1
|
Lin X, Nie X, Deng P, Wang L, Hu C, Jin N. Whispers of the polycystic ovary syndrome theater: Directing role of long noncoding RNAs. Noncoding RNA Res 2024; 9:1023-1032. [PMID: 39022674 PMCID: PMC11254504 DOI: 10.1016/j.ncrna.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 07/20/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a multifaceted endocrine disorder that implicates a spectrum of clinical manifestations, including hormonal imbalance, metabolic dysfunction, and even compromised ovarian granulosa cell (GC) activity. The underlying molecular mechanisms of PCOS remain elusive, presenting a significant barrier to effective diagnosis and treatment. This review delves into the emerging role of long non-coding RNAs (lncRNAs) in the pathophysiology of PCOS, articulating their intricate interactions with mRNAs, microRNAs, and other epigenetic regulators that collectively influence the hormonal and metabolic milieu of PCOS. We examine the dynamic regulatory networks orchestrated by lncRNAs that impact GC function, steroidogenesis, insulin resistance, and inflammatory pathways. By integrating findings from recent studies, we illuminate the potential of lncRNAs as biomarkers for PCOS and highlight their contribution to the disorder, offering a detailed perspective on the lncRNA-mediated modulation of gene expression and pathogenic pathways. Understanding targeted lncRNA interactions with PCOS proposes novel avenues for therapeutic intervention to ameliorate the reproductive and metabolic disturbances characteristic of the syndrome.
Collapse
Affiliation(s)
- Xiuying Lin
- Department of Pathology and Pathophysiology, Yan Bian University, Yanbian, Jilin, China
- Jilin Province People's Hospital, Changchun, Jilin, China
| | - Xinyu Nie
- Obstetrics and Gynecology Center, First Hospital of Jilin University, Changchun, Jilin, China
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Deng
- Medical Department, Jilin Provincial Cancer Hospital, Changchun, Jilin, China
| | - Luyao Wang
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ningyi Jin
- Department of Pathology and Pathophysiology, Yan Bian University, Yanbian, Jilin, China
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences Changchun, Jilin, China
| |
Collapse
|
2
|
Chen Y, Wang G, Chen J, Wang C, Dong X, Chang HM, Yuan S, Zhao Y, Mu L. Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocr Rev 2024; 45:437-459. [PMID: 38298137 DOI: 10.1210/endrev/bnae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.
Collapse
Affiliation(s)
- Yi Chen
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Guiquan Wang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Reproduction and Genetics, Xiamen University, Xiamen 361023, China
| | - Jingqiao Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Congying Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 40400, Taiwan
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm 171 65, Sweden
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing 100007, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University, Beijing 100191, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Usman M, Li A, Wu D, Qinyan Y, Yi LX, He G, Lu H. The functional role of lncRNAs as ceRNAs in both ovarian processes and associated diseases. Noncoding RNA Res 2024; 9:165-177. [PMID: 38075201 PMCID: PMC10709095 DOI: 10.1016/j.ncrna.2023.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 04/26/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have attracted significant scientific attention due to their central role in regulating gene expression and their profound impact on the intricate mechanisms of ovarian function. These versatile molecules exert their influence through various mechanisms, including the coordination of transcription processes, modulation of post-transcriptional events, and the shaping of epigenetic landscapes. Furthermore, lncRNAs function as competitive endogenous RNAs (ceRNAs), engaging in intricate interactions with microRNAs (miRNAs) to finely adjust the expression of target genes. The intricate lncRNA-miRNA-mRNA network serves as a crucial determinant in governing the multifaceted physiological functions of the ovaries. It holds substantial potential in unraveling the causes and progression of reproductive disorders and, importantly, in identifying new therapeutic targets and diagnostic markers for these conditions. A comprehensive comprehension of lncRNAs and their ceRNA activities within the domain of ovarian biology could potentially lead to groundbreaking advancements in clinical interventions and management strategies. This exploration of lncRNAs and their intricate involvement in the regulatory framework provides an extensive platform for deciphering the complex nature of ovarian physiology and pathology. The ongoing progress in this field, which encompasses in-depth investigations into the functional roles of specific lncRNAs, the elucidation of their complex interactions with miRNAs, and the comprehensive profiling of their expression patterns, holds the promise of making significant contributions to our understanding of ovarian biology and reproductive disorders. Ultimately, these breakthroughs will have wide-ranging translational implications, paving the way for the development of precision therapies and personalized medicine strategies to address the myriad challenges in the realm of reproductive health.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Plastic and Reconstructive Surgery, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Ai Li
- Department of Postdoctoral Research Workstation, The Seventh People's Hospital of Chongqing, Chongqing, PR China
| | - Dan Wu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, PR China
| | - Yang Qinyan
- Department of Anesthesia, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| | - Lin Xiao Yi
- Department of Radiology, The Chenjiaqiao Hospital of Shapingba District of Chongqing, PR China
| | - Guiqiong He
- Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hong Lu
- Department of Medical Imaging, Central Hospital Affiliated to Chongqing University of Technology, Gonglian yicun No.1 street lijiatuo, Banan district, Chongqing, 400054, PR China
| |
Collapse
|
4
|
Banikazemi Z, Heidar Z, Rezaee A, Taghavi SP, Zadeh Modarres S, Asemi Z, Goleij P, Jahed F, Mazaheri E, Taghizadeh M. Long non-coding RNAs and female infertility: What do we know? Pathol Res Pract 2023; 250:154814. [PMID: 37757620 DOI: 10.1016/j.prp.2023.154814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Ten percent of people who are of reproductive age experience infertility. Sometimes the most effective therapies, including technology for assisted reproduction, may lead to unsuccessful implantation. Because of the anticipated epigenetic alterations of in vitro as well as in vitro fertilization growth of embryos, these fertility techniques have also been linked to unfavorable pregnancy outcomes linked to infertility. In this regard, a variety of non-coding RNAs such as long noncoding RNAs (lncRNAs) act as epigenetic regulators in the various physiological and pathophysiological events such as infertility. LncRNAs have been made up of cytoplasmic and nuclear nucleotides; RNA polymerase II transcribes these, which are lengthier than 200 nt. LncRNAs perform critical roles in a number of biological procedures like nuclear transport, X chromosome inactivation, apoptosis, stem cell pluripotency, as well as genomic imprinting. A significant amount of lncRNAs were linked into a variety of biological procedures as high throughput sequencing technology advances, including the development of the testes, preserving spermatogonial stem cells' capacity for differentiation along with self-renewal, and controlling spermatocyte meiosis. All of them point to possible utility of lncRNAs to be biomarkers and treatment aims for female infertility. Herein, we summarize various lncRNAs that are involved in female infertility.
Collapse
Affiliation(s)
- Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Heidar
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahrzad Zadeh Modarres
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Fatemeh Jahed
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Mazaheri
- Preventative Gynecology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Li D, Liu L, He X, Wang N, Sun R, Li X, Yu T, Chu XM. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci 2023; 330:122006. [PMID: 37544376 DOI: 10.1016/j.lfs.2023.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Lili Liu
- School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Ruicong Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Xiaolu Li
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, People's Republic of China.
| |
Collapse
|
6
|
Hong Y, Wu J, Yu S, Hui M, Lin S. Serum-Derived Exosomal microRNAs in Lipid Metabolism in Polycystic Ovary Syndrome. Reprod Sci 2022; 29:2625-2635. [PMID: 35922742 DOI: 10.1007/s43032-022-00930-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
The crosstalk between obesity and insulin resistance (IR) in polycystic ovary syndrome (PCOS) may be related to miRNA regulation secreted by exosomes. However, the underlying mechanism remains to be explored. A model of PCOS with IR was constructed in mice with dehydroepiandrosterone (DHEA) and a high-fat diet (HFD). Serum exosomes were extracted and characterized using transmission electron microscopy (TEM) and western blot analysis (for CD9, CD63, and CD81). The expression of miR-20b-5p and miR-106a-5p in serum exosomes was detected by qRT-PCR. The effects of serum exosomal miR-20b-5p and miR-106a-5p on lipid metabolism and ovary histological structure in PCOS model with IR were also explored. Serum exosomal miR-20b-5p and miR-106a-5p overexpression could inhibit adipocyte differentiation in 3T3-L1 cells with IR and PCOS mice model. Furthermore, the predicted targets of miR-20b-5p and miR-106a-5p were also analyzed with bioinformatics. In DHEA + HFD serum-derived exosomes, the miR-20b-5p and miR-106a-5p levels were markedly decreased. Overexpression of miR-20b-5p and miR-106a-5p alleviated adipocyte differentiation-related genes and triglyceride content in 3T3-L1 cells and liver steatosis in mice. Bioinformatics analysis of miR-20b-5p and miR-106a-5p predicted targets indicated that miR-20b-5p and miR-106a-5p were highly related to lipid metabolism. Serum-derived exosome miR-20b-5p and miR-106a-5p inhibited adipocyte differentiation during the process of PCOS with IR, which might be a novel therapeutic target.
Collapse
Affiliation(s)
- Yanli Hong
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China. .,, Nanjing, China.
| | - Jiayun Wu
- TCM Gynecology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Simin Yu
- TCM Gynecology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Miao Hui
- TCM Gynecology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sipei Lin
- TCM Gynecology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Li Y, Xu J, Li L, Bai L, Wang Y, Zhang J, Wang H. Inhibition of Nicotinamide adenine dinucleotide phosphate oxidase 4 attenuates cell apoptosis and oxidative stress in a rat model of polycystic ovary syndrome through the activation of Nrf-2/HO-1 signaling pathway. Mol Cell Endocrinol 2022; 550:111645. [PMID: 35413388 DOI: 10.1016/j.mce.2022.111645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder in reproductive-aged women. In this study, a rat model of PCOS was established by subcutaneous injection of dehydroepiandrosterone (DHEA). NOX4 was highly expressed in PCOS rat ovaries, while its specific role in PCOS remains unclear. Lentivirus-mediated shRNA targeting NOX4 inhibited oxidative stress by reducing ROS, 4-HNE and MDA levels, and increasing SOD and GPX activities in rat ovaries. NOX4 deficiency increased Bcl-2 levels and decreased Bax, cleaved caspase-3 and cleaved caspase-9 levels and DHEA-induced cell apoptosis in rat ovaries. Similar to the in vivo results, NOX4 silencing inhibited oxidative stress and cell apoptosis in DHEA-treated rat granulosa cells. Moreover, NOX4 silencing promoted Nrf-2 translocation, and the expression of Nrf-2 and HO-1 both in vivo and in vitro. Thus, NOX4 deficiency may ameliorate PCOS in rats by reducing oxidative stress and cell apoptosis via activating the Nrf-2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jia Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lingxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Lu Bai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yunping Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Jianfang Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| | - Haixu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
| |
Collapse
|
8
|
Guo Y, Peng X, Cheng R, Chen H, Luo X. Long non-coding RNA-X-inactive specific transcript inhibits cell viability, and induces apoptosis through the microRNA-30c-5p/Bcl2-like protein 11 signaling axis in human granulosa-like tumor cells. Bioengineered 2022; 13:14107-14117. [PMID: 35730492 PMCID: PMC9342309 DOI: 10.1080/21655979.2022.2080366] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The role of long noncoding RNAs (lncRNAs) is being actively explored in polycystic ovary syndrome (PCOS). Recent research has shown that long non-coding RNA (lncRNA) X–inactive Specific Transcript (XIST) is overexpressed in patients with PCOS and is associated with poor pregnancy outcomes. However, the precise function and mechanism of action of lncRNA XIST in PCOS are unknown. We aimed to determine whether lncRNA XIST contributes to PCOS by modulating ovarian granulosa cell physiology. We also investigated any potential molecular regulatory mechanisms. In this study, we discovered that the lncRNA XIST was significantly downregulated in human ovarian granulosa-like tumor (KGN) cells. Notably, overexpression of lncRNA XIST decreased miR-30c-5p expression in KGN cells, inhibited proliferation, and induced apoptosis in KGN cells. However, cotransfection with amiR-30c-5p mimic significantly reduced these effects. Additionally, we discovered that the miR-30c-5p mimic effectively inhibited Bcl2-like protein 11 (BCL2L11) expression, a critical apoptotic promoter, whereas silencing of miR-30c-5p increased BCL2L11 expression, inhibited KGN cell proliferation, and induced apoptosis. In contrast, cotransfection of BCL2L11 with siRNA significantly reversed these effects. In conclusion, this study established that lncRNA XIST plays a critical role in PCOS by modulating the miR-30c-5p/BCL2L11 signaling axis and regulating ovarian granulosa cell physiology.
Collapse
Affiliation(s)
- Yichuan Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xueping Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ran Cheng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyan Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Wang L, Zhao M. Suppression of NOD-like receptor protein 3 inflammasome activation and macrophage M1 polarization by hederagenin contributes to attenuation of sepsis-induced acute lung injury in rats. Bioengineered 2022; 13:7262-7276. [PMID: 35266443 PMCID: PMC9208453 DOI: 10.1080/21655979.2022.2047406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) is a major leading cause of death in sepsis patients. Hederagenin (HG), derived from Hedera helix Linné, has anti-inflammatory effects, while its role in sepsis-induced ALI has not been elucidated. In vivo, rats were subjected to cecal ligation and puncture to induce ALI and then treated with HG (12.5, 25, or 50 mg/kg) by gavage. Administration of HG raised survival rate, ameliorated lung injury, and decreased lung wet/dry ratio and inflammatory cell accumulation in bronchoalveloar lavage fluid (BALF) of ALI rats. HG inhibited macrophage polarization toward the M1 phenotype as evidenced by decreased CD86 expression in rat lung tissues. Moreover, HG decreased the secretion of TNF-α, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in BALF and the levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung tissues. In vitro, phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 macrophages were stimulated with 100 ng/mL lipopolysaccharide. HG treatment inhibited M1 macrophage polarization and the production of M1-related pro-inflammatory mediators (IL-6, MCP-1, iNOS, and COX-2). Mechanistically, HG inhibited NLRP3 inflammasome activation and subsequent release of IL-18 and IL-1β, and suppressed NF-κB signaling pathway both in vivo and in vitro. Notably, HG treatment further emphasized the inhibitory effect of NF-κB inhibitor BAY11-7082 on NLRP3 inflammasome activation and macrophage M1 polarization. Taken together, HG exerts a protective effect against sepsis-induced ALI by reducing the inflammatory response and macrophage M1 polarization, which may involve NF-κB pathway-modulated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Dinh DT, Russell DL. Nuclear Receptors in Ovarian Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:41-58. [DOI: 10.1007/978-3-031-11836-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Long noncoding RNAs as a piece of polycystic ovary syndrome puzzle. Mol Biol Rep 2021; 48:3845-3851. [PMID: 33993404 DOI: 10.1007/s11033-021-06196-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/28/2021] [Indexed: 10/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine disorder and affects 5-10% of reproductive-age women. Chronic anovulation, polycystic ovaries, and hyperandrogenism are the important features of this syndrome. Furthermore, hyperinsulinemia and central obesity are frequent in PCOS women. In recent years, noncoding RNAs detection provided new ideas to explain the etiology of female reproductive disorders. Long noncoding RNAs (lncRNAs) as a subset of noncoding RNAs are associated with the pathogenesis of manifold reproductive-related disorders. Various investigations emphasized the potential involvement of lncRNAs in PCOS development. Therefore, in this paper, we will summarize the function of numerous lncRNAs in the apoptosis and proliferation of granulosa cells (GCs), insulin resistance (IR), and steroidogenesis in PCOS.
Collapse
|
12
|
Yan S, Ding J, Zhang Y, Wang J, Zhang S, Yin T, Yang J. C1QTNF6 participates in the pathogenesis of PCOS by affecting the inflammatory response of granulosa cells‡. Biol Reprod 2021; 105:427-438. [PMID: 33959757 DOI: 10.1093/biolre/ioab094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease. It has been reported that chronic low-grade inflammation might participate in its pathogenesis. C1q and TNF related 6 (C1QTNF6) is a newly identified adiponectin paralog associated with inflammation. The aim of the present study was to investigate the role of C1QTNF6 in the development of chronic inflammation in PCOS and the underlying molecular mechanism. After analyzing the expression of C1QTNF6 in the serum and granulosa cells (GCs) of PCOS patients and healthy controls, we verified the roles of C1QTNF6 in inflammation through dehydroepiandrosterone-induced PCOS mouse models and cell models of lipopolysaccharide (LPS)-induced inflammation. The results demonstrated that C1QTNF6 expression in the serum and GCs of patients with PCOS was significantly elevated compared with those of the controls, and similar results were observed in the serum and ovary of PCOS mouse models. In PCOS mice and C1QTNF6-overexpressing PCOS mice, serum levels of pro-inflammatory factors including C-reactive protein (CRP), interleukin 6 (IL6), and tumor necrosis factor-α (TNFα) were increased, while the opposite effects were observed when C1QTNF6 was down-regulated in PCOS mice. Furthermore, C1QTNF6 overexpression up-regulated the levels of TNFα, IL6, and CRP and activated the AKT/NF-κB pathway in LPS-treated KGN cells, whereas C1QTNF6 knockdown and BAY-117082 (an NF-κB inhibitor) treatment resulted in the opposite effects. Taken together, our results indicate that C1QTNF6 is involved in the pathogenesis of PCOS by affecting the inflammatory response via the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jiayu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Sainan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
13
|
Bao D, Li M, Zhou D, Zhuang C, Ge Z, Wei Q, Zhang L. miR-130b-3p is high-expressed in polycystic ovarian syndrome and promotes granulosa cell proliferation by targeting SMAD4. J Steroid Biochem Mol Biol 2021; 209:105844. [PMID: 33582305 DOI: 10.1016/j.jsbmb.2021.105844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Being one of the most prevalent metabolic and endocrine disorders, Polycystic Ovary Syndrome (PCOS) has been proven to be associated with microRNA-130b-3p (miR-130b-3p). However, the exact role played by miR-130b-3p in the pathogenesis and progression of PCOS remains unknown. Thus, this article is focused on elucidating the function of miR-130b-3p in the pathogenesis of PCOS. METHODS The expression levels of miR-130b-3p and SMAD4 in tissues and cells responsible for the development of PCOS were determined by RT-qPCR and western blot. A miR-130b-3p mimic/inhibitor or si-SMAD4 were transfected into KGN cells. The cell viability was detected by CCK-8 and EDU methods. The activity of caspase-3 was measured by caspase-3 analysis. Subsequently, apoptosis and the cell cycle were measured via flow cytometry. The correlation between SMAD4 and miR-130b-3p was confirmed using an RNA pull-down assay and a dual luciferase reporter system assay. RESULTS MiR-130b-3p was upregulated in the KGN cells and ovarian granulosa cells (GCs) of PCOS patients. It was found that miR-130b-3p overexpression or SMAD4 silencing can promote KGN cell proliferation and positive EDU rates, induce S phase arrest, inhibit apoptosis and caspase-3 activity. On the other hand, miR-130b-3p inhibitors reduce KGN cell proliferation, inhibit apoptosis and reverse the effect of si-SMAD4. CONCLUSION MiR-130b-3p directly interacts with SMAD4 to induce KGN cell proliferation, inhibit apoptosis, suggesting that miR-130b-3p expression is positively correlated with the development of PCOS. This may serve as new evidence for the abnormal proliferation of GCs in PCOS.
Collapse
Affiliation(s)
- Dongqin Bao
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China.
| | - Mingan Li
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Dongxia Zhou
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Chaohui Zhuang
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Zhijuan Ge
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Qian Wei
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| | - Limin Zhang
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian City, Jiangsu Province, China
| |
Collapse
|
14
|
Dabravolski SA, Nikiforov NG, Eid AH, Nedosugova LV, Starodubova AV, Popkova TV, Bezsonov EE, Orekhov AN. Mitochondrial Dysfunction and Chronic Inflammation in Polycystic Ovary Syndrome. Int J Mol Sci 2021; 22:3923. [PMID: 33920227 PMCID: PMC8070512 DOI: 10.3390/ijms22083923] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine-metabolic disorder affecting a vast population worldwide; it is linked with anovulation, mitochondrial dysfunctions and hormonal disbalance. Mutations in mtDNA have been identified in PCOS patients and likely play an important role in PCOS aetiology and pathogenesis; however, their causative role in PCOS development requires further investigation. As a low-grade chronic inflammation disease, PCOS patients have permanently elevated levels of inflammatory markers (TNF-α, CRP, IL-6, IL-8, IL-18). In this review, we summarise recent data regarding the role of mtDNA mutations and mitochondrial malfunctions in PCOS pathogenesis. Furthermore, we discuss recent papers dedicated to the identification of novel biomarkers for early PCOS diagnosis. Finally, traditional and new mitochondria-targeted treatments are discussed. This review intends to emphasise the key role of oxidative stress and chronic inflammation in PCOS pathogenesis; however, the exact molecular mechanism is mostly unknown and requires further investigation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora str., 210026 Vitebsk, Belarus
| | - Nikita G. Nikiforov
- Center of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ludmila V. Nedosugova
- Federal State Autonomous Educational Institution of Higher Education, I. M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, 119991 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (E.E.B.); (A.N.O.)
| |
Collapse
|
15
|
Yang D, Wang Y, Zheng Y, Dai F, Liu S, Yuan M, Deng Z, Bao A, Cheng Y. Silencing of lncRNA UCA1 inhibited the pathological progression in PCOS mice through the regulation of PI3K/AKT signaling pathway. J Ovarian Res 2021; 14:48. [PMID: 33743811 PMCID: PMC7980617 DOI: 10.1186/s13048-021-00792-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-aged women worldwide, however, the mechanisms and progression of PCOS still unclear due to its heterogeneous nature. Using the human granulosa-like tumor cell line (KGN) and PCOS mice model, we explored the function of lncRNA UCA1 in the pathological progression of PCOS. Results CCK8 assay and Flow cytometry were used to do the cell cycle, apoptosis and proliferation analysis, the results showed that UCA1 knockdown in KGN cells inhibited cell proliferation by blocking cell cycle progression and promoted cell apoptosis. In the in vivo experiment, the ovary of PCOS mice was injected with lentivirus carrying sh-UCA1, the results showed that knockdown of lncRNA UCA1 attenuated the ovary structural damage, increased the number of granular cells, inhibited serum insulin and testosterone release, and reduced the pro-inflammatory cytokine production. Western blot also revealed that UCA1 knockdown in PCOS mice repressed AKT activation, inhibitor experiment demonstrated that suppression of AKT signaling pathway, inhibited the cell proliferation and promoted apoptosis. Conclusions Our study revealed that, in vitro, UCA1 knockdown influenced the apoptosis and proliferation of KGN cells, in vivo, silencing of UCA1 regulated the ovary structural damage, serum insulin release, pro-inflammatory production, and AKT signaling pathway activation, suggesting lncRNA UCA1 plays an important role in the pathological progression of PCOS.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratoy, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 2021; 236:5162-5175. [PMID: 33393111 DOI: 10.1002/jcp.30222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNA PVT1 is involved in the progression of female gynecological cancers. However, the role of PVT1 in ovarian granulosa cell apoptosis-mediated premature ovarian insufficiency (POI) remains unclear. This study aims to elucidate the role of PVT1 in ovarian granulosa cell apoptosis-mediated POI. The expression of PVT1 was compared between ovarian tissues from POI patients and normal controls. The methylation level in the PVT1 promoter region was detected by methylation-specific polymerase chain reaction. The interaction between PVT1 and forkhead box class O3A (Foxo3a) was confirmed by RNA pull-down and RNA immunoprecipitation assays. Granulosa cell apoptosis was detected using flow cytometry. The effect of PVT1 on transcription activity of Foxo3a was detected by luciferase reporter assay. The expression of PVT1 was low in the POI ovarian tissues compared with the controls, and such a low expression was related to the hypermethylation of the PVT1 promoter. PVT1 was localized in both the cytoplasm and the nucleus of granulosa cells. We determined that PVT1 could bind with Foxo3a and that downregulating PVT1 by small interfering RNAs inhibited Foxo3a phosphorylation by promoting SCP4-mediated Foxo3a dephosphorylation, resulting in an increase in Foxo3a transcription activity. Moreover, downregulating PVT1 promoted granulosa cell apoptosis by increasing the Foxo3a protein levels. An in vivo experiment showed that the injection of PVT1 overexpressing vectors restored the ovarian function in POI mice. Hypermethylation-induced downregulation of PVT1 promotes granulosa cell apoptosis in POI by inhibiting Foxo3a phosphorylation and increases the Foxo3a transcription activity.
Collapse
Affiliation(s)
- Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Ma
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Zhai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Tu M, Wu Y, Mu L, Zhang D. Long non-coding RNAs: novel players in the pathogenesis of polycystic ovary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:173. [PMID: 33569475 PMCID: PMC7867878 DOI: 10.21037/atm-20-5044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of transcripts (>200 nucleotides) lacking protein-coding capacity. Based on the complex three-dimensional structure, lncRNAs are involved in many biological processes and can regulate the expression of target genes at chromatin modification, transcriptional and post-transcriptional levels. LncRNAs have been studied in multiple diseases but little is known about their role(s) in polycystic ovary syndrome (PCOS), the most common endocrinological disorder in reproductive-aged women around the world. In this review, we characterized and explored the potential mechanisms of lncRNAs in the pathogenesis of PCOS. We found that lncRNAs play a molecular role in PCOS mainly by functioning as the competitive endogenous RNA (ceRNA) and are significantly correlated with some clinical phenotypes. We summarized in detail regarding aberrant lncRNAs in different specimens of women with PCOS [i.e., granulosa cells (GCs), cumulus cells (CCs), follicular fluid (FF), peripheral blood] and various PCOS rodent models [i.e., dehydroepiandrosterone (DHEA) and letrozole induced models]. In clinical practice, detection of lncRNAs in serum might enable early diagnosis. Furthermore, new lncRNA-based classifications might be emerging as potent predictors of a particular phenotype in PCOS. Overall, we proposed new insights for the application of precision medicine approaches to the management of PCOS.
Collapse
Affiliation(s)
- Mixue Tu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Yiqing Wu
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangshan Mu
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Dan Zhang
- Women's Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Darbey A, Rebourcet D, Curley M, Kilcoyne K, Jeffery N, Reed N, Milne L, Roesl C, Brown P, Smith LB. A comparison of in vivo viral targeting systems identifies adeno-associated virus serotype 9 (AAV9) as an effective vector for genetic manipulation of Leydig cells in adult mice. Andrology 2020; 9:460-473. [PMID: 32996275 DOI: 10.1111/andr.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the increasing popularity of deliverable transgenics, a robust and fully validated method for targeting Leydig cells, capable of delivering long-term transgene expression, is yet to be defined. OBJECTIVES We compared three viral vector systems in terms of their cell targeting specificity, longevity of gene expression and impact on targeted cell types when delivered to the interstitial compartment of the mouse testis. MATERIALS & METHODS We delivered lentiviral, adenoviral and adeno-associated (AAV) viral particles to the interstitial compartment of adult mouse testis. Immunolocalization and stereology were performed to characterize ability of vectors to target and deliver transgenes to Leydig cells. RESULTS Viral vectors utilized in this study were found to specifically target Leydig cells when delivered interstitially. Transgene expression in lentiviral-targeted Leydig cells was detected for 7 days post-injection before Leydig cells underwent apoptosis. Adenoviral-delivered transgene expression was detected for 10 days post-injection with no evidence of targeted cell apoptosis. We found serotype differences in AAV injected testis with AAV serotype 9 targeting a significant proportion of Leydig cells. Targeting efficiency increased to an average of 59.63% (and a maximum of 80%) of Leydig cells with the addition of neuraminidase during injection. In AAV injected testis sections, transgene expression was detectable for up to 50 days post-injection. DISCUSSION & CONCLUSION Lentivirus, Adenovirus and Adeno-Associated virus delivery to the testis resulted in key variances in targeting efficiency of Leydig cells and in longevity of transgene expression, but identified AAV9 + Neuraminidase as an efficient vector system for transgene delivery and long-term expression. Simple viral delivery procedures and the commercial availability of viral vectors suggests AAV9 + Neuraminidase will be of significant utility to researchers investigating the genetics underpinning Leydig cell function and holds promise to inform the development of novel therapeutics for the treatment of male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Curley
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Karen Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Nathan Jeffery
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Natalie Reed
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Laura Milne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Cornelia Roesl
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Pamela Brown
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Liu J, Ding J, Qu B, Liu J, Song X, Suo Q, Zhou A, Yang J. CircPSMC3 alleviates the symptoms of PCOS by sponging miR-296-3p and regulating PTEN expression. J Cell Mol Med 2020; 24:11001-11011. [PMID: 32808450 PMCID: PMC7521274 DOI: 10.1111/jcmm.15747] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS), the most common female endocrine disease that causes anovulatory infertility, still lacks promising strategy for the accurate diagnosis and effective therapeutics of PCOS attributed to its unclear aetiology. In this study, we determined the abnormal reduction in circPSMC3 expression by comparing the ovarian tissue samples of PCOS patients and normal individuals. The symptom relief caused by up-regulation of circPSMC3 in PCOS model mice suggested the potential for further study. In vitro functional experiments confirmed that circPSMC3 can inhibit cell proliferation and promote apoptosis by blocking the cell cycle in human-like granular tumour cell lines. Mechanism study revealed that circPSMC3 may play its role through sponging miR-296-3p to regulate PTEN expression. Collectively, we preliminarily characterized the role and possible insights of circPSMC3/miR-296-3p/PTEN axis in the proliferation and apoptosis of KGN cells. We hope that this work provides some original and valuable information for the research of circRNAs in PCOS, not only to better understand the pathogenesis but also to help provide new clues for seeking for the future therapeutic target of PCOS.
Collapse
Affiliation(s)
- Jun Liu
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China.,Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Bing Qu
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jiuying Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Xiaojie Song
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Qingli Suo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science &Technology, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Targeting steroid receptor RNA activator (SRA), a long non-coding RNA, enhances melanogenesis through activation of TRP1 and inhibition of p38 phosphorylation. PLoS One 2020; 15:e0237577. [PMID: 32790741 PMCID: PMC7425936 DOI: 10.1371/journal.pone.0237577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormal skin melanin homeostasis results in refractory pigmentary diseases. Melanogenesis is influenced by gene regulation, ultraviolet radiation, and host epigenetic responses. Steroid receptor RNA activator (SRA), a long noncoding RNA, is known to regulate steroidogenesis and tumorigenesis. However, how SRA contributes to melanogenesis remains unknown. Using RNA interference against SRA in B16 and A375 melanoma cells, we observed increased pigmentation and increased expression of TRP1 and TRP2 at transcriptional and translational levels only in B16 cells. The constitutive phosphorylation of p38 in B16-shCtrl cells was inhibited in cells with knocked down SRAi. Moreover, the melanin content of control B16 cells was increased by SB202190, a p38 inhibitor. Furthermore, reduced p38 phosphorylation, enhanced TRP1 expression, and hypermelanosis were observed in A375 cells with RNA interference. These results indicate that SRA-p38-TRP1 axis has a regulatory role in melanin homeostasis and that SRA might be a potential therapeutic target for treating pigmentary diseases.
Collapse
|
21
|
Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res 2020; 13:63. [PMID: 32503679 PMCID: PMC7275442 DOI: 10.1186/s13048-020-00663-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Granulosa cells (GCs) are somatic cells surrounding oocytes within follicles and are essential for folliculogenesis. Pathological changes in GCs are found in several ovarian disorders. Recent reports have indicated that long non-coding RNAs (lncRNAs), which modulate gene expression via multiple mechanisms, are key regulators of the normal development of GCs, follicles, and ovaries. In addition, accumulating evidence has suggested that lncRNAs can be utilized as biomarkers for the diagnosis and prognosis of GC-related diseases, such as polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). Therefore, lncRNAs not only play a role in GCs that are involved in normal folliculogenesis, but they may also be considered as potential candidate biomarkers and therapeutic targets in GCs under pathological conditions. In the future, a detailed investigation of the in vivo delivery or targeting of lncRNAs and large-cohort-validation of the clinical applicability of lncRNAs is required.
Collapse
Affiliation(s)
- Jiajie Tu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China. .,Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui province, China.
| | - Yu Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - Zhe Li
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - Huan Yang
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - He Chen
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China
| | - Zhiying Yu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong province, China.
| |
Collapse
|
22
|
Wu G, Yang Z, Chen Y, Li X, Yang J, Yin T. Downregulation of Lnc-OC1 attenuates the pathogenesis of polycystic ovary syndrome. Mol Cell Endocrinol 2020; 506:110760. [PMID: 32070768 DOI: 10.1016/j.mce.2020.110760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) play a vital role in the progression of many human diseases. The aim of this study is to explore the relationship between lncRNA-ovarian cancer associated 1 (Lnc-OC1) and PCOS. In this study, we found that Lnc-OC1 was significantly higher in PCOS granulosa cells (GCs) compared to non-PCOS GCs. Lnc-OC1 knockdown inhibited cell viability and promoted cell apoptosis, expression of aromatase mRNA and production of estradiol in KGN cells. In PCOS mice, Lnc-OC1 promoted the serum insulin release, production of angiogenesis-related factors and IκBα phosphorylation, which could be partially restored by Lnc-OC1 shRNA. These results suggest that Lnc-OC1 plays an important part in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Gengxiang Wu
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Zhe Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yajie Chen
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Xiaoling Li
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| | - Tailang Yin
- Reproductive Medical Centre, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
23
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
24
|
Li L, Wei J, Hei J, Ren Y, Li H. Long non-coding RNA H19 regulates proliferation of ovarian granulosa cells via STAT3 in polycystic ovarian syndrome. Arch Med Sci 2019; 17:785-791. [PMID: 34025849 PMCID: PMC8130457 DOI: 10.5114/aoms.2019.89254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Studies have shown that long non-coding RNAs (lncRNA) are aberrantly expressed in polycystic ovarian syndrome (PCOS) ovaries and may have a role in PCOS development. In this study, the role and therapeutic implications of lncRNA H19 were investigated in PCOS ovaries and granulosa cells. MATERIAL AND METHODS qRT-PCR was used for expression analysis. Cell Counting Kit 8 (CCK-8) assay was used for cell viability and acridine orange/ethidium bromide (AO/EB) and Annexin V/propidium iodide staining was used to detect apoptosis. All transfections were carried out with Lipofectamine 2000 reagent. Western blot analysis was used for protein expression analysis. RESULTS The expression of lncRNA H19 was remarkably upregulated in the PCOS ovarian tissues as well as the granulosa cells. Suppression of lncRNA H19 expression caused the inhibition of KGN granulosa cell proliferation due to the triggering of apoptosis. Bioinformatic analysis revealed the presence of the GAS binding site for STAT3 in the promoter of lncRNA H19. Silencing of STAT3 suppressed the expression of lncRNA H19 in KGN cells and also halted their growth by triggering apoptosis. Co-transfect experiments revealed that STAT3 and lncRNA H19 silencing cause inhibition of KGN growth synergistically. CONCLUSIONS lncRNA H19 regulates the growth of ovarian granulosa cells and might prove to be a therapeutic target for management of PCOS.
Collapse
Affiliation(s)
- Li Li
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Jianxun Wei
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Jiangrong Hei
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Yongbian Ren
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| | - Hongmei Li
- Department of Obstetrics, Yanan University Affiliated Hospital, Yan'an, China
| |
Collapse
|
25
|
Gupta SC, Awasthee N, Rai V, Chava S, Gunda V, Challagundla KB. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochim Biophys Acta Rev Cancer 2019; 1873:188316. [PMID: 31639408 DOI: 10.1016/j.bbcan.2019.188316] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022]
Abstract
The regulation of the pleiotropic transcription factor, nuclear factor-κB (NF-κB) by miRNAs and proteins is extensively studied. More recently, the NF-κB signaling was also reported to be regulated by several long non-coding RNAs (lncRNAs) that constitute the major portion of the noncoding component of the human genome. The common NF-κB associated lncRNAs include NKILA, HOTAIR, MALAT1, ANRIL, Lethe, MIR31HG, and PACER. The lncRNA and NF-κB signaling crosstalk during cancer and other diseases such as cardiomyopathy, celiac disease, cerebral infarction, chronic kidney disease, diabetes mellitus, Kawasaki disease, pregnancy loss, and rheumatoid arthritis. Some NF-κB related lncRNAs can affect gene expression without modulating NF-κB signaling. Most of the lncRNAs with a potential to modulate NF-κB signaling are regulated by NF-κB itself suggesting a feedback regulation. The discovery of lncRNAs have provided a new type of regulation for the NF-κB signaling and thus could be explored for therapeutic interventions. The manner in which lncRNA and NF-κB crosstalk affects human pathophysiology is discussed in this review. The challenges associated with the therapeutic interventions of this crosstalk are also discussed.
Collapse
Affiliation(s)
- Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Srinivas Chava
- Department of Biochemistry & Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Venugopal Gunda
- Pediatric Oncology Laboratory, Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kishore B Challagundla
- Department of Biochemistry & Molecular Biology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|