1
|
Kang X, Dong Y, Guan H, Al-Tahan MA, Zhang J. Manipulating the electrocatalytic activity of sulfur cathode via distinct cobalt sulfides as sulfur host materials in lithium-sulfur batteries. J Colloid Interface Sci 2022; 622:515-525. [PMID: 35525150 DOI: 10.1016/j.jcis.2022.04.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023]
Abstract
For the better development of lithium-sulfur (Li-S) batteries, it is necessary to fabricate sulfur hosts with cheap, rapid sulfur reaction dynamic and inhibiting the shuttling effect of lithium polysulfides (LiPSs). Herein, four hollow cubic materials with two kinds of nitrogen-doped carbon derived from Prussian blue analogues (PBA) precursor, Co9S8/MnS/NC@NC-400, CoS2/MnS/NC@NC-500, CoS1.097/MnS/NC@NC-600 and CoS1.097/MnS/NC@NC-700, are reported when the vulcanization temperatures are regulated at 400 °C, 500 °C, 600 °C and 700 °C, respectively. Among them, Co9S8/MnS/NC@NC-400, CoS2/MnS/NC@NC-500 and CoS1.097/MnS/NC@NC-600 have the similar hollow cubic structure, which can physically confine the LiPSs's shuttle, however, the Co vacancies of CoS1.097 in the CoS1.097/MnS/NC@NC-600 can promote the rearrangement of surface electrons, which is beneficial to the diffusion of Li+/e-, improving the electrochemical reaction kinetics. As for the CoS1.097/MnS/NC@NC-700 with the same substance but almost collapsed structure, the CoS1.097/MnS/NC@NC-600 can accommodate the volume expansion of sulfur conversion. In the four sulfur-host materials, the CoS1.097/MnS/NC@NC-600 not only displays the outstanding adsorption ability on LiPSs, but also presents the best electrocatalytic activity in the Li2S potentiostatic deposition experiments and active sulfur reduction/oxidation conversion reactions, greatly promoting the electrochemical performances of Li-S batteries. The S@CoS1.097/MnS/NC@NC-600 cathode can deliver 1010.2 mA h g-1 at 0.5 C and maintain 651.1 mA h g-1 after 200 cycles. In addition, the in-situ X-ray diffraction (in-situ XRD) test reveals that the sulfur conversion mechanism is the processes of the α-S8 → Li2S → β-S8 (first cycle), then β-S8 ↔ Li2S during the subsequent cycles. Based on the fundamental understanding of the design and preparation of CoxSy/MnS/NC@NC hosts with the desired adsorption and catalysis functions, the work can provide new insights and reveal the defect-engineering to develop the advanced Li-S batteries.
Collapse
Affiliation(s)
- Xiyang Kang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Hui Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Mohammed A Al-Tahan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Bar-On L, Garlando U, Sophocleous M, Jog A, Motto Ros P, Sade N, Avni A, Shacham-Diamand Y, Demarchi D. Electrical Modelling of In-Vivo Impedance Spectroscopy of Nicotiana tabacum Plants. FRONTIERS IN ELECTRONICS 2021. [DOI: 10.3389/felec.2021.753145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Electrical impedance spectroscopy has been suggested as a sensing method for plants. Here, a theoretical approach for electrical conduction via the plant stem is presented and validated, linking its living electrical characteristics to its internal structure. An electrical model for the alternating current conduction and the associated impedance in a live plant stem is presented. The model accounts for biological and geometrical attributes. It uses the electrically prevalent coupled transmission line model approach for a simplified description of the complicated vessel structure. It considers the electrode coupling to the plant stem (either Galvanic or Faradic), and accounts for the different interactions of the setup. Then the model is simplified using the lumped element approach. The model is then validated using a four-point probe impedance spectroscopy method, where the probes are galvanically coupled to the stem of Nicotiana tabacum plants. The electrical impedance data was collected continuously and the results exhibit an excellent fitting to the theoretical model, with a fitting error of less than 1.5% for data collected on various days and plants. A parametric evaluation of the fitting corresponds to the proposed physically based model, therefore providing a baseline for future plant sensor design.
Collapse
|
3
|
Volkov AG, Chua L. Cyclic voltammetry of volatile memristors in the Venus flytrap: short-term memory. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:567-572. [PMID: 33423737 DOI: 10.1071/fp20379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Plants have sensory, short-term and long-term memory. Possible candidates for memory in plants are memristors; resistors with memory. Memristors have been found in seeds, plants, flowers and fruits. The electrostimulation of plants by bipolar periodic waves can induce electrical responses with fingerprints of volatile or non-volatile memristors. Here, we show that the electrostimulation of the Venus flytrap (Dionaea muscipula Ellis) by unipolar sinusoidal or triangular periodic electrical trains induces electrical responses in plants with fingerprints of volatile memristors. The discovery of volatile generic memristors in plants opens new directions in the modelling and understanding of electrical phenomena in the plant kingdom.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry, Oakwood University, Huntsville, AL 35896, USA; and Corresponding author.
| | - Leon Chua
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Pabst O, Sørebø ØM, Andersen KS, Ousdal EL, Bråthen SW, Rehman BU, Gholami H, Zhou Z, Takahashi K, Dumesso DT, Livingston MM, Lodewijk WJ, Sæther S, Turk AE, Uller PL. Storing Information Electrically in Human Skin. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:73-81. [PMID: 35069944 PMCID: PMC8667810 DOI: 10.2478/joeb-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 06/14/2023]
Abstract
Human skin has been classified as a non-volatile memristor and it is shown that information can be stored within for at least three minutes. Here we investigate whether it is possible to store information up to 20 minutes. Furthermore, we investigate whether the information can be based on four different states, not just two (binary). We stored the information into the skin of the forehead of the test subjects under three different electrodes, which allows in principle for 64 different combinations (3 electrodes, 4 states) and one can think of numbers on the base of four. For this experiment, we decided on the numbers 1234 and 3024 (that correspond to numbers 27 and 50 in the decimal system). Writing of the different states was done by the application of DC voltage pulses that cause electro-osmosis in the sweat ducts (nonlinear electrical measurements). Based on our results, we were not able to distinguish between four different states. However, we can show that binary information storage in human skin is possible for up to 20 minutes.
Collapse
Affiliation(s)
- Oliver Pabst
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | - Zhijian Zhou
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | | | | | - Stian Sæther
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
5
|
|
6
|
Sawato T, Iwamoto R, Yamaguchi M. Figure-eight thermal hysteresis of aminomethylenehelicene oligomers with terminal C 16 alkyl groups during hetero-double-helix formation. Chem Sci 2020; 11:3290-3300. [PMID: 34122836 PMCID: PMC8157274 DOI: 10.1039/c9sc06496f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/25/2020] [Indexed: 11/28/2022] Open
Abstract
1 : 1 mixtures of aminomethylenehelicene (P)-tetramer and (M)-pentamer with terminal C16 alkyl groups in fluorobenzene showed structural changes between hetero-double-helices B and C and random-coils 2A. Figure-eight thermal hysteresis appeared when the solution was cooled and heated at a constant rate and involved the crossing of cooling and heating curves in Δε/temperature profiles. This unusual thermal hysteresis emerged in the intermediate state between counterclockwise and clockwise thermal hystereses. This phenomenon arose from the competition between self-catalytic reactions to form B and C from 2A. Significant effects of terminal C16 alkyl groups on the thermodynamic and kinetic phenomena are also described.
Collapse
Affiliation(s)
- Tsukasa Sawato
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University Aoba Sendai 980-8578 Japan +81 22-795-6811
| | - Rina Iwamoto
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University Aoba Sendai 980-8578 Japan +81 22-795-6811
| | - Masahiko Yamaguchi
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University Aoba Sendai 980-8578 Japan +81 22-795-6811
| |
Collapse
|
7
|
Volana Randriamandimbisoa M, Manitra Nany Razafindralambo NA, Fakra D, Lucia Ravoajanahary D, Claude Gatina J, Jaffrezic-Renault N. Electrical response of plants to environmental stimuli: A short review and perspectives for meteorological applications. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Pabst O, Anwar A, Nieweglowski AA, Lindland CR, Rahman H, Siljedal H, Thorkildsen H, Camara I, Mirarkolaei KN, Massé L, Hoen MS, Mustafa MN, Berg OJ, Kristiansen PA, Iguenad R, Torstensson Pedersen RA, Waisi S, Nielsen TE. The Non-linear Electrical Properties of Silver/silver Chloride Electrodes in Sodium Chloride Solution. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2019; 10:113-123. [PMID: 33584892 PMCID: PMC7851973 DOI: 10.2478/joeb-2019-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 06/12/2023]
Abstract
An electrical measurement is non-linear when it is affected by the applied stimulus, i.e. when the measured phenomenon changes with amplitude. If pinched hysteresis loops can be observed in the voltage current representation, the underlying tissue can be classified as a memristor. Several biological memristors have been published, like human skin and apples. However, changes in the polarization impedance of electrodes may also cause pinched hysteresis loops. The question whether the reported biological memristors are real or whether the results just reflect changes in the polarization impedance arises. If the impedance of the measured object is close to or smaller than the polarization impedance of the used electrodes, the latter may dominate the measurement. In this study, we investigated the non-linear electrical properties of silver/silver chloride electrodes in a sodium chloride solution that has a similar concentration as human sweat and compared these to results from human skin. First of all, we found that silver/silver chloride electrodes in sodium chloride solution can be classified as memristors. However, the currents obtained from the sodium chloride solution are much higher than the currents recorded from human skin and there is a qualitative difference in the pinched hysteresis loops in both cases. We can conclude that the non-linear electrical measurements with silver/silver chloride on human skin are actually dominated by the skin and we can confirm that the human skin memristor really exists.
Collapse
Affiliation(s)
- Oliver Pabst
- Department of Physics, University of Oslo, Oslo, Norway
| | - Abbas Anwar
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | - Léa Massé
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | | | | | - Ramzi Iguenad
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Serwa Waisi
- Department of Physics, University of Oslo, Oslo, Norway
| | | |
Collapse
|
9
|
Pabst O, Andersen S, Bhatti SA, Brevik J, Fallaas SA, Fjeldstad M, Gubaidulin A, Madsen KV, Nomedal MR, Slettemoen SF, Adriaenssens HY, Hansen SA, Myrvik T, Rostad E, Skår T, Tuv K, Wood SEP, Åsen D. Questioning the Aloe Vera Plant and Apple Memristors. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2019; 10:83-89. [PMID: 33584887 PMCID: PMC7531211 DOI: 10.2478/joeb-2019-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 06/12/2023]
Abstract
Non-linear electrical properties of a (biological) tissue can be revealed by non-linear electrical measurements, which means that the applied stimulus itself affects the measurement. If resulting voltage-current plots exhibit pinched hysteresis loops, the underlying tissue may be classified as a memristor, a state dependent resistor. The aloe vera plant and apples have been found to be memristors. However, polarization processes on the electrodes are also non-linear and may affect the measurement. Apples and aloe vera conduct electrical current very well and it is likely that the recordings are actually dominated by the polarization impedance of the electrodes. Here, we study the non-linear properties of aloe vera and apples with two different measurement electrode types. Furthermore, we measured also on the extracted liquids from one aloe vera leaf and one apple, leading to similar results. We concluded, unlike previous studies on these subjects, that the memristive properties originate from electrochemical reactions on the electrodes rather than the apples or aloe vera themselves.
Collapse
Affiliation(s)
- Oliver Pabst
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | - Jørgen Brevik
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | - Tommy Myrvik
- Department of Physics, University of Oslo, Oslo, Norway
| | - Eivind Rostad
- Department of Physics, University of Oslo, Oslo, Norway
| | - Torleif Skår
- Department of Physics, University of Oslo, Oslo, Norway
| | - Kristian Tuv
- Department of Physics, University of Oslo, Oslo, Norway
| | | | - Daniel Åsen
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Volkov AG, Nyasani EK. Sunpatiens compact hot coral: memristors in flowers. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:222-227. [PMID: 32291036 DOI: 10.1071/fp16326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/07/2017] [Indexed: 06/11/2023]
Abstract
Leon Chua postulated the theory of a memristor - a resistor with memory - in 1971, and the first solid-state memristor was built in 2008. Memristors exist in vivo as components of plasma membranes in plants, fruits, roots and seeds. A memristor is a nonlinear element; its current-voltage characteristic is similar to that of a Lissajous pattern. Here, we found memristors in flowers. Electrostimulation by bipolar periodic sinusoidal or triangular waves of an androecium, a spur, petals and a pedicel in Sunpatiens flowers induces hysteresis loops with a pinched point at low frequencies between 0.1mHz and 1mHz. At high frequencies, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I=U/R for ideal memristors because the amplitude of electrical current depends on capacitance of a flower's tissue and electrodes, frequency and direction of scanning. The discovery of memristors in Sunpatiens (Impatiens spp.) creates a new direction in the modelling and understanding of electrophysiological phenomena in flowers.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd, Huntsville, AL 35896, USA
| | - Eunice K Nyasani
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd, Huntsville, AL 35896, USA
| |
Collapse
|
11
|
|
12
|
Volkov AG, Nyasani EK, Tuckett C, Scott JM, Jackson MMZ, Greeman EA, Greenidge AS, Cohen DO, Volkova MI, Shtessel YB. Electrotonic potentials in Aloe vera L.: Effects of intercellular and external electrodes arrangement. Bioelectrochemistry 2016; 113:60-68. [PMID: 27756010 DOI: 10.1016/j.bioelechem.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 01/24/2023]
Abstract
Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes. Intercellular Ag/AgCl electrodes inserted in a leaf and extracellular Ag/AgCl electrodes attached to the leaf surface were used to detect the electrotonic potential propagation along a leaf of Aloe vera. There is a difference in duration and amplitude of electrical potentials measured by electrodes inserted in a leaf and those attached to a leaf's surface. If the external reference electrode is located in the soil near the root, it changes the amplitude and duration of electrotonic potentials due to existence of additional resistance, capacitance, ion channels and ion pumps in the root. The information gained from this study can be used to elucidate extracellular and intercellular communication in the form of electrical signals within plants.
Collapse
Affiliation(s)
- Alexander G Volkov
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA.
| | - Eunice K Nyasani
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Clayton Tuckett
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Jessenia M Scott
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Mariah M Z Jackson
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Esther A Greeman
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Ariane S Greenidge
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Devin O Cohen
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Maia I Volkova
- Department of Chemistry, Oakwood University, 7000 Adventist Blvd., Huntsville, AL 35896, USA
| | - Yuri B Shtessel
- Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| |
Collapse
|