1
|
Zuo G, Li M, Guo X, Wang L, Yao Y, Huang JA, Liu Z, Lin Y. Fu brick tea supplementation ameliorates non-alcoholic fatty liver disease and associated endotoxemia via maintaining intestinal homeostasis and remodeling hepatic immune microenvironment. Food Res Int 2025; 209:116207. [PMID: 40253128 DOI: 10.1016/j.foodres.2025.116207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent disorder of excessive fat accumulation and inflammation in the liver that currently lacks effective therapeutic interventions. Fu brick tea (FBT) has been shown to ameliorate liver damage and modulate gut microbiota dysbiosis in NAFLD, but the potential mechanisms have not been comprehensively elucidated, especailly whether its hepatoprotective effects are determined to depend on the homeostasis of gut microbiota, intestinal barrier function and hepatic immune microenvironment. In this study, our results further demonstrated that FBT not only alleviated NAFLD symptoms and related endotoxemia in high-fat diet (HFD)-fed rats, but also attenuated intestinal barrier dysfunction and associated inflammation, also confirmed in Caco-2 cell experiment. Meanwhile, FBT intervention significantly relieved HFD-induced gut microbiota dysbiosis, characterized by increased diversity and composition, particularly facilitating beneficial microbes, including short chain fatty acids (SCFAs) and bile acids producers, such as Blautia and Fusicatenibacter, and inhibiting Gram-negative bacteria, such as Prevotella_9 and Phascolarctobacterium. Also, the gut microbiota-dependent hepatoprotective effects of FBT were verified by fecal microbiota transplantation (FMT) experiment. Thus, the beneficial moulation of gut microbiota altered by FBT in levels of SCFAs, bile acids and lipopolysaccharides, intestinal barrier function and TLR4/NF-κB pathway contributed to alleviate liver steatosis and inflammation. Additionally, the hepatoprotective effects of FBT was further demonstrated by suppressing Kupffer cell activation and regulating lipid metabolism using an ex vivo model of liver organoid. Therefore, FBT supplementation can maintain intenstinal homeostasis and remodel hepatic immune microenvironment to prevent NAFLD and associated endotoxemia.
Collapse
Affiliation(s)
- Gaolong Zuo
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Menghua Li
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaoli Guo
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Ling Wang
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Yanyan Yao
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education and Co-Innovation Centre of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, PR China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
2
|
Yang K, Li G, Li Q, Wang W, Zhao X, Shao N, Qiu H, Liu J, Xu L, Zhao J. Distribution of gut microbiota across intestinal segments and their impact on human physiological and pathological processes. Cell Biosci 2025; 15:47. [PMID: 40241220 PMCID: PMC12001467 DOI: 10.1186/s13578-025-01385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, advancements in metagenomics, metabolomics, and single-cell sequencing have enhanced our understanding of the intricate relationships between gut microbiota and their hosts. Gut microbiota colonize humans from birth, with their initial composition significantly influenced by the mode of delivery and feeding method. During the transition from infancy to early childhood, exposure to a diverse diet and the maturation of the immune system lead to the gradual stabilization of gut microbiota's composition and distribution. Numerous studies have demonstrated that gut microbiota can influence a wide range of physiological functions and pathological processes by interacting with various tissues and organs through the gut-organ axis. Different intestinal segments exhibit unique physical and chemical conditions, which leads to the formation of vertical gradients along the intestinal tract: aerobes and facultative aerobes mainly live in the small intestine and anaerobic bacteria mainly live in the large intestine, and horizontal gradients: mucosa-associated microbiota and lumen-associated microbiota. In this review, we systematically summarize the distribution characteristics of gut microbiota across six intestinal segments: duodenum, jejunum, ileum, cecum, colon, and rectum. We also draw a conclusion that gut microbiota distributed in different intestinal segments affect the progression of different diseases. We hope to elucidate the role of microbiota at specific anatomic sites within the gut in precisely regulating the processes of particular diseases, thereby providing a solid foundation for developing novel diagnostic and therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Ke Yang
- The First Clinical Institute, Zunyi Medical University, Zunyi, 563000, China
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Guangqin Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Qihong Li
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Wei Wang
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xu Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
- Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Lin Xu
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and treatment of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Ma Q, Zhou X, Su W, Wang Q, Yu G, Tao W, Dong Z, Wang C, Wong CM, Liu T, Jia S. Akkermansia muciniphila inhibits jejunal lipid absorption and regulates jejunal core bacteria. Microbiol Res 2025; 293:128053. [PMID: 39798297 DOI: 10.1016/j.micres.2025.128053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Insufficiency of Akkermansia muciniphila (Akk) has been implicated in the pathogenesis of metabolic diseases, and administration or restoration of Akk has ameliorated these disorders. Recently, Pasteurized Akk (PA-Akk) has been approved as a functional food. However, the impact of Akk on lipid absorption in the proximal intestine, which is directly exposed to orally administered Akk, remains largely unexplored. In this study, we orally administered Akk and PA-Akk to mice and investigated the subsequent lipid absorption. Long-term administration of Akk resulted in reduced lipid deposits in the liver and adipocytes, along with improved glucose metabolism. This was primarily attributed to a reduction in lipid absorption by epithelial cells in the proximal jejunum. Mechanistically, Akk activated AMP-activated protein kinase (AMPK) and directly inhibit lipids absorption in both mouse and human jejunal epithelial cells. Furthermore, we demonstrated that Akk treatment, but not PA-Akk treatment, promotes the abundance of genera that are highly abundant in the normal jejunum and belong to the phylum Firmicutes. Thus, our study concludes that oral administration of Akk provides beneficial effects on metabolism, partially through inhibiting jejunal lipid absorption and promoting the abundance of core jejunal microbes.
Collapse
Affiliation(s)
- Qiming Ma
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Xincheng Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Weikang Su
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Qingyu Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Guoxing Yu
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Weihua Tao
- The First Affiliated Hospital of Jinan University, Guangzhou, China; Biobank of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhiyong Dong
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Cunchuan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong
| | - Tiemin Liu
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Sciences, Fudan University, Shanghai, China.
| | - Shiqi Jia
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China; The First Affiliated Hospital of Jinan University, Guangzhou, China; The Guangdong-Hong Kong-Macao Joint University Laboratory of Metabolic and Molecular Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Li X, Han X, Yan H, Zhu H, Wang H, Li D, Tian Y, Su Y. From gut microbiota to host genes: A dual-regulatory pathway driving body weight variation in dagu chicken (Gallus gallus domesticus). Poult Sci 2025; 104:105067. [PMID: 40239312 PMCID: PMC12032334 DOI: 10.1016/j.psj.2025.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
During the growth and development of animals, there is an interaction between the gut microbiota and the host genotype. The host genotype can regulate the microbiota, and in turn, the microbiota can influence host gene expression, thereby affecting the animal's production performance. This study explored the dynamic interplay between the gut microbiota and host gene expression in body weight variation in Dagu chicken, an indigenous poultry genetic resource in China. We characterized mucosa-associated microbiota across four gastrointestinal segments (duodenum, jejunum, ileum, cecum) and ileocecal chyme microbiota in 12-week-old Dagu chickens stratified by divergent body weight phenotypes, while simultaneously quantifying region-specific intestinal epithelial transcriptional regulation. 16S rDNA sequencing was employed to identify Firmicutes as the predominant bacterial phylum, with notable differences in the abundance of specific genera (e.g., Ligilactobacillus and Lactobacillus) being observed between the high- or low-body-weight groups. Enhanced biosynthesis pathways were functionally predicted in heavier roosters, whereas reduced nutrient metabolism pathways were contrasted. A conserved functional concordance was observed between regionally predominant differential microbiota and the physiological specialization of corresponding intestinal niches. Functional analysis revealed that the high-body-weight group demonstrated superior capabilities in microbial biosynthesis, whereas the low-body-weight group exhibited enhanced microbial metabolic activity. NAA80 was identified as the common differentially expressed gene across all intestinal epithelial tissues. The Gene Ontology and KEGG pathway analyses revealed elevated nutrient absorption efficiency in the high-body-weight group, while the low-body-weight group demonstrated accelerated cellular renewal rates and shorter cycles. Correlation analysis identified significant associations between gut microbiota and host genes expression profiles, with the majority of correlations being positive. These results suggest a coordinated interaction between microbial communities and host genetic regulation, potentially driving phenotypic differences in body weight performance.
Collapse
Affiliation(s)
- Xiaohan Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Xueru Han
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Huan Yan
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Hongyan Zhu
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Hongcai Wang
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Desheng Li
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Yumin Tian
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China
| | - Yuhong Su
- College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China; Liaoning Provincial Key Laboratory of Animal Product Quality and Safety, Jinzhou Medical University, Jinzhou 121001, Liaoning, PR China.
| |
Collapse
|
5
|
Bai X, Gu Y, Li D, Li M. Gut Metagenome Reveals the Microbiome Signatures in Tibetan and Black Pigs. Animals (Basel) 2025; 15:753. [PMID: 40076036 PMCID: PMC11899681 DOI: 10.3390/ani15050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The harsh conditions of the Qinghai-Tibet Plateau pose significant physiological challenges to local fauna, often resulting in gastrointestinal disorders. However, Tibetan pigs have exhibited remarkable adaptability to the high-altitude stress of the Tibetan Plateau, a phenomenon that remains not fully understood in terms of their gastrointestinal microbiota. This study collected 57 gastrointestinal tract samples from Tibetan pigs (n = 6) and plain black pigs (n = 6) with comparable genetic backgrounds. Samples from the stomach, jejunum, cecum, colon, and rectum, underwent comprehensive metagenomic analysis to elucidate the gut microbiota-related adaptive mechanisms in Tibetan pigs to the extreme high-altitude environment. A predominance of Pseudomonadota was observed within gut microbiome of Tibetan pigs. Significant differences in the microbial composition were also identified across the tested gastrointestinal segments, with 18 genera and 141 species exhibiting differential abundance. Genera such as Bifidobacterium, Megasphaera, Fusobacterium, and Mitsuokella were significantly more abundant in Tibetan pigs than in their lowland counterparts, suggesting specialized adaptations. Network analysis found greater complexity and modularity in the microbiota of Tibetan pigs compared to black pigs, indicating enhanced ecological stability and adaptability. Functional analysis revealed that the Tibetan pig microbiota was particularly enriched with bacterial species involved in metabolic pathways for propionate and butyrate, key short-chain fatty acids that support energy provision under low-oxygen conditions. The enzymatic profiles of Tibetan pigs, characterized by elevated levels of 4-hydroxybutyrate dehydrogenase and glutaconyl-CoA decarboxylase, highlighted a robust fatty acid metabolism and enhanced tricarboxylic acid cycle activity. In contrast, the gut microbiome of plain black pigs showed a reliance on the succinate pathway, with a reduced butyrate metabolism and lower metabolic flexibility. Taken together, these results demonstrate the crucial role of the gastrointestinal microbiota in the adaptation of Tibetan pigs to high-altitude environments by optimizing carbohydrate metabolism and short-chain fatty acid production for efficient energy utilization. This study not only highlights the metabolic benefits conferred by the gut microbiota of Tibetan pigs in extreme environments, but also advances our understanding of the adaptive gastrointestinal mechanisms in plateau-dwelling animals. These insights lay the foundation for exploring metabolic interventions to support health and performance in high-altitude conditions.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China;
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
6
|
Wu X, Zhou Y, Lu Z, Zhang Y, Zhang T, Jiang Q. Cupric citrate supplementation improves growth performance, nutrient utilization, antioxidant capacity, and intestinal microbiota of broilers. Anim Biosci 2025; 38:530-538. [PMID: 39483018 PMCID: PMC11917449 DOI: 10.5713/ab.24.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/21/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE This study aimed to examine the impact of cupric citrate on broilers and compare it with the copper sulfate groups and a control group. METHODS A total of 360 1-day-old Ross 308 broilers were randomly assigned into 5 groups, each with 6 replicates of 12 broilers per treatment. The control group was fed a basal diet without any copper supplementation. In contrast, the other groups received basal diets supplemented with either 50 mg/kg (CS-50) or 100 mg/kg (CS-100) of copper in the form of copper sulfate, or 50 mg/kg (CC-50) or 100 mg/kg (CC-100) of copper in the form of cupric citrate, for a period of 42 days. RESULTS The results showed that copper supplementation affected the average daily gain (ADG) from day 1 to 21 (p = 0.026) and day 1 to 42 (p = 0.025) in a source-dependent manner. Copper source also influenced the energy digestibility (p = 0.004), with the CC-100 being the most effective treatment. Notably, birds in the CC-100 groups had significantly reduced concentrations of Escherichia coli (p<0.05) in the cecum, and the Lactobacillus in the ileum, compared to the control group. Dietary copper supplementation also increased the pH in the duodenum (p<0.05) irrespective of the sources and levels. In addition, the source of copper affected the activities of ceruloplasmin (p = 0.014) and CuZn superoxide dismutase (p = 0.025) in the serum, with the CC-100 group showing the highest levels of both enzymes. CONCLUSION Copper supplementation generally improves the growth, nutrient utilization, intestinal microflora, gastrointestinal pH, and antioxidant defences of broilers. Moreover, cupric citrate is as effective as copper sulfate even at equal or lower concentrations.
Collapse
Affiliation(s)
- Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Anhui 233100, China
| | - Yahao Zhou
- College of Animal Science, Anhui Science and Technology University, Anhui 233100, China
| | - Zhentao Lu
- College of Animal Science, Anhui Science and Technology University, Anhui 233100, China
| | - Yunting Zhang
- College of Animal Science, Anhui Science and Technology University, Anhui 233100, China
| | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Huang K, Hong C, Huang Y, Liu Y, Yu Z, Li S, Guan X, Zhao W. Oat β-glucan prevents high fat diet induced obesity by targeting ileal Farnesoid X receptor-fibroblast growth factor 15 signaling. Int J Biol Macromol 2025:141543. [PMID: 40020836 DOI: 10.1016/j.ijbiomac.2025.141543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Oat β-glucan has demonstrated an anti-obesity effect against high fat diet. However, its precise regulatory mechanism remains unclear. The anti-obesity effect was related to the structural characteristics. In this study, different molecular weight oat β-glucans were investigated, and yeast glucan was taken as the positive control. Compared with the low molecular weight oat β-glucan, the higher molecular weight β-glucan presented a superior anti-obesity effect, which might be attributed to its viscosity and fermentability. Oat β-glucan effectively modulated microbiota in both the large and small intestines. Correlation analysis revealed that ileal bacteria played a more critical role in lipid metabolism. Most bile acids are recycled in the distal ileum, and bile acid metabolism influences lipid metabolism. Consequently, the impact of oat β-glucan on bile acid metabolism was assessed. Oat β-glucan intervention reduced the abundance of Faecalibaculum, while increasing the abundance of Lactobacillus and Bifidobacterium. These microbiota alterations contributed to an increase in 7-ketodeoxycholic acid, which was identified as a Farnesoid X receptor (FXR) antagonist in cell experiments. Inactivation of ileal FXR-fibroblast growth factor 15 (FGF15) signaling by 7-ketodeoxycholic acid led to enhanced bile acid synthesis via the alternative pathway. Furthermore, upregulated cytochrome P450 family 27 subfamily A member 1 (CYP27A1) promoted chenodeoxycholic acid production, which subsequently activated hepatic FXR and further accelerated hepatic lipolysis through the peroxisome proliferator-activated receptor α (PPARα)-carnitine palmitoyltransferase 1 A (CPT1A) pathway. These findings provide new evidence that oat β-glucan exerts anti-obesity effects by modulating bile acid metabolism.
Collapse
Affiliation(s)
- Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Chunyan Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yuanyi Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| | - Zhang Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, PR China.
| | - Wenqian Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, PR China
| |
Collapse
|
8
|
Abbas Z, Tong Y, Zhang J, Sammad A, Wang J, Ahmad B, Wei X, Si D, Zhang R. Transcriptomics and microbiome insights reveal the protective mechanism of mulberry-derived postbiotics against inflammation in LPS-induced mice. Front Immunol 2025; 16:1536694. [PMID: 40040706 PMCID: PMC11876837 DOI: 10.3389/fimmu.2025.1536694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Background Natural food-derived bioactive compounds have garnered increasing attention for their potential to modulate immune responses and promote gut health. In particular, compounds like mulberry-derived postbiotics (MDP) may offer novel therapeutic strategies to address inflammation, a key driver of many metabolic disorders. Methodology This study examines the protective effects of MDP against inflammation in LPS-induced mice, using transcriptomic and microbiome analyses to explore underlying mechanisms. Results MDP pretreatment alleviates LPSinduced villous atrophy and intestinal barrier damage, promoting recovery of intestinal morphology. Transcriptomic profiling revealed significant changes in gene expression, with 983 upregulated and 1220 downregulated genes in the NC vs LPS comparison, and 380 upregulated and 204 downregulated genes in the LPS vs LPS+MDP comparison. Enrichment analysis using GO and KEGG pathways revealed significant associations with transcriptional regulatory activity, and the NOD-like receptor signaling pathway among the differentially expressed genes. Protein-protein interaction analysis identified key genes involved in inflammation and immune regulation, with hub genes like IL6, CXCL10, and MYD88 in the LPS group and CD74, CIITA, and H2-AB1 in the MDP-treated group. Conclusion Microbiome analysis suggested MDP may also influence gut microbiota composition, supporting systemic immune regulation. These findings highlight MDP's potential as a food additive for immune modulation and gut health.
Collapse
Affiliation(s)
- Zaheer Abbas
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucui Tong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Abdul Sammad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junyong Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Baseer Ahmad
- Faculty of Veterinary and Animal Science, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Xubiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dayong Si
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rijun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Zhang F, Wu Z, Zhang Y, Su Q, Zhu K, Chen X, Hou S, Gui L. Different lysine-to-methionine ratios in a low-protein diet affect the microbiome and metabolome, influencing the jejunal barrier function in Tibetan sheep. Front Microbiol 2025; 16:1441143. [PMID: 40012772 PMCID: PMC11861081 DOI: 10.3389/fmicb.2025.1441143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction The objective of this study was to evaluate the effects of the dietary lysine (Lys)/ methionine (Met) ratio in a low-protein diet on short-chain fatty acid (SCFA) profiles, villus morphology, antioxidant capacity, and immune status of the jejunum in Tibetan sheep. Methods A total of 90 weaned Tibetan sheep, each 2 months old with an initial weight of 15.37 ± 0.92 kg, were randomly divided into three treatment groups. These groups were supplemented with different Lys/Met ratios of 3 [low protein-high methionine (LP-H)], 2 [low protein-medium methionine (LP-M)], and 1 [low protein-low methionine (LP-L)] in the basal diet (10% crude protein). The feeding trial lasted 100 days, including a 10-day acclimation period and a 90-day experimental period. Results The hematoxylin-eosin (H&E) sections showed that the LP-L group had a significantly increased villus height compared to the LP-M and LP-H groups (p < 0.05). In addition, the LP-L group showed higher levels of Superoxide dismutase (SOD) activity and Total Antioxidant Capacity (T-AOC) concentrations (p < 0.05). A lower concentration of Interleukin-1 beta (IL-1β) was observed in the LP-H group (p < 0.05). The activities of α-amylase, chymotrypsin, and lipase were higher in the LP-L group compared to the LP-H group (p < 0.05). Bacterial sequencing showed that both Chao1 and ACE richness were significantly increased in the LP-L group (p < 0.05), suggesting that the species richness in the jejunum is connected to the ratio of dietary Lys/Met. Furthermore, lowering the dietary Lys/ Met ratio significantly increased the abundance of Romboutsia, the Ruminococcus gauvreauii group, the Lachnospiraceae NK3A20 group, Ruminococcus 2, and the Christensenellaceae R-7 group (p < 0.05) while decreasing the abundance of Methanobrevibacter (p < 0.05). Several differential metabolites, including beta-alanine, pantothenate, pantothenic acid, phosphoenolpyruvate, cysteine, adenosine 5'-diphosphate, isodeoxycholic acid, glutamate conjugated cholic acid, and 3-dehydrocholic acid, were significantly increased in the LP-L group (p < 0.05). The functional analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that these metabolites were mainly involved in pantothenate and CoA biosynthesis, ferroptosis, and the tricarboxylic acid cycle. Several genes related to barrier function, such as Occludin and Muc- 2, were upregulated in the LP-L group (p < 0.05), while IL-6 and TNF-α were downregulated (p < 0.05). Discussion Collectively, our results suggest that the dietary Met/ Lys ratio could affect the jejunal SCFA concentration by modulating the microbial community and regulating metabolism, thereby contributing to jejunal barrier function. Our findings provide a theoretical basis for the application of Lys/Met diet supplementation in the nutritional management of Tibetan sheep, particularly when reducing the dietary crude protein (CP) level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
10
|
Castells-Nobau A, Moreno-Navarrete JM, de la Vega-Correa L, Puig I, Federici M, Sun J, Burcelin R, Guzylack-Piriou L, Gourdy P, Cazals L, Arnoriaga-Rodríguez M, Frühbeck G, Seoane LM, López-Miranda J, Tinahones FJ, Dieguez C, Dumas ME, Pérez-Brocal V, Moya A, Perakakis N, Mingrone G, Bornstein S, Rodriguez Hermosa JI, Castro E, Fernández-Real JM, Mayneris-Perxachs J. Multiomics of the intestine-liver-adipose axis in multiple studies unveils a consistent link of the gut microbiota and the antiviral response with systemic glucose metabolism. Gut 2025; 74:229-245. [PMID: 39358003 PMCID: PMC11874369 DOI: 10.1136/gutjnl-2024-332602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The microbiota is emerging as a key factor in the predisposition to insulin resistance and obesity. OBJECTIVE To understand the interplay among gut microbiota and insulin sensitivity in multiple tissues. DESIGN Integrative multiomics and multitissue approach across six studies, combining euglycaemic clamp measurements (used in four of the six studies) with other measurements of glucose metabolism and insulin resistance (glycated haemoglobin (HbA1c) and fasting glucose). RESULTS Several genera and species from the Proteobacteria phylum were consistently negatively associated with insulin sensitivity in four studies (ADIPOINST, n=15; IRONMET, n=121, FLORINASH, n=67 and FLOROMIDIA, n=24). Transcriptomic analysis of the jejunum, ileum and colon revealed T cell-related signatures positively linked to insulin sensitivity. Proteobacteria in the ileum and colon were positively associated with HbA1c but negatively with the number of T cells. Jejunal deoxycholic acid was negatively associated with insulin sensitivity. Transcriptomics of subcutaneous adipose tissue (ADIPOMIT, n=740) and visceral adipose tissue (VAT) (ADIPOINST, n=29) revealed T cell-related signatures linked to HbA1c and insulin sensitivity, respectively. VAT Proteobacteria were negatively associated with insulin sensitivity. Multiomics and multitissue integration in the ADIPOINST and FLORINASH studies linked faecal Proteobacteria with jejunal and liver deoxycholic acid, as well as jejunal, VAT and liver transcriptomic signatures involved in the actin cytoskeleton, insulin and T cell signalling. Fasting glucose was consistently linked to interferon-induced genes and antiviral responses in the intestine and VAT. Studies in Drosophila melanogaster validated these human insulin sensitivity-associated changes. CONCLUSION These data provide comprehensive insights into the microbiome-gut-adipose-liver axis and its impact on systemic insulin action, suggesting potential therapeutic targets.Cite Now.
Collapse
Affiliation(s)
- Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Lisset de la Vega-Correa
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Puig
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, Italy
| | - Jiuwen Sun
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432, Toulouse, France
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR), Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2: 'Intestinal Risk Factors, Diabetes, Dyslipidemia, and Heart Failure', F-31432, Toulouse, France
| | - Laurence Guzylack-Piriou
- Team "Immunité et ALTernatives aux Antibiotiques (IALTA)", Laboratory of host to pathogens Interactions (IHAP), UMR INRAE 1225 / ENVT, Toulouse, France
| | - Pierre Gourdy
- Department of Diabetology, metabolic Diseases and Nutrition, CHU de Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 I2MC, INSERM, Toulouse 3 University, Toulouse, France
| | - Laurent Cazals
- Department of Diabetology, metabolic Diseases and Nutrition, CHU de Toulouse, Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, UMR1297 I2MC, INSERM, Toulouse 3 University, Toulouse, France
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Luisa Maria Seoane
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Fisiopatología Endocrina Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - José López-Miranda
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Hospital Universitario Reina Sofía, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Universidad de Córdoba, Córdoba, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Virgen de la Victoria Hospital, Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, Málaga, Spain
| | - Carlos Dieguez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Genomic and Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK
- European Genomic Institute for Diabetes, CNRS UMR 8199, INSERM UMR 1283, Institut Pasteur de Lille, Lille University Hospital; University of Lille, Lille, France
- McGill Genome Centre, Mc Gill University, Montréal, Quebec, Canada
| | - Vicente Pérez-Brocal
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Department of Genomics and Health, Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia, Spanish National Research Council (CSIC-UVEG), Valencia, Spain
| | - Nikolaos Perakakis
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
| | - Geltrude Mingrone
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefan Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
| | | | - Ernesto Castro
- General and Digestive Surgery Service, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Jose Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Parc Hospitalari Martí i Julià, Edifici M2, Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol 2024; 32:970-983. [PMID: 38503579 DOI: 10.1016/j.tim.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
The small intestinal microbiota (SIM) is essential for gastrointestinal health, influencing digestion, immune modulation, and nutrient metabolism. Unlike the colonic microbiota, the SIM has been poorly characterized due to sampling challenges and ethical considerations. Current evidence suggests that the SIM consists of five core genera and additional segment-specific taxa. These bacteria closely interact with the human host, regulating nutrient absorption and metabolism. Recent work suggests the presence of two forms of small intestinal bacterial overgrowth, one dominated by oral bacteria (SIOBO) and a second dominated by coliform bacteria. Less invasive sampling techniques, omics approaches, and mechanistic studies will allow a more comprehensive understanding of the SIM, paving the way for interventions engineering the SIM towards better health.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Zhou M, Wu Z, Deng D, Wang B, Zhou X, Zhou B, Wang C, Zeng Y. Effects of taurine on the growth performance, diarrhea, oxidative stress and intestinal barrier function of weanling piglets. Front Vet Sci 2024; 11:1436282. [PMID: 39170630 PMCID: PMC11336868 DOI: 10.3389/fvets.2024.1436282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Oxidative damage resulting from weaning stress significantly impacts the growth performance and health status of piglets. Taurine, a dietary antioxidant with diverse functions, was investigated in this study for its protective role against weaning stress-induced oxidative damage and its underlying mechanism. Forty 28-day-old male castrated weaned piglets were randomly assigned to four groups. The control group received the basal diet, while the experimental groups were fed the basal diet supplemented with 0.1, 0.2%, or 0.3% taurine over a 28-day period. In vitro, H2O2 was utilized to induce oxidative damage to the jejunal mucosa of piglets via IPEC-J2 cells. The results demonstrated that taurine supplementation reduced the incidence of diarrhea in piglets compared to that in the control group (p < 0.05); the addition of 0.2 and 0.3% taurine led to increased average daily gain and improved feed conversion efficiency in weaned piglets, showing a linear dose-response correlation (p < 0.05). Taurine supplementation at 0.2 and 0.3% enhanced the activities of serum CAT and GSH-Px while decreasing the levels of serum NO, XOD, GSSG, and MDA (p < 0.05). Moreover, it significantly elevated the levels of GSS, Trx, POD, complex I, mt-nd5, and mt-nd6, enhancing superoxide anion scavenging capacity and the hydroxyl-free scavenging rate in the livers of weaned piglets while reducing NO levels in the liver (p < 0.05). Additionally, 0.2 and 0.3% taurine supplementation decreased serum IL-6 levels and elevated the concentrations of IgA, IgG, and IL-10 in weaned piglets (p < 0.05). The levels of occludin, claudin, and ZO-1 in the jejunum mucosa of weaned piglets increased with 0.2 and 0.3% taurine supplementation (p < 0.05). In IPEC-J2 cells, pretreatment with 25 mM taurine for 24 h enhanced the activities of SOD and CAT; reduced the MDA content; upregulated the mRNA expression of various genes, including ZO-1, occludin, claudin-1, Nrf2, and HO-1; and reversed the oxidative damage induced by H2O2 exposure (p < 0.05). Overall, the findings suggest that the inclusion of 2 and 3% taurine in the diet can enhance growth performance, reduce diarrhea rates, ameliorate oxidative stress and inflammation, and promote intestinal barrier function in weaned piglets.
Collapse
Affiliation(s)
- Miao Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zichen Wu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Donghua Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Hunan Institute of Microbiology, Changsha, China
| | | | - Bingyu Zhou
- Hunan Institute of Microbiology, Changsha, China
| | | | - Yan Zeng
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
13
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
14
|
Lu J, Liu G, Sun W, Jia G, Zhao H, Chen X, Wang J. Dietary α-Ketoglutarate Alleviates Escherichia coli LPS-Induced Intestinal Barrier Injury by Modulating the Endoplasmic Reticulum-Mitochondrial System Pathway in Piglets. J Nutr 2024; 154:2087-2096. [PMID: 38453028 DOI: 10.1016/j.tjnut.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.
Collapse
Affiliation(s)
- Jiajia Lu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Weixiao Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Sahin C, Melanson JR, Le Billan F, Magomedova L, Ferreira TAM, Oliveira AS, Pollock-Tahari E, Saikali MF, Cash SB, Woo M, Romeiro LAS, Cummins CL. A novel fatty acid mimetic with pan-PPAR partial agonist activity inhibits diet-induced obesity and metabolic dysfunction-associated steatotic liver disease. Mol Metab 2024; 85:101958. [PMID: 38763495 PMCID: PMC11170206 DOI: 10.1016/j.molmet.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVE The prevalence of metabolic diseases is increasing globally at an alarming rate; thus, it is essential that effective, accessible, low-cost therapeutics are developed. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that tightly regulate glucose homeostasis and lipid metabolism and are important drug targets for the treatment of type 2 diabetes and dyslipidemia. We previously identified LDT409, a fatty acid-like compound derived from cashew nut shell liquid, as a novel pan-active PPARα/γ/δ compound. Herein, we aimed to assess the efficacy of LDT409 in vivo and investigate the molecular mechanisms governing the actions of the fatty acid mimetic LDT409 in diet-induced obese mice. METHODS C57Bl/6 mice (6-11-month-old) were fed a chow or high fat diet (HFD) for 4 weeks; mice thereafter received once daily intraperitoneal injections of vehicle, 10 mg/kg Rosiglitazone, 40 mg/kg WY14643, or 40 mg/kg LDT409 for 18 days while continuing the HFD. During treatments, body weight, food intake, glucose and insulin tolerance, energy expenditure, and intestinal lipid absorption were measured. On day 18 of treatment, tissues and plasma were collected for histological, molecular, and biochemical analysis. RESULTS We found that treatment with LDT409 was effective at reversing HFD-induced obesity and associated metabolic abnormalities in mice. LDT409 lowered food intake and hyperlipidemia, while improving insulin tolerance. Despite being a substrate of both PPARα and PPARγ, LDT409 was crucial for promoting hepatic fatty acid oxidation and reducing hepatic steatosis in HFD-fed mice. We also highlighted a role for LDT409 in white and brown adipocytes in vitro and in vivo where it decreased fat accumulation, increased lipolysis, induced browning of WAT, and upregulated thermogenic gene Ucp1. Remarkably, LDT409 reversed HFD-induced weight gain back to chow-fed control levels. We determined that the LDT409-induced weight-loss was associated with a combination of increased energy expenditure (detectable before weight loss was apparent), decreased food intake, increased systemic fat utilization, and increased fecal lipid excretion in HFD-fed mice. CONCLUSIONS Collectively, LDT409 represents a fatty acid mimetic that generates a uniquely favorable metabolic response for the treatment of multiple abnormalities including obesity, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and diabetes. LDT409 is derived from a highly abundant natural product-based starting material and its development could be pursued as a therapeutic solution to the global metabolic health crisis.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenna-Rose Melanson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Evan Pollock-Tahari
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Sarah B Cash
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; Banting and Best Diabetes Centre, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
16
|
Hernández-Martín M, Garcimartín A, Bocanegra A, Redondo-Castillejo R, Quevedo-Torremocha C, Macho-González A, García Fernández RA, Bastida S, Benedí J, Sánchez-Muniz FJ, López-Oliva ME. Silicon as a Functional Meat Ingredient Improves Jejunal and Hepatic Cholesterol Homeostasis in a Late-Stage Type 2 Diabetes Mellitus Rat Model. Foods 2024; 13:1794. [PMID: 38928736 PMCID: PMC11203255 DOI: 10.3390/foods13121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model. Si-RM was included into the HSFHCD as a functional food. An early-stage TD2M group fed a high-saturated-fat diet (HSFD) was taken as reference. Si-RM inhibited the hepatic and intestinal microsomal triglyceride transfer protein (MTP) reducing the apoB-containing lipoprotein assembly and cholesterol absorption. Upregulation of liver X receptor (LXRα/β) by Si-RM turned in a higher low-density lipoprotein receptor (LDLr) and ATP-binding cassette transporters (ABCG5/8, ABCA1) promoting jejunal cholesterol efflux and transintestinal cholesterol excretion (TICE), and facilitating partially reverse cholesterol transport (RCT). Si-RM decreased the jejunal absorptive area and improved mucosal barrier integrity. Consequently, plasma triglycerides and cholesterol levels decreased, as well as the formation of atherogenic lipoprotein particles. Si-RM mitigated the dyslipidemia associated with late-stage T2DM by Improving cholesterol homeostasis. Silicon could be used as an effective nutritional approach in diabetic dyslipidemia management.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Claudia Quevedo-Torremocha
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Rosa Ana García Fernández
- Animal Medicine and Surgery Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Sara Bastida
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
17
|
Zhang J, Liu Q, Gu F, Li Y, Chen H, Liu M, Zhou Y, Liu H, Wei X, Liu G. In vivo evaluations of Lactobacillus-fermented Eucheuma spinosum polysaccharides on alleviating food allergy activity. Food Funct 2024; 15:5895-5907. [PMID: 38727519 DOI: 10.1039/d4fo00991f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In order to explore the in vivo anti-food allergy activity of Lactobacillus sakei subsp. sakei-fermented Eucheuma spinosum polysaccharides F1-ESP-3, an ovalbumin (OVA)-induced food allergy mouse model was established by ascites immunization and gavage. The weight, temperature, incidence of diarrhea, levels of allergic mediators and inflammatory factors in the serum of mice were analyzed. We analyzed the differentiation of mouse spleen lymphocytes and the proportion of sensitized mast cells by flow cytometry. The intestinal barrier status of mice was analyzed by intestinal pathological tissue sections and microbiota sequencing. The results showed that F1-ESP-3 could alleviate the food allergy symptoms of mice, such as hypothermia and loose stool; levels of OVA-specific immunoglobulin E, mast cell protease and histamine in the serum of sensitized mice and the proportion of dendritic cells and mast cells in mouse spleen were significantly reduced; in addition, F1-ESP-3 may protect the intestinal barrier and further improve the intestinal microenvironment of food-allergic mice by regulating the abundance of Bacteroidetes and Firmicutes. F1-ESP-3 can further improve the intestinal microenvironment of food-allergic mice by upregulating the levels of Lachnospiraceae, and may affect the signal pathways such as NOD-like receptor, MAPK, I kappa B and antigen processing and presentation.
Collapse
Affiliation(s)
- Jun Zhang
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Qingmei Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Fudie Gu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Yan Li
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Huiying Chen
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Meng Liu
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, Fujian, China
| | - Yu Zhou
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Hong Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
| | - Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian, China
| | - Guangming Liu
- College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, 361021, Fujian, China.
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, Fujian, China
| |
Collapse
|
18
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Frieberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A W Greeley
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
19
|
Liu W, Zhao M, Huang Y, Feng F, Luo X. Novel Lauric Acid-Butyric Structural Lipid Inhibits Inflammation: Small Intestinal Microbes May Be Important Mediators. Mol Nutr Food Res 2024; 68:e2300535. [PMID: 38039428 DOI: 10.1002/mnfr.202300535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/05/2023] [Indexed: 12/03/2023]
Abstract
SCOPE Butyric acid (C4) and lauric acid (C12) are recognized as functional fatty acids, while the health benefits of the structural lipids they constitute remain unclear. METHODS AND RESULTS In this study, lauric acid-butyric structural lipid (SLBL ) is synthesized through ultrasound-assisted enzyme-catalyzed acidolysis and its health benefits are evaluated in a high-fat diet-induced obesity mouse model. SLBL and its physical mixture (MLBL ) do not significantly inhibit obesity in mice. However, SLBL treatment increases the ratio of n3/n6 fatty acids in the liver and improves obesity-induced hepatic lipid metabolism disorders. Furthermore, the expression of liver pro-inflammatory cytokines (interleukin [IL]-6, IL-1β, TNF-α) are significantly suppressed by SLBL , while the expression of anti-inflammatory cytokine (IL-10) is increased. Moreover, SLBL ameliorates the dysbiosis of small intestinal microbes induced by high-fat diet and regulates microbial community structure to be close to the control group. Especially, SLBL significantly alleviates the high-fat diet-induced decrease in Dubosiella and Bifidobacterium abundance. Correlation analysis reveals that SLBL treatment increases the abundance of microorganisms with potential anti-inflammatory function and decreases the abundance of potentially pathogenic bacteria. CONCLUSION In all, small intestinal microbes may be a significant bridge for the positive anti-inflammatory effects of SLBL , while the exact mechanism remains to be clarified.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
20
|
Li J, Ma J, Wang W, Du H, Tang S, Li Y, Zhu W, Zhang R, Wan J. Alterations of ileal mucosa-associated microbiota in hypercholesterolemia patients. Heliyon 2023; 9:e22116. [PMID: 38076161 PMCID: PMC10709208 DOI: 10.1016/j.heliyon.2023.e22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2025] Open
Abstract
Many metabolic diseases have been demonstrated to be associated with changes in the microbiome. However, no studies have yet been conducted to examine the characteristics of the mucosal microbiota of patients with hypercholesterolemia. We aimed to examine mucosa-associated microbiota in subjects with hypercholesterolemia. We conducted a case-control study, in which ileal mucosal samples were collected from 13 hypercholesterolemia patients and 13 controls for 16S rRNA gene sequencing. There were differences in the composition of ileal mucosal microbiota based on beta diversity between the hypercholesterolemia and control groups (P < 0.05). Compared with the control group, the phylum Bacteroidetes and the genera Bacteroides, Butyricicoccus, Parasutterella, Candidatus_Soleaferrea, and norank_f__norank_o__Izemoplasmatales were less abundant in the hypercholesterolemia group (P < 0.05), while the genus Anaerovibrio was enriched in the hypercholesterolemia group (P < 0.05). The relative abundance of Bacteroides was negatively correlated with total cholesterol and low-density lipoprotein cholesterol (P < 0.01). The relative abundance of Coprococcus was negatively correlated with triglycerides and body mass index (all P < 0.05). PICRUSt functional prediction analysis showed that pathways related to Glycerophospholipid metabolism, ABC transporters, Phosphotransferase system, and Biofilm formation - Escherichia coli, and infectious diseases of pathogenic Escherichia coli were enriched in the hypercholesterolemia group. This work suggests a potential role of ileal mucosal microbiota in the development of hypercholesterolemia.
Collapse
Affiliation(s)
- Jia Li
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, No. 60, Huangwei Road, Hebei District, Tianjin 300142, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Jinxia Ma
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Haitao Du
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuai Tang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Yi Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenya Zhu
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
21
|
Lawal SA, Voisin A, Olof H, Bording-Jorgensen M, Armstrong H. Diversity of the microbiota communities found in the various regions of the intestinal tract in healthy individuals and inflammatory bowel diseases. Front Immunol 2023; 14:1242242. [PMID: 38022505 PMCID: PMC10654633 DOI: 10.3389/fimmu.2023.1242242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
The severe and chronic inflammatory bowel diseases (IBD), Crohn disease and ulcerative colitis, are characterized by persistent inflammation and gut damage. There is an increasing recognition that the gut microbiota plays a pivotal role in IBD development and progression. However, studies of the complete microbiota composition (bacteria, fungi, viruses) from precise locations within the gut remain limited. In particular, studies have focused primarily on the bacteriome, with available methods limiting evaluation of the mycobiome (fungi) and virome (virus). Furthermore, while the different segments of the small and large intestine display different functions (e.g., digestion, absorption, fermentation) and varying microenvironment features (e.g., pH, metabolites), little is known about the biogeography of the microbiota in different segments of the intestinal tract or how this differs in IBD. Here, we highlight evidence of the differing microbiota communities of the intestinal sub-organs in healthy and IBD, along with method summaries to improve future studies.
Collapse
Affiliation(s)
- Samuel Adefisoye Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Hana Olof
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | - Heather Armstrong
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Usacheva EV, Druk IV, Nadey EV, Usachev NA. Videocapsular endoscopy in the diagnosis of gastrointestinal diseases. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:61-68. [DOI: 10.31146/1682-8658-ecg-211-3-61-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The increase in the frequency of the use of video capsule endoscopy (VCE) in the study of the gastrointestinal tract, the improvement of this technology over the past decade determine the relevance of describing the advantages of this method over traditional endoscopic methods, as well as the disadvantages of the method and directions of development. VCE is a method in which diseases that were previously detected only posthumously are detected. VCE is more informative than X-ray contrast examination methods or magnetic resonance imaging of the gastrointestinal tract. VCE better detects small neoplasms, which improves the quality of diagnosis and allows you to start timely treatment. VCE is rarely the first choice of imaging method. It is most useful for detecting superficial or hidden lesions and is best used in combination with other endoscopic methods. The cost-effectiveness of this study has yet to be determined. The use of video capsule endoscopy is limited by the high cost of research, but in the coming years, thanks to the development of technologies, the cheaper production process, it will become available to many clinics and patients as a research method.
Collapse
|
23
|
Niu J, Xu H, Zeng G, Wang P, Raciheon B, Nawaz S, Zeng Z, Zhao J. Music-based interventions in the feeding environment on the gut microbiota of mice. Sci Rep 2023; 13:6313. [PMID: 37072501 PMCID: PMC10111315 DOI: 10.1038/s41598-023-33522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Gut microbiota is established to be associated with the diversity of gastrointestinal conditions, but information on the variation associated with music and gut microbes is limited. Current study revealed the impacts of music intervention during feeding on the growth performance and gut microbes of mice by using clinical symptoms and 16S rRNA sequencing techniques. The results showed that feeding mice with music had a significant increase in body weight after the 25th day. The Firmicutes and Proteobacteria were the most dominant phylum in the gut microbiota. Also, the relative abundance of the dominant bacteria was variable after musical intervention. In contrast to the control group, a significant decrease in alpha diversity analysis of gut bacterial microorganisms and Metastats analysis showed a significant increase in the relative abundance of 5 genera and one phylum after the music intervention. Moreover, the musical intervention during feeding caused modifications in the gut microbial composition of mice, as evidenced by an increase in the level of Firmicutes and Lactobacillus, while decreases the richness of pathogenic bacteria, e.g. Proteobacteria, Cyanobacteria and Muribaculaceae, etc. In summary, music intervention increased body weight and enhanced the abundance of beneficial bacteria by reducing the prevalence of pathogenic bacteria in gut microbiota of mice.
Collapse
Affiliation(s)
- Junyi Niu
- College of Music and Dance, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Hongli Xu
- College of Music and Dance, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Guosheng Zeng
- People's Government of Shian Town, Nanyang City, 473540, Henan Province, People's Republic of China
| | - Pengpeng Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bakint Raciheon
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland.
| | - Jiewei Zhao
- College of Music and Dance, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
24
|
Agradi S, Cremonesi P, Menchetti L, Balzaretti C, Severgnini M, Riva F, Castiglioni B, Draghi S, Di Giancamillo A, Castrica M, Vigo D, Modina SC, Serra V, Quattrone A, Angelucci E, Pastorelli G, Curone G, Brecchia G. Bovine Colostrum Supplementation Modulates the Intestinal Microbial Community in Rabbits. Animals (Basel) 2023; 13:ani13060976. [PMID: 36978517 PMCID: PMC10044174 DOI: 10.3390/ani13060976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
BC is a nutraceutical that can modulate intestinal microbiota. This study investigates the effects of BC diet supplementation on luminal and mucosa-associated microbiota in the jejunum, caecum, and colon of rabbits. Twenty-one New Zealand White female rabbits were divided into three experimental groups (n = 7) receiving a commercial feed (CTRL group) and the same diet supplemented with 2.5% and 5% BC (2.5% BC and 5% BC groups, respectively), from 35 (weaning) to 90 days of age (slaughtering). At slaughter, the digestive tract was removed from each animal, then both content and mucosa-associated microbiota of jejunum, caecum, and colon were collected and analysed by Next Generation 16SrRNA Gene Sequencing. Significant differences were found in the microbial composition of the three groups (i.e., beta-diversity: p < 0.01), especially in the caecum and colon of the 2.5% BC group. The relative abundance analysis showed that the families most affected by the BC administration were Clostridia UCG-014, Barnesiellaceae, and Eggerthellaceae. A trend was also found for Lachnospiraceae, Akkermansiaceae, and Bacteroidaceae. A functional prediction has revealed several altered pathways in BC groups, with particular reference to amino acids and lactose metabolism. Firmicutes:Bacteroidetes ratio decreased in caecum luminal samples of the 2.5% BC group. These findings suggest that BC supplementation could positively affect the intestinal microbiota. However, further research is needed to establish the optimal administration dose.
Collapse
Affiliation(s)
- Stella Agradi
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Paola Cremonesi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - Claudia Balzaretti
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies (ITB), National Research Councili (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy
| | - Federica Riva
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Bianca Castiglioni
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), U.O.S. di Lodi, Via Einstein, 26900 Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Marta Castrica
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Alda Quattrone
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Elisa Angelucci
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
25
|
Al Hakeem WG, Acevedo Villanueva KY, Selvaraj RK. The Development of Gut Microbiota and Its Changes Following C. jejuni Infection in Broilers. Vaccines (Basel) 2023; 11:595. [PMID: 36992178 PMCID: PMC10056385 DOI: 10.3390/vaccines11030595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The gut is home to more than millions of bacterial species. The gut bacteria coexist with the host in a symbiotic relationship that can influence the host's metabolism, nutrition, and physiology and even module various immune functions. The commensal gut microbiota plays a crucial role in shaping the immune response and provides a continuous stimulus to maintain an activated immune system. The recent advancements in high throughput omics technologies have improved our understanding of the role of commensal bacteria in developing the immune system in chickens. Chicken meat continues to be one of the most consumed sources of protein worldwide, with the demand expected to increase significantly by the year 2050. Yet, chickens are a significant reservoir for human foodborne pathogens such as Campylobacter jejuni. Understanding the interaction between the commensal bacteria and C. jejuni is essential in developing novel technologies to decrease C. jejuni load in broilers. This review aims to provide current knowledge of gut microbiota development and its interaction with the immune system in broilers. Additionally, the effect of C. jejuni infection on the gut microbiota is addressed.
Collapse
Affiliation(s)
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
26
|
Hu J, Chen J, Hou Q, Xu X, Ren J, Ma L, Yan X. Core-predominant gut fungus Kazachstania slooffiae promotes intestinal epithelial glycolysis via lysine desuccinylation in pigs. MICROBIOME 2023; 11:31. [PMID: 36814349 PMCID: PMC9948344 DOI: 10.1186/s40168-023-01468-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gut fungi are increasingly recognized as important contributors to host physiology, although most studies have focused on gut bacteria. Post-translational modifications (PTMs) of proteins play vital roles in cell metabolism. However, the contribution of gut fungi to host protein PTMs remains unclear. Mining gut fungi that mediate host protein PTMs and dissecting their mechanism are urgently needed. RESULTS We studied the gut fungal communities of 56 weaned piglets and 56 finishing pigs from seven pig breeds using internal transcribed spacer (ITS) gene amplicon sequencing and metagenomics. The results showed that Kazachstania slooffiae was the most abundant gut fungal species in the seven breeds of weaned piglets. K. slooffiae decreased intestinal epithelial lysine succinylation levels, and these proteins were especially enriched in the glycolysis pathway. We demonstrated that K. slooffiae promoted intestinal epithelial glycolysis by decreasing lysine succinylation by activating sirtuin 5 (SIRT5). Furthermore, K. slooffiae-derived 5'-methylthioadenosine metabolite promoted the SIRT5 activity. CONCLUSIONS These findings provide a landscape of gut fungal communities of pigs and suggest that K. slooffiae plays a crucial role in intestinal glycolysis metabolism through lysine desuccinylation. Our data also suggest a potential protective strategy for pigs with an insufficient intestinal energy supply. Video Abstract.
Collapse
Affiliation(s)
- Jun Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jianwei Chen
- BGI Research-Qingdao, BGI, Qingdao, 266555, China
| | - Qiliang Hou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xiaojian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Jing Ren
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Libao Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
27
|
Dong C, Xian R, Wang G, Cui L. Small Intestinal Bacterial Overgrowth in Patients with Gallbladder Polyps: A Cross-Sectional Study. Int J Gen Med 2023; 16:813-822. [PMID: 36883124 PMCID: PMC9985880 DOI: 10.2147/ijgm.s399812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Purpose There is probably a high prevalence of small intestinal bacterial overgrowth (SIBO) in patients with gallbladder polyps (GBPs). To date, no study has evaluated the occurrence of SIBO in patients with GBPs. The aim of this study was to investigate the prevalence of SIBO in patients with GBPs and explore the possible association between these two conditions. Patients and Methods The hydrogen-methane breath test was used to diagnose SIBO, and patients were divided into GBPs and control groups based on whether GBPs were found under ultrasound. Clinical and paraclinical factors were compared between the two groups. Results A total of 297 subjects were included in this study. The prevalence of SIBO was significantly higher in the GBPs group than in the control group (50.0% vs.30.8%, p<0.01). Multivariate logistic regression analysis showed that male (OR=2.26, 95% CI=1.12-4.57, p=0.023), SIBO (OR=3.21, 95% CI=1.69-6.11, p<0.001), fatty liver (OR=2.91, 95% CI= 1.50-5.64, p=0.002) and BMI (OR=1.13, 95% CI=1.01-1.26, p=0.035) were independently associated with GBPs. And by subgroup analysis, we found that the association between SIBO and GBPs was stronger in females than in males (p for interaction< 0.001). In addition, SIBO (OR=5.11, 95% CI=1.42-18.36, p=0.012) and fasting glucose (OR=3.04, 95% CI=1.27-7.28, p=0.013) were found to be associated with solitary polyps. Conclusion SIBO was highly prevalent in patients with GBPs, and this association seemed to be stronger among females.
Collapse
Affiliation(s)
- Changhao Dong
- Department of Gastroenterology, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.,Department of Gastroenterology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, People's Republic of China
| | - Rui Xian
- Department of Gastroenterology, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.,Department of Gastroenterology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, People's Republic of China
| | - Guangxiang Wang
- Department of Gastroenterology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Lihong Cui
- Department of Gastroenterology, School of Medicine, South China University of Technology, Guangzhou, People's Republic of China.,Department of Gastroenterology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, People's Republic of China
| |
Collapse
|
28
|
Li X, Hu X, Fu C, Han L, Xie M, Ouyang S. Efficacy and Safety of One Anastomosis Gastric Bypass Versus Roux-en-Y Gastric Bypass for Obesity: a Meta-analysis and Systematic Review. Obes Surg 2023; 33:611-622. [PMID: 36564618 PMCID: PMC9889439 DOI: 10.1007/s11695-022-06401-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
The objective of this review is to systematically review the efficacy and safety outcomes of one anastomosis gastric bypass (OAGB) with Roux-en-Y gastric bypass (RYGB). From inception to July 4, 2022, a systematic literature search was performed using PubMed, Embase, and Cochrane Library for randomized clinical trials comparing OAGB with RYGB in obesity. A meta-analysis performed using the RevMan 5.4.1 software evaluations was completed. We identified 1217 reports; after exclusions, eight trials with a total of 931 patients were eligible for analysis. Compared with RYGB, OAGB had multiple advantageous indexes. Examples include percent of excess weight loss (%EWL) at 12 months (P = 0.009), body mass index (BMI) at 2 years (P < 0.00001), early postoperative complication (P = 0.04), remission of dyslipidemia (P < 0.0001), and operative time (P < 0.00001). No significant statistical difference was observed in BMI at 6 months, %EWL at 6 months, BMI at 12 months, percent of excess body mass index loss (%EBMIL) at 2 years, BMI at 5 years, intraoperative complications, late postoperative complications, remission of type 2 diabetes mellitus, and dyslipidemia or gastroesophageal reflux disease remission between OAGB and RYGB. OAGB is no less effective than RYGB; no significant differences in weight loss efficacy were observed, and more large and long-term randomized controlled trials are needed to verify this. In addition, studies have shown that OAGB has a shorter operation time, fewer early postoperative complications, and a shorter learning curve, making it easier for young surgeons to perform.
Collapse
Affiliation(s)
- Xianting Li
- Department of Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China ,Department of General Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Xu Hu
- Department of Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China ,Department of General Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Chendong Fu
- Department of Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China ,Department of General Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Lang Han
- Department of Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China ,Department of General Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Ming Xie
- Department of Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China ,Department of General Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Shurui Ouyang
- Department of Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China ,Department of General Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| |
Collapse
|
29
|
Wu X, Han Z, Liu B, Yu D, Sun J, Ge L, Tang W, Liu S. Gut microbiota contributes to the methionine metabolism in host. Front Microbiol 2022; 13:1065668. [PMID: 36620044 PMCID: PMC9815504 DOI: 10.3389/fmicb.2022.1065668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Methionine (Met) metabolism provides methyl groups for many important physiological processes and is implicated in multiple inflammatory diseases associated with the disrupted intestinal microbiota; nevertheless, whether intestinal microbiota determines Met metabolism in the host remains largely unknown. Here, we found that gut microbiota is responsible for host Met metabolism by using various animal models, including germ-free (GF) pigs and mice. Specifically, the Met levels are elevated in both GF pigs and GF mice that mainly metabolized to S-adenosine methionine (SAM) in the liver. Furthermore, antibiotic clearance experiments demonstrate that the loss of certain ampicillin- or neomycin-sensitive gut microbiota causes decreased Met in murine colon. Overall, our study suggests that gut microbiota mediates Met metabolism in the host and is a prospective target for the treatment of Met metabolism-related diseases.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ziyi Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bingnan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dongming Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China,Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, China,*Correspondence: Wenjie Tang, ; Shaojuan Liu,
| | - Shaojuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China,*Correspondence: Wenjie Tang, ; Shaojuan Liu,
| |
Collapse
|
30
|
Yan G, Li S, Wen Y, Luo Y, Huang J, Chen B, Lv S, Chen L, He L, He M, Yang Q, Yu Z, Xiao W, Tang Y, Li W, Han J, Zhao F, Yu S, Kong F, Abbasi B, Yin H, Gu C. Characteristics of intestinal microbiota in C57BL/6 mice with non-alcoholic fatty liver induced by high-fat diet. Front Microbiol 2022; 13:1051200. [PMID: 36620001 PMCID: PMC9813237 DOI: 10.3389/fmicb.2022.1051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction As a representation of the gut microbiota, fecal and cecal samples are most often used in human and animal studies, including in non-alcoholic fatty liver disease (NAFLD) research. However, due to the regional structure and function of intestinal microbiota, whether it is representative to use cecal or fecal contents to study intestinal microbiota in the study of NAFLD remains to be shown. Methods The NAFLD mouse model was established by high-fat diet induction, and the contents of the jejunum, ileum, cecum, and colon (formed fecal balls) were collected for 16S rRNA gene analysis. Results Compared with normal mice, the diversity and the relative abundance of major bacteria and functional genes of the ileum, cecum and colon were significantly changed, but not in the jejunum. In NAFLD mice, the variation characteristics of microbiota in the cecum and colon (feces) were similar. However, the variation characteristics of intestinal microbiota in the ileum and large intestine segments (cecum and colon) were quite different. Discussion Therefore, the study results of cecal and colonic (fecal) microbiota cannot completely represent the results of jejunal and ileal microbiota.
Collapse
Affiliation(s)
- Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lang Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yong Tang
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Kong
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Benazir Abbasi
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Hongmei Yin
- College of Animal Science, Xichang University, Xichang, China,*Correspondence: Hongmei Yin,
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Congwei Gu,
| |
Collapse
|
31
|
Luo H, Chen Y, Kuang X, Wang X, Yang F, Cao Z, Wang L, Lin S, Wu F, Liu J. Chemical reaction-mediated covalent localization of bacteria. Nat Commun 2022; 13:7808. [PMID: 36528693 PMCID: PMC9759558 DOI: 10.1038/s41467-022-35579-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Methods capable of manipulating bacterial colonization are of great significance for modulating host-microbiota relationships. Here, we describe a strategy of in-situ chemical reaction-mediated covalent localization of bacteria. Through a simple one-step imidoester reaction, primary amino groups on bacterial surface can be converted to free thiols under cytocompatible conditions. Surface thiolation is applicable to modify diverse strains and the number of introduced thiols per bacterium can be easily tuned by varying feed ratios. These chemically reactive bacteria are able to spontaneously bond with mucous layer by catalyst-free thiol-disulfide exchange between mucin-associated disulfides and newly converted thiols on bacterial surface and show thiolation level-dependent attachment. Bacteria optimized with 9.3 × 107 thiols per cell achieve 170-fold higher attachment in mucin-enriched jejunum, a challenging location for gut microbiota to colonize. As a proof-of-concept application for microbiota transplantation, covalent bonding-assisted localization of an oral probiotic in the jejunum generates an improved remission of jejunal mucositis. Our findings demonstrate that transforming bacteria with a reactive surface provides an approach to chemically control bacterial localization, which is highly desirable for developing next-generation bacterial living bioagents.
Collapse
Affiliation(s)
- Huilong Luo
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Yanmei Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xiao Kuang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Xinyue Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Fengmin Yang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Zhenping Cao
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Lu Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Sisi Lin
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Feng Wu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Jinyao Liu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| |
Collapse
|
32
|
Whitcomb DC, Duggan SN, Martindale R, Lowe M, Stallings VA, Conwell D, Barkin JA, Papachristou GI, Husain SZ, Forsmark CE, Kaul V. AGA-PancreasFest Joint Symposium on Exocrine Pancreatic Insufficiency. GASTRO HEP ADVANCES 2022; 2:395-411. [PMID: 39132652 PMCID: PMC11307793 DOI: 10.1016/j.gastha.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/03/2022] [Indexed: 08/13/2024]
Abstract
Exocrine pancreatic insufficiency (EPI) is a clinically defined syndrome based on the physician's assessment of a patient's maldigestion. However, current clinical definitions are inadequate in determining (1) the threshold of reduced pancreatic digestive enzyme secretion that determines "pancreatic insufficiency" in an individual patient; (2) the role of pancreatic function tests; (3) effects of differing metabolic needs, nutrition intake, and intestinal function/adaptation (4) when pancreatic enzyme replacement therapy is needed; and (5) how to monitor and titrate multiple therapies. Experts and key opinion leaders were invited to PancreasFest 2021 to discuss and help clarify mechanistic issues critical to defining EPI and to address misconceptions and barriers limiting advancements in patient care. Clinically EPI is defined as inadequate delivery of pancreatic digestive enzymes to meals to meet nutritional needs and is reversed with appropriate treatment. A new mechanistic definition of EPI was proposed that includes the disorders essence and character: (1) EPI is a disorder caused by failure of the pancreas to deliver a minimum/threshold level of specific pancreatic digestive enzymes to the intestine in concert with ingested nutrients, followed by enzymatic digestion of a series of individual snacks and meals over time to meet nutritional and metabolic needs, given (a) the specific macronutritional and micronutritional needs; (b) nutrient intake; (c) exocrine pancreatic function; and (d) intestinal anatomy, function, diseases, and adaptative capacity. (2) EPI is characterized by variable deficiencies in micronutrients and macronutrients, especially essential fats and fat-soluble vitamins, by gastrointestinal symptoms of nutrient maldigestion and by improvement or correction of nutritional state with lifestyle changes, disease treatment, optimized diet, dietary supplements, and/or administration of adequate pancreatic enzyme replacement therapy. EPI is complex and individualized and multidisciplinary approaches are needed to optimize therapy. Better pancreas function tests and biomarkers are needed to diagnose EPI and guide treatment.
Collapse
Affiliation(s)
- David C. Whitcomb
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology and Molecular Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sinead N. Duggan
- Department of Surgery, School of Medicine, Trinity College Dublin, Tallaght University Hospital, Dublin, Republic of Ireland
| | - Robert Martindale
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Mark Lowe
- Department of Pediatric Science, Washington University School of Medicine, St. Louis, Missouri
| | - Virginia A. Stallings
- Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Darwin Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Jodie A. Barkin
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami, Leonard M. Miller School of Medicine, Miami, Florida
| | - Georgios I. Papachristou
- Division of Gastroenterology, Department of Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sohail Z. Husain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Stanford School of Medicine and Stanford Medicine Children's Health, Stanford, California
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida
| | - Vivek Kaul
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
33
|
Catelli Rocha Torres L, Giovanini de Oliveira Sartori A, Paula de Souza Silva A, Matias de Alencar S. Bioaccessibility and uptake/epithelial transport of vitamin E: discoveries and challenges of in vitro and ex vivo assays. Food Res Int 2022; 162:112143. [DOI: 10.1016/j.foodres.2022.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
34
|
Mussard E, Lencina C, Gallo L, Barilly C, Poli M, Feve K, Albin M, Cauquil L, Knudsen C, Achard C, Devailly G, Soler L, Combes S, Beaumont M. The phenotype of the gut region is more stably retained than developmental stage in piglet intestinal organoids. Front Cell Dev Biol 2022; 10:983031. [PMID: 36105361 PMCID: PMC9465596 DOI: 10.3389/fcell.2022.983031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal organoids are innovative in vitro tools to study the digestive epithelium. The objective of this study was to generate jejunum and colon organoids from suckling and weaned piglets in order to determine the extent to which organoids retain a location-specific and a developmental stage-specific phenotype. Organoids were studied at three time points by gene expression profiling for comparison with the transcriptomic patterns observed in crypts in vivo. In addition, the gut microbiota and the metabolome were analyzed to characterize the luminal environment of epithelial cells at the origin of organoids. The location-specific expression of 60 genes differentially expressed between jejunum and colon crypts from suckling piglets was partially retained (48%) in the derived organoids at all time point. The regional expression of these genes was independent of luminal signals since the major differences in microbiota and metabolome observed in vivo between the jejunum and the colon were not reproduced in vitro. In contrast, the regional expression of other genes was erased in organoids. Moreover, the developmental stage-specific expression of 30 genes differentially expressed between the jejunum crypts of suckling and weaned piglets was not stably retained in the derived organoids. Differentiation of organoids was necessary to observe the regional expression of certain genes while it was not sufficient to reproduce developmental stage-specific expression patterns. In conclusion, piglet intestinal organoids retained a location-specific phenotype while the characteristics of developmental stage were erased in vitro. Reproducing more closely the luminal environment might help to increase the physiological relevance of intestinal organoids.
Collapse
Affiliation(s)
- Eloïse Mussard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Lise Gallo
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Céline Barilly
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Maryse Poli
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Katia Feve
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Mikael Albin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | | | | | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- *Correspondence: Martin Beaumont,
| |
Collapse
|
35
|
Yu Z, Yu XF, Kerem G, Ren PG. Perturbation on gut microbiota impedes the onset of obesity in high fat diet-induced mice. Front Endocrinol (Lausanne) 2022; 13:795371. [PMID: 36017311 PMCID: PMC9395671 DOI: 10.3389/fendo.2022.795371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
High-calorie intake has become one of the most common causes of dietary obesity, which eventually develops into type 2 diabetes mellitus (T2DM). Microbiota, along with the length of the gastrointestinal tract, is related to metabolic disorders, but its shifts and following impact on metabolic disorders due to external perturbation are still unclear. To evaluate shifts of microbiota from the proximal to the distal intestine and their impact on metabolic disorders, we profiled jejunal and colonic microbiota with the perturbation using high salt (HS) and antibiotic-induced microbiota depletion (AIMD) in diet-induced obesity (DIO) mice and analyzed the association with parameters of both obesity and blood glucose. After ten weeks of feeding DIO mice with HS intake and AIMD, they failed to develop obesity. The DIO mice with HS intake had T2DM symptoms, whereas the AIMD DIO mice showed no significant difference in blood glucose parameters. We observed that the jejunal and colonic microbiota had shifted due to settled perturbation, and jejunal microbiota within a group were more dispersed than colonic microbiota. After further analyzing jejunal microbiota using quantified amplicon sequencing, we found that the absolute abundance of Colidextribacter (R = 0.695, p = 0.001) and Faecalibaculum (R = 0.631, p = 0.005) in the jejunum was positively correlated with the changes in BW and FBG levels. The predicted pathway of glucose and metabolism of other substances significantly changed between groups (p <0.05). We demonstrated that the onset of obesity and T2DM in DIO mice is impeded when the gut microbiota is perturbed; thus, this pathogenesis depends on the gut microbiota.
Collapse
Affiliation(s)
- Zhongjia Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiang-Fang Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Goher Kerem
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
36
|
Yuan X, Liu J, Hu X, Yang S, Zhong S, Yang T, Zhou Y, Zhao G, Jiang Y, Li Y. Alterations in the jejunal microbiota and fecal metabolite profiles of rabbits infected with Eimeria intestinalis. Parasit Vectors 2022; 15:231. [PMID: 35754027 PMCID: PMC9233780 DOI: 10.1186/s13071-022-05340-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Background Rabbit coccidiosis is a major disease caused by various Eimeria species and causes enormous economic losses to the rabbit industry. Coccidia infection has a wide impact on the gut microbiota and intestinal biochemical equilibrium. In the present study, we established a model of Eimeria intestinalis infection in rabbits to evaluate the jejunal microbiota and fecal metabolite profiles. Methods Rabbits in the infected group were orally inoculated with 3 × 103E. intestinalis oocysts. On the eighth day of infection, jejunal contents and feces were collected for 16S rRNA gene sequencing and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis, respectively. Jejunum tissues were harvested for hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and immunohistochemistry (IHC) staining. Results Histopathological analysis showed that the whole jejunum was parasitized by E. intestinalis in a range of life cycle stages, and PAS staining showed that E. intestinalis infection caused extensive loss of goblet cells. IHC staining revealed that TNF-α expression was higher in the E. intestinalis infection group. Moreover, both the jejunal microbiota and metabolites significantly altered after E. intestinalis infection. At the genus level, the abundances of Escherichia and Enterococcus significantly increased in the infected group compared with the control group, while those of Oscillospira, Ruminococcus, Bacteroides, Akkermansia, Coprococcus, and Sarcina significantly decreased. In addition, 20 metabolites and two metabolic pathways were altered after E. intestinalis infection, and the major disrupted metabolic pathway was lipid metabolism. Conclusions Eimeria intestinalis infection induced intestinal inflammation and destroyed the intestinal homeostasis at the parasitized sites, leading to significant changes in the gut microbiota and subsequent corresponding changes in metabolites. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Xu Yuan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jin Liu
- Dezhou Agricultural and Rural Bureau, Dezhou, 253000, Shandong, China
| | - Xiaofen Hu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shanshan Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Shengwei Zhong
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Tingyu Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yunxiao Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Guotong Zhao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yijie Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
37
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
38
|
Glycerol monolaurate beyond an emulsifier: Synthesis, in vivo fate, food quality benefits and health efficacies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
40
|
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export. Cell Mol Gastroenterol Hepatol 2022; 14:409-434. [PMID: 35489715 PMCID: PMC9305019 DOI: 10.1016/j.jcmgh.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
Collapse
|
41
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
42
|
Abstract
AbstractDescriptions of the small intestinal microbiota are deficient and conflicting. We aimed to get a reliable description of the jejunal bacterial microbiota by investigating samples from two separate jejunal segments collected from the luminal mucosa during surgery. Sixty patients with morbid obesity selected for elective gastric bypass surgery were included in this survey. Samples collected by rubbing a swab against the mucosa of proximal and mid jejunal segments were characterized both quantitatively and qualitatively using a combination of microbial culture, a universal quantitative PCR and 16S deep sequencing. Within the inherent limitations of partial 16S sequencing, bacteria were assigned to the species level. By microbial culture, 53 patients (88.3%) had an estimated bacterial density of < 1600 cfu/ml in both segments whereof 31 (51.7%) were culture negative in both segments corresponding to a bacterial density below 160 cfu/ml. By quantitative PCR, 46 patients (76.7%) had less than 104 bacterial genomes/ml in both segments. The most abundant and frequently identified species by 16S deep sequencing were associated with the oral cavity, most often from the Streptococcus mitis group, the Streptococcus sanguinis group, Granulicatella adiacens/para-adiacens, the Schaalia odontolytica complex and Gemella haemolysans/taiwanensis. In general, few bacterial species were identified per sample and there was a low consistency both between the two investigated segments in each patient and between patients. The jejunal mucosa of fasting obese patients contains relatively few microorganisms and a core microbiota could not be established. The identified microbes are likely representatives of a transient microbiota and there is a high degree of overlap between the most frequently identified species in the jejunum and the recently described ileum core microbiota.
Collapse
|
43
|
Wu G, Tang X, Fan C, Wang L, Shen W, Ren S, Zhang L, Zhang Y. Gastrointestinal Tract and Dietary Fiber Driven Alterations of Gut Microbiota and Metabolites in Durco × Bamei Crossbred Pigs. Front Nutr 2022; 8:806646. [PMID: 35155525 PMCID: PMC8836464 DOI: 10.3389/fnut.2021.806646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal tract and dietary fiber (DF) are known to influence gut microbiome composition. However, the combined effect of gut segment and long-term intake of a high fiber diet on pig gut microbiota and metabolite profiles is unclear. Here, we applied 16S rRNA gene sequencing and untargeted metabolomics to investigate the effect of broad bean silage on the composition and metabolites of the cecal and jejunal microbiome in Durco × Bamei crossbred pigs. Twenty-four pigs were allotted to four graded levels of DF chow, and the content of jejunum and cecum were collected. Our results demonstrated that cecum possessed higher α-diversity and abundance of Bacteroidetes, unidentified Ruminococcaceae compared to jejunum, while jejunum possessed higher abundance of Lactobacillus, Streptococcus. DF intake significantly altered diversity of the bacterial community. The abundance of Bacteroidetes and Turicibacter increased with the increase of DF in cecum and jejunum respectively. Higher concentrations of amino acids and conjugated bile acids were detected in the jejunum, whereas free bile acids and fatty acids were enriched in the cecum. The concentrations of fatty acids, carbohydrate metabolites, organic acids, 2-oxoadipic acid, and succinate in cecum were higher in the high DF groups. Overall, the results indicate that the composition of bacteria and the microbiota metabolites were distinct in different gut segments. DF had a significant influence on the bacterial composition and structure in the cecum and jejunum, and that the cecal metabolites may further affect host health, growth, and slaughter performance.
Collapse
Affiliation(s)
- Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Liangzhi Zhang
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Xining, China
- Yanming Zhang
| |
Collapse
|
44
|
Casini A, Mancinelli R, Mammola CL, Pannarale L, Chirletti P, Onori P, Vaccaro R. Distribution of α-synuclein in normal human jejunum and its relations with the chemosensory and neuroendocrine system. Eur J Histochem 2021; 65. [PMID: 34726359 PMCID: PMC8581552 DOI: 10.4081/ejh.2021.3310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Alpha-synuclein (α-syn) is a presynaptic neuronal protein and its structural alterations play an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s disease (PD). It has been originally described in the brain and aggregated α-syn has also been found in the peripheral nerves including the enteric nervous system (ENS) of PD patients. ENS is a network of neurons and glia found in the gut wall which controls gastrointestinal function independently from the central nervous system. Moreover, two types of epithelial cells are crucial in the creation of an interface between the lumen and the ENS: they are the tuft cells and the enteroendocrine cells (EECs). In addition, the abundant enteric glial cells (EGCs) in the intestinal mucosa play a key role in controlling the intestinal epithelial barrier. Our aim was to localize and characterize the presence of α-syn in the normal human jejunal wall. Surgical specimens of proximal jejunum were collected from patients submitted to pancreaticoduodenectomy and intestinal sections underwent immunohistochemical procedure. Alpha-syn has been found both at the level of the ENS and the epithelial cells. To characterize α-syn immunoreactive epithelial cells, we used markers such as choline acetyltransferase (ChAT), useful for the identification of tuft cells. Then we evaluated the co-presence of α-syn with serotonin (5-HT), expressed in EECs. Finally, we used the low-affinity nerve growth factor receptor (p75NTR), to detect peripheral EGCs. The presence of α-syn has been demonstrated in EECs, but not in the tuft cells. Additionally, p75NTR has been highlighted in EECs of the mucosal layer and co-localized with α-syn in EECs but not with ChAT-positive cells. These findings suggest that α-syn could play a possible role in synaptic transmission of the ENS and may contribute to maintain the integrity of the epithelial barrier of the small intestine through EECs.
Collapse
Affiliation(s)
- Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Piero Chirletti
- Department of Surgical Sciences, Sapienza University of Rome.
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza Università of Rome.
| |
Collapse
|
45
|
Li J, Zhang R, Ma J, Tang S, Li Y, Li Y, Wan J. Mucosa-Associated Microbial Profile Is Altered in Small Intestinal Bacterial Overgrowth. Front Microbiol 2021; 12:710940. [PMID: 34421869 PMCID: PMC8372370 DOI: 10.3389/fmicb.2021.710940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
The overall gut microbial profile of patients with small intestinal bacterial overgrowth (SIBO) has not been thoroughly investigated. We investigated the microbial communities of mucosal specimens from the duodenum, ileum, sigmoid colon, and feces of patients with and without SIBO, as diagnosed by lactulose breath testing. The bacteria present in the mucosal and fecal samples were identified using 16S rRNA gene sequencing. Further analysis was performed using the linear discriminant analysis (LDA) effect size method, random forest analysis, and receiver operating characteristic analysis. The microbial diversities of the fecal samples were significantly lower than those of the mucosal samples from the duodenum, ileum, and sigmoid colon (P < 0.001, P < 0.001, and P < 0.001, respectively), while the bacterial compositions of the ileac mucosal samples and sigmoid mucosal samples were similar. The bacterial composition of either the fecal or duodenal mucosal samples were significantly different from those of the other three groups (ANOSIM R = 0.305, P = 0.001). The bacterial compositions of the mucosal samples of the duodenum, ileum, and sigmoid colon in the SIBO + subjects were significantly different from those of the SIBO− subjects (ANOSIM P = 0.039, 0.002, and 0.007, respectively). The relative abundances of 7, 18, and 8 genera were significantly different (LDA score > 3) in the mucosal samples of the duodenum, ileum, and sigmoid colon between the SIBO + and SIBO− groups. Four genera (Lactobacillus, Prevotella_1, Dialister, and norank_f__Ruminococcaceae) showed similar changes among the mucosal samples of the duodenum, ileum, and sigmoid colon in the SIBO + subjects. A signature consisting of four genera in the duodenal mucosa, three genera in the ileac mucosa, or six genera in the mucosa of the sigmoid colon exhibited predictive power for SIBO (area under the curve = 0.9, 0.93, and 0.87, respectively). This study provides a comprehensive profile of the gut microbiota in patients with SIBO. Dysbiosis was observed in the mucosa-associated gut microbiome but not in the fecal microbiome of patients with SIBO. Furthermore, we identified mucosa-associated taxa that may be potential biomarkers or therapeutic targets of SIBO. Further investigation is needed on their mechanisms and roles in SIBO.
Collapse
Affiliation(s)
- Jia Li
- Medical School of Chinese PLA, Beijing, China.,Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.,Department of Gastroenterology, The 983th Hospital of Joint Logistic Support Force of PLA, Tianjin, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jinxia Ma
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Shuai Tang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yuan Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yi Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Grond K, Kurtz CC, Hatton J, Sonsalla MM, Duddleston KN. Gut microbiome is affected by gut region but robust to host physiological changes in captive active-season ground squirrels. Anim Microbiome 2021; 3:56. [PMID: 34389044 PMCID: PMC8361659 DOI: 10.1186/s42523-021-00117-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) are obligate hibernators and are only active 4–5 months annually. During this period, squirrels rapidly acquire fat for use during hibernation. We investigated how the gut microbiome changed over the active season in the mucosa and lumen of two gut sections: the cecum and ileum. We sequenced the 16S rRNA gene to assess diversity and composition of the squirrel gut microbiome and used differential abundance and network analyses to identify relationships among gut sections. Results Microbial composition significantly differed between the cecum and ileum, and within the ileum between the mucosa and lumen. Cecum mucosa and lumen samples did not differ in alpha diversity and composition, and clustered by individual squirrel. Ileum mucosa and lumen samples differed in community composition, which can likely be attributed to the transient nature of food-associated bacteria in the lumen. We did not detect a shift in microbiome diversity and overall composition over the duration of the active season, indicating that the squirrel microbiome may be relatively robust to changes in physiology. Conclusions Overall, we found that the 13-lined ground squirrel microbiome is shaped by microenvironment during the active season. Our results provide baseline data for new avenues of research, such as investigating potential differences in microbial function among these physiologically unique gut environments. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00117-0.
Collapse
Affiliation(s)
- Kirsten Grond
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA.
| | - Courtney C Kurtz
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA
| | - Jasmine Hatton
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA
| | - Michelle M Sonsalla
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Blvd., Oshkosh, WI, 54901, USA
| | - Khrystyne N Duddleston
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA
| |
Collapse
|
47
|
Aoki K, Yanazawa K, Tokinoya K, Sugasawa T, Suzuki T, Yoshida Y, Nakano T, Omi N, Kawakami Y, Takekoshi K. Renalase is localized to the small intestine crypt and expressed upon the activation of NF-κB p65 in mice model of fasting-induced oxidative stress. Life Sci 2020; 267:118904. [PMID: 33338501 DOI: 10.1016/j.lfs.2020.118904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
AIMS Renalase expression is regulated by Nuclear Factor (NF)-κB and hypoxia inducible factor (HIF)-1α, and antioxidative stress function in renal cells were reported. However, dynamics of renalase and localizes in intestine were remain unknown. We evaluated the effects of oxidative stress on renalase expression and localization using model of fasting induced oxidative stress and Caco-2 cell, and examined the its physiological effects. MAIN METHODS 24 male mice were divided into three groups: Control (Con), 72 h fasting (Fast), and 24 h refeeding after fasting (Refeed). Jejunum and ileum were collected respectively. The structure of jejunum and ileum were observed by hematoxylin and eosin (HE) stain. The expression levels of carbonylated protein, renalase, NF-κB p65 and HIF-1α were measured by immunoblotting. Localization of renalase was observed by immunofluorescent. in vitro assay was performed using Caco-2 cell. Renalase was overexpressed using adenovirus. After that, Caco-2 cell was treated with 2 mM H2O2 for 30 min or 24 h. KEY FINDINGS Renalase was increased in Fast and it was localized in crypt. HIF-1α did not increase, but NF-κB p65 increased in Fast. Renalase overexpression protects the Caco-2 cells against H2O2 induced oxidative stress. SIGNIFICANCE Renalase was localized in crypt and increased in Fast. This increase suggested protect response to oxidative stress because undifferenced cells were localized in crypt and need to be protected. Actually, renalase protected Caco-2 cells against H2O2 induced oxidative stress. Small intestinal renalase expression was regulated by NF-κB p65 and was considered to be a defense mechanism against oxidative stress.
Collapse
Affiliation(s)
- Kai Aoki
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 1-1-1 Tennodai, 305-8577, Japan
| | - Koki Yanazawa
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 1-1-1 Tennodai, 305-8577, Japan
| | - Katsuyuki Tokinoya
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 1-1-1 Tennodai, 305-8577, Japan
| | - Takehito Sugasawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Tera-machi Nishiiru, Imadegawa-dori, Kamigyo-ku, Kyoto 602-0893, Japan
| | - Yasuko Yoshida
- Department of Clinical Laboratory, Faculty of Health Sciences, Tsukuba International University, 6-20-1 Manabe, Tsuchiura, Ibaraki 300-0051, Japan
| | - Takuro Nakano
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 1-1-1 Tennodai, 305-8577, Japan
| | - Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Yasushi Kawakami
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan
| | - Kazuhiro Takekoshi
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan.
| |
Collapse
|