematic Evolution of Ligands by Exponential Enrichment) from the ssDNA aptamer library, including the random 40-nucleotide ssDNA region between primer binding sites (GCCTGTTGTGAGCCTCCTAAC(N40)GGGAGACAAGAATAAGCA). The KD of aptamers was calculated using the SPR technique. The Apt33 with the highest affinity to NP was selected to design the aptamer-antibody ELASA test. It successfully detected CCHF NP in the concentration of 90 ng/ml in human serum. Evaluation of aptamer-antibody ELASA with clinical samples showed 100% specificity and sensitivity of the test. This simple, specific, and the sensitive assay can be used as a rapid and early diagnosis tool, as well as the use of this aptamer in point of care test near the patient. Our results suggest that the discovered aptamer can be used in various aptamer-based rapid diagnostic tests for the diagnosis of CCHF virus infection.
Collapse
Affiliation(s)
- Tahmineh Jalali
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.,Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran.,Reaserch Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
27
|
Nucleic acid ligands act as a PAM and agonist depending on the intrinsic ligand binding state of P2RY2. Proc Natl Acad Sci U S A 2021; 118:2019497118. [PMID: 33911033 PMCID: PMC8106294 DOI: 10.1073/pnas.2019497118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Discovery of ligands for G protein–coupled receptors (GPCRs) is of importance in receptor biology and pharmacology but is still a challenging issue. Here, we propose a method for the discovery of ligands against GPCRs by employing a virus-like particle (VLP) and show unique properties of identified nucleic acid aptamers for GPCR. One aptamer raised against purinergic receptor P2Y2 (P2RY2), a GPCR, behaves like a partial agonist to unliganded receptor, whereas it exhibits a positive allosteric modulator (PAM) activity to liganded receptor. We demonstrate the validity of our aptamer screening method targeting VLP-stabilized GPCR and a unique aptamer with dual function, agonist and PAM, for GPCR, depending on whether the intrinsic ligand is prebound to the receptor. G protein–coupled receptors (GPCRs) play diverse roles in physiological processes, and hence the ligands to modulate GPCRs have served as important molecules in biological and pharmacological approaches. However, the exploration of novel ligands for GPCR still remains an arduous challenge. In this study, we report a method for the discovery of nucleic acid ligands against GPCRs by an advanced RNA aptamer screening technology that employs a virus-like particle (VLP), exposing the GPCR of interest. An array of biochemical analyses coupled with a cell-based assay revealed that one of the aptamers raised against purinergic receptor P2Y2 (P2RY2), a GPCR, exhibits an activation potency to unliganded receptor and prohibits a further receptor activation by endogenous ligand, behaving like a partial agonist. However, the aptamer enhances the activity of intrinsic ligand-binding P2RY2, thereby acting as a positive allosteric modulator (PAM) to liganded receptor. Our findings demonstrate that the nucleic acid aptamer conditionally exerts PAM and agonist effects on GPCRs, depending on their intrinsic ligand binding state. These results indicate the validity of our VLP-based aptamer screening targeting GPCR and reemphasize the great potential of nucleic acid ligands for exploring the GPCR activation mechanism and therapeutic applications.
Collapse
|
28
|
Shanaa OA, Rumyantsev A, Sambuk E, Padkina M. In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules 2021; 26:molecules26051422. [PMID: 33800717 PMCID: PMC7961669 DOI: 10.3390/molecules26051422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.
Collapse
Affiliation(s)
- Ousama Al Shanaa
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
- Atomic Energy Commission of Syria, Damascus P.O.B 6091, Syria
- Correspondence: (O.A.S.); (M.P.); Tel.: +7-812-328-2822 (O.A.S.); +7-812-327-9827 (M.P.)
| | - Andrey Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
| | - Elena Sambuk
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
| | - Marina Padkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (A.R.); (E.S.)
- Correspondence: (O.A.S.); (M.P.); Tel.: +7-812-328-2822 (O.A.S.); +7-812-327-9827 (M.P.)
| |
Collapse
|
29
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
30
|
Recent Progress and Opportunities for Nucleic Acid Aptamers. Life (Basel) 2021; 11:life11030193. [PMID: 33671039 PMCID: PMC7997341 DOI: 10.3390/life11030193] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
Coined three decades ago, the term aptamer and directed evolution have now reached their maturity. The concept that nucleic acid could modulate the activity of target protein as ligand emerged from basic science studies of viruses. Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding, which allow for therapeutic and diagnostic applications. Compared to traditional antibodies, aptamers have several advantages, including small size, flexible structure, good biocompatibility, and low immunogenicity. In vitro selection method is used to isolate aptamers that are specific for a desired target from a randomized oligonucleotide library. The first aptamer drug, Macugen, was approved by FDA in 2004, which was accompanied by many studies and clinical investigations on various targets and diseases. Despite much promise, most aptamers have failed to meet the requisite safety and efficacy standards in human clinical trials. Amid these setbacks, the emergence of novel technologies and recent advances in aptamer and systematic evolution of ligands by exponential enrichment (SELEX) design are fueling hope in this field. The unique properties of aptamer are gaining renewed interest in an era of COVID-19. The binding performance of an aptamer and reproducibility are still the key issues in tackling current hurdles in clinical translation. A thorough analysis of the aptamer binding under varying conditions and the conformational dynamics is warranted. Here, the challenges and opportunities of aptamers are reviewed with recent progress.
Collapse
|
31
|
Buglak AA, Samokhvalov AV, Zherdev AV, Dzantiev BB. Methods and Applications of In Silico Aptamer Design and Modeling. Int J Mol Sci 2020; 21:E8420. [PMID: 33182550 PMCID: PMC7698023 DOI: 10.3390/ijms21228420] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers are nucleic acid analogues of antibodies with high affinity to different targets, such as cells, viruses, proteins, inorganic materials, and coenzymes. Empirical approaches allow the design of in vitro aptamers that bind particularly to a target molecule with high affinity and selectivity. Theoretical methods allow significant expansion of the possibilities of aptamer design. In this study, we review theoretical and joint theoretical-experimental studies dedicated to aptamer design and modeling. We consider aptamers with different targets, such as proteins, antibiotics, organophosphates, nucleobases, amino acids, and drugs. During nucleic acid modeling and in silico design, a full set of in silico methods can be applied, such as docking, molecular dynamics (MD), and statistical analysis. The typical modeling workflow starts with structure prediction. Then, docking of target and aptamer is performed. Next, MD simulations are performed, which allows for an evaluation of the stability of aptamer/ligand complexes and determination of the binding energies with higher accuracy. Then, aptamer/ligand interactions are analyzed, and mutations of studied aptamers made. Subsequently, the whole procedure of molecular modeling can be reiterated. Thus, the interactions between aptamers and their ligands are complex and difficult to understand using only experimental approaches. Docking and MD are irreplaceable when aptamers are studied in silico.
Collapse
Affiliation(s)
- Andrey A. Buglak
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
- Physical Faculty, St. Petersburg State University, 7/9 Universitetskaya naberezhnaya, 199034 St. Petersburg, Russia
| | - Alexey V. Samokhvalov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Anatoly V. Zherdev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| | - Boris B. Dzantiev
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky prospect 33, 119071 Moscow, Russia; (A.V.S.); (A.V.Z.); (B.B.D.)
| |
Collapse
|
32
|
Emami N, Pakchin PS, Ferdousi R. Computational predictive approaches for interaction and structure of aptamers. J Theor Biol 2020; 497:110268. [PMID: 32311376 DOI: 10.1016/j.jtbi.2020.110268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-strand sequences that can bind to their specific targets with high affinity and specificity. Usually, aptamers are selected experimentally via systematic evolution of ligands by exponential enrichment (SELEX), an evolutionary process that consists of multiple cycles of selection and amplification. The SELEX process is expensive, time-consuming, and its success rates are relatively low. To overcome these difficulties, in recent years, several computational techniques have been developed in aptamer sciences that bring together different disciplines and branches of technologies. In this paper, a complementary review on computational predictive approaches of the aptamer has been organized. Generally, the computational prediction approaches of aptamer have been proposed to carry out in two main categories: interaction-based prediction and structure-based predictions. Furthermore, the available software packages and toolkits in this scope were reviewed. The aim of describing computational methods and tools in aptamer science is that aptamer scientists might take advantage of these computational techniques to develop more accurate and more sensitive aptamers.
Collapse
Affiliation(s)
- Neda Emami
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
35
|
Cole KH, Lupták A. High-throughput methods in aptamer discovery and analysis. Methods Enzymol 2019; 621:329-346. [PMID: 31128787 DOI: 10.1016/bs.mie.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aptamers are small, functional nucleic acids that bind a variety of targets, often with high specificity and affinity. Genomic aptamers constitute the ligand-binding domains of riboswitches, whereas synthetic aptamers find applications as diagnostic and therapeutic tools, and as ligand-binding domains of regulatory RNAs in synthetic biology. Discovery and characterization of aptamers has been limited by a lack of high-throughput approaches that uncover the target-binding domains and the biochemical properties of individual sequences. With the advent of high-throughput sequencing, large-scale analysis of in vitro selected populations of aptamers (and catalytic nucleic acids, such as ribozymes and DNAzmes) became possible. In recent years the development of new experimental approaches and software tools has led to significant streamlining of the selection-pool analysis. This article provides an overview of post-selection data analysis and describes high-throughput methods that facilitate rapid discovery and biochemical characterization of aptamers.
Collapse
Affiliation(s)
- Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States; Department of Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|
36
|
Wang T, Chen C, Larcher LM, Barrero RA, Veedu RN. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnol Adv 2018; 37:28-50. [PMID: 30408510 DOI: 10.1016/j.biotechadv.2018.11.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Aptamers are short single-stranded nucleic acid sequences capable of binding to target molecules in a way similar to antibodies. Due to various advantages such as prolonged shelf life, low batch to batch variation, low/no immunogenicity, freedom to incorporate chemical modification for enhanced stability and targeting capacity, aptamers quickly found their potential in diverse applications ranging from therapy, drug delivery, diagnosis, and functional genomics to bio-sensing. Aptamers are generated by a process called SELEX. However, the current overall success rate of SELEX is far from being satisfactory, and still presents a major obstacle for aptamer-based research and application. The need for an efficient selection strategy consisting of defined procedures to deal with a wide variety of targets is significantly important. In this work, by analyzing key aspects of SELEX including initial library design, target preparation, PCR optimization, and single strand DNA separation, we provide a comprehensive analysis of individual steps to facilitate researchers intending to develop personalized protocols to address many of the obstacles in SELEX. In addition, this review provides suggestions and opinions for future aptamer development procedures to address the concerns on key SELEX steps, and post-SELEX modifications.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia; School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Changying Chen
- School of Nursing, Zhengzhou University & Nursing Department, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou 450001, China
| | - Leon M Larcher
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Roberto A Barrero
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Perth 6150, Australia; Perron Institute for Neurological and Translational Science, Perth 6009, Australia.
| |
Collapse
|