1
|
Chanarsa S, Phetsang S, Thongsuwan W, Limtharakul T, Tinoi J, Jakmunee J, Ounnunkad K. Leveraging self-signal amplifying poly(acrylic acid)/polyaniline electrodes for label-free electrochemical immunoassays in protein biomarker detection. Bioelectrochemistry 2025; 163:108894. [PMID: 39742710 DOI: 10.1016/j.bioelechem.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Accurate quantification of specific biomarkers is essential for clinical diagnosis and evaluating therapeutic efficacy. A self-signal-amplifying poly(acrylic acid) (PAA)/polyaniline (PANI) film-modified disposable and cost-effective screen-printed carbon electrode (SPCE) has been developed for constructing new label-free immunosensors targeting two model biomarkers: human immunoglobulin G (IgG) and alpha-fetoprotein (AFP). The electrochemically deposited PAA/PANI film on the SPCE serves a dual function: both a bio-immobilization support and a signal amplifier, enhancing biomarker detection sensitivity and efficiency. The self-signal amplification properties of PANI streamline the detection process. At the same time, the high-density surface carboxyl groups from embedded PAA enable covalent conjugation with capture antibodies (anti-IgG and anti-AFP). Subsequently, antibody-immobilized PAA/PANI film-modified SPCEs, as immunosensors, successfully detect IgG and AFP without the need for external redox probes. The reductions in the electrochemical PANI signals of the immunosensors are linearly proportional to the logarithm of IgG and AFP concentrations. The proposed immunosensors exhibit sufficiently wide ranges of calibration curves from 0.10 to 50 ng mL-1, with limits of detection of 0.080 ng mL-1 for IgG and 0.090 ng mL-1 for AFP. The sensors exhibit satisfactory sensitivity and selectivity, indicating their potential for accurate and reliable detection.
Collapse
Affiliation(s)
- Supakeit Chanarsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sopit Phetsang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wiradej Thongsuwan
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thunwadee Limtharakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jidapha Tinoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Su X, Chen J, Wu S, Qiu Y, Pan Y. A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination. SENSORS (BASEL, SWITZERLAND) 2024; 24:7878. [PMID: 39771616 PMCID: PMC11678932 DOI: 10.3390/s24247878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes. As signal molecules, AFP aptamers were conjugated with methylene blue (MB) and immobilized on the electrode surface. When interacting with AFP, conformational changes in the aptamer-target complex caused MB to approach the electrode, and the electrochemical signal was enhanced through signal-on mechanisms. The developed sensor demonstrated high sensitivity and selectivity for AFP, with a log-linear relationship defined as 1-300 ng/mL, and the LOD was 0.05 ng/mL (S/N = 3). The method was applied to laboratorial and real clinical samples and presented satisfactory selectivity, reproducibility, and long-term stability. The proposed high-performance sensor highlights the potential of electrochemical aptamer sensors in improving the warning capabilities in disease management.
Collapse
Affiliation(s)
- Xiaoyu Su
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Junbiao Chen
- Hangzhou Shuntai Installation Engineering Co., Ltd., Hangzhou 311200, China
| | - Shanshan Wu
- Hangzhou Shuntai Installation Engineering Co., Ltd., Hangzhou 311200, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute, Zhejiang University, Hangzhou 310053, China
| | - Yuxiang Pan
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| |
Collapse
|
3
|
Cui X, Lv L, Zhao K, Tian P, Chao X, Li Y, Zhang B. Exo Ⅲ-assisted amplification signal strategy synergized with Au@Pt NFs/CoSe 2 for sensitive detection of enrofloxacin. Bioelectrochemistry 2024; 160:108750. [PMID: 38852385 DOI: 10.1016/j.bioelechem.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Overuse of enrofloxacin (ENR) has posed a potential threat to ecosystems and public health, so it is critical to sensitive and accurate determination of ENR residues. In this work, a novel ultra-sensitive and specific electrochemical aptasensor was fabricated based on the cobalt diselenide loaded gold and platinum nanoflowers (Au@Pt NFs/ CoSe2) and Exonuclease III (Exo III)-assisted cycle amplification strategy for the detection of ENR. Au@Pt NFs/ CoSe2 nanosheets as the substrate material, with large surface area, accelerate electron transfer and attach more DNA probes on the electrode substrate, have effectively enhanced the electrochemical performance of the electrode. With the existence of Enrofloxacin (ENR), the aptamer recognizes and binds to ENR, thus the signal probe cDNA was released and immobilized onto the electrode surface to hybridized with methylene blue (MB) labelled DNA (MB-DNA), thereby triggering the Exo III-assisted cycle for further signal amplification. As expected, the prepared aptasensor demonstrated excellent sensitivity and selectivity, with a wide linear range from 5.0 × 10-6 ng/mL to 1.0 × 10-2 ng/mL for ENR, a low detection limit of 1.59 × 10-6 ng/mL. Consequently, this strategy provided a promising avenue for ultrasensitive and accurate detection of ENR in milk samples.
Collapse
Affiliation(s)
- Xiaoying Cui
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lina Lv
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; JIANGSU YUYUE KAILITE BIOTECHNOLOGY Co., LTD., Danyang, Baisheng Road1#, Zhenjiang 212300, Jiangsu Province, People's Republic of China
| | - Ke Zhao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Panpan Tian
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China; China National Chemical Huayi Engineering And Technology Group Co., Ltd, Jinhai Road 6055#, Fengxian District, 201406 Shanghai, People's Republic of China
| | - Xipeng Chao
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Ying Li
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Lianhua Road 100#, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Zhou Z, Tian Y, Zou L, Liu Y, Zhang X, Huang X, Ren H, Li Z, Niu H, Liao H, Zhang X, Pan H, Rong S, Ma H. An electrochemical ratiometric immunosensor for the detection of NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39046279 DOI: 10.1039/d4ay01066c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Nuclear matrix protein 22 (NMP22) is one of the most important tumor markers of bladder cancer and is significantly elevated in the urine of bladder cancer patients. Therefore, in this work, a highly sensitive ratiometric electrochemical immunosensor was constructed to detect NMP22 based on ZIF-8@MWCNTs@Chit@Fc@AuNPs composites. ZIF-8 had a large surface area and good adsorption ability. Multi-Walled Carbon Nanotubes (MWCNTs) can optimize the electrical conductivity of ZIF-8, so that the electrode surface of ferrocene (Fc) obtains a stable and strong electrochemical signal. In addition, AuPt-MB provided another strong detection signal methylene blue (MB) while immobilizing the secondary antibody (Ab2) through Au-N and Pt-N bonds. A ratiometric electrochemical sensor was formed based on ZIF-8@MWCNTs@Chit@Fc@AuNPs and AuPt-MB, which showed a great linear connection between IMB/IFc and the logarithmic concentration of NMP22 with a detection limit of 3.33 fg mL-1 (S/N = 3) under optimized specifications in the concentration interval of 0.01 pg mL-1 to 1000 ng mL-1. In addition, the ratiometric immunosensor showed good selectivity and stability.
Collapse
Affiliation(s)
- Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Yuting Tian
- School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
5
|
Zheng R, Wu A, Li J, Tang Z, Zhang J, Zhang M, Wei Z. Progress and Outlook on Electrochemical Sensing of Lung Cancer Biomarkers. Molecules 2024; 29:3156. [PMID: 38999110 PMCID: PMC11243195 DOI: 10.3390/molecules29133156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Electrochemical biosensors have emerged as powerful tools for the ultrasensitive detection of lung cancer biomarkers like carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and alpha fetoprotein (AFP). This review comprehensively discusses the progress and potential of nanocomposite-based electrochemical biosensors for early lung cancer diagnosis and prognosis. By integrating nanomaterials like graphene, metal nanoparticles, and conducting polymers, these sensors have achieved clinically relevant detection limits in the fg/mL to pg/mL range. We highlight the key role of nanomaterial functionalization in enhancing sensitivity, specificity, and antifouling properties. This review also examines challenges related to reproducibility and clinical translation, emphasizing the need for standardization of fabrication protocols and robust validation studies. With the rapid growth in understanding lung cancer biomarkers and innovations in sensor design, nanocomposite electrochemical biosensors hold immense potential for point-of-care lung cancer screening and personalized therapy guidance. Realizing this goal will require strategic collaboration among material scientists, engineers, and clinicians to address technical and practical hurdles. Overall, this work provides valuable insight for developing next-generation smart diagnostic devices to combat the high mortality of lung cancer.
Collapse
Affiliation(s)
- Rui Zheng
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Aochun Wu
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450053, China; (R.Z.); (A.W.)
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Jiyue Li
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Zhengfang Tang
- The First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450099, China; (J.L.); (Z.T.)
| | - Junping Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Mingli Zhang
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| | - Zheng Wei
- Cancer Research Institute, Henan Integrative Medicine Hospital, Zhengzhou 450003, China; (M.Z.); (Z.W.)
| |
Collapse
|
6
|
Ramachandran L, Abul Rub F, Hajja A, Alodhaibi I, Arai M, Alfuwais M, Makhzoum T, Yaqinuddin A, Al-Kattan K, Assiri AM, Broering DC, Chinnappan R, Mir TA, Mani NK. Biosensing of Alpha-Fetoprotein: A Key Direction toward the Early Detection and Management of Hepatocellular Carcinoma. BIOSENSORS 2024; 14:235. [PMID: 38785709 PMCID: PMC11117836 DOI: 10.3390/bios14050235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is currently one of the most prevalent cancers worldwide. Associated risk factors include, but are not limited to, cirrhosis and underlying liver diseases, including chronic hepatitis B or C infections, excessive alcohol consumption, nonalcoholic fatty liver disease (NAFLD), and exposure to chemical carcinogens. It is crucial to detect this disease early on before it metastasizes to adjoining parts of the body, worsening the prognosis. Serum biomarkers have proven to be a more accurate diagnostic tool compared to imaging. Among various markers such as nucleic acids, circulating genetic material, proteins, enzymes, and other metabolites, alpha-fetoprotein (AFP) is a protein marker primarily used to diagnose HCC. However, current methods need a large sample and carry a high cost, among other challenges, which can be improved using biosensing technology. Early and accurate detection of AFP can prevent severe progression of the disease and ensure better management of HCC patients. This review sheds light on HCC development in the human body. Afterward, we outline various types of biosensors (optical, electrochemical, and mass-based), as well as the most relevant studies of biosensing modalities for non-invasive monitoring of AFP. The review also explains these sensing platforms, detection substrates, surface modification agents, and fluorescent probes used to develop such biosensors. Finally, the challenges and future trends in routine clinical analysis are discussed to motivate further developments.
Collapse
Affiliation(s)
- Lohit Ramachandran
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Lung Health Center Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Abdullah M. Assiri
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Dieter C. Broering
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (F.A.R.); (A.H.); (I.A.); (M.A.); (M.A.); (T.M.); (A.Y.); (K.A.-K.); (A.M.A.); (D.C.B.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India;
| |
Collapse
|
7
|
Shan CW, Chen Z, Han GC, Feng XZ, Kraatz HB. Electrochemical immuno-biosensors for the detection of the tumor marker alpha-fetoprotein: A review. Talanta 2024; 271:125638. [PMID: 38237279 DOI: 10.1016/j.talanta.2024.125638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein that has many important physiological functions, including transportation, immunosuppression, and induction of apoptosis by T lymphocytes. AFP is closely related to the development of hepatocellular carcinoma and many kinds of tumors, all of which can show high concentrations, so it is used as a positive test indicator for many kinds of tumors. This paper reviews recent advances in the detection of the tumor marker AFP based on three immuno-biosensors: electrochemical (EC), photoelectrochemical (PEC), and electrochemical luminescence (ECL). The electrodes are modified by different materials or homemade composites, different signaling molecules are selected as single probes or dual probes for the detection of AFP. The detection limit was as low as 3 fg/mL, which indicated that the AFP immunosensor had achieved highly sensitive detection. In addition, we also reviewed and summarized the current development status and application prospect of AFP immunoelectrochemical sensors. There are not too many researches on immunosensors based on dual-signal ratios, and the commonly used probes are methylene blue (MB) and ferrocene (Fc). It would be more innovative to have more novel signaling molecules as probes to prepare dual-signal ratio sensors.
Collapse
Affiliation(s)
- Chen-Wei Shan
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guangxi Human Physiological Information Non Invasive Detection Engineering Technology Research Center, Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin University of Electronic Technology, Guilin, 541004, PR China.
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada.
| |
Collapse
|
8
|
Ju Y, Yang Y, Tang Q, Wang M, Zeng Y, Zhang Z, Zhai Y, Wang H, Li L. Fluorometric detection of alpha-fetoprotein based on the use of a novel organic compound with AIE activity and aptamer-modified magnetic microparticles. Anal Chim Acta 2023; 1278:341692. [PMID: 37709445 DOI: 10.1016/j.aca.2023.341692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Liver cancer is one of the most common cancers in the world, and it seriously threatens human life and health. Alpha-fetoprotein (AFP), as a carcinogenic glycoprotein, is an important serum marker for detecting liver cancer. Therefore, the accurate and sensitive determination of AFP is crucial for the early diagnosis and treatment of liver cancer. To this end, a label-free fluorescence aptasensor for detecting AFP based on the use of a novel organic Compound D with an aggregation-induced emission activity and aptamer-modified magnetic microparticles was constructed. RESULTS Compound D could combine with the complementary short chain of the aptamer (CSC-Apt) of AFP to form the D/CSC-Apt complex and realize the fluorescence enhancement of Compound D. Then, magnetic particles modified by the Apt of AFP (Apt-Fe3O4) were prepared. When AFP (or nontarget substance) and D/CSC-Apt were successively added to the Apt-Fe3O4 solution, Apt-Fe3O4 selectively bound to AFP or the D/CSC-Apt complex. Magnetic separation technology showed the changes in the fluorescence intensity of the supernatant. The research results revealed a good linear relationship between the changes in the fluorescence intensity of the supernatant and concentration of AFP within the concentration range of 10-10000 pg mL-1. The proposed aptasensor could achieve high-sensitivity and high-specificity detection of AFP, and its limit of detection was 3 pg mL-1 (S/N = 3). SIGNIFICANCE AND NOVELTY The sensor combines the advantages of high selectivity of Apt, high sensitivity of fluorescence analysis, AIE effect and good water solubility of Compound D, and rapid separation using magnetic separation technology. And it can be directly used for the detection of AFP in actual serum samples with high accuracy, whereas most of the methods reported in the literature can only detect AFP in spiked serum samples.
Collapse
Affiliation(s)
- Yulong Ju
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yiwen Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| | - Qiukai Tang
- Clinical Laboratory, Zhejiang Sian International Hospital, Jiaxing, 314031, Zhejiang, China
| | - Mengqi Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yanbo Zeng
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Zulei Zhang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Yunyun Zhai
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Hailong Wang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang, China.
| |
Collapse
|
9
|
Lu S, Lin Y, Lin Z, Shi B. Sensitive and Label‐Free Electrochemical Immunosensor for Alpha Fetoprotein Based on N‐Doped Hollow Nanocarbon Spheres Decorated with Gold Nanoparticles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shiyun Lu
- Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital Fuzhou Fujian PR China
| | - Yun Lin
- Provincial Clinical College of Fujian Medical University Fujian Provincial Hospital South Branch Fuzhou Fujian PR China
| | - Zhihui Lin
- Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital Fuzhou Fujian PR China
| | - Bing Shi
- Provincial Clinical College of Fujian Medical University Fujian Provincial Hospital South Branch Fuzhou Fujian PR China
| |
Collapse
|
10
|
Yan L, Tang J, Qiao QA, Cai H, Dong Y, Jin J, Xu Y, Gao H. Construction and Enhanced Efficiency of Bi 2MoO 6/ZnO Compo-Sites for Visible-Light-Driven Photocatalytic Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:214. [PMID: 36616124 PMCID: PMC9824808 DOI: 10.3390/nano13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Bi2MoO6 was one of the important bismuth-based semiconductors with a narrow bandgap, and has been widely used in selective oxidation catalysts, supercapacitors, and energy-storage devices. A series of Bi2MoO6/ZnO composite photocatalysts with different mass ratios were synthesized by the hydrothermal method. The synthesized samples were characterized by XRD, PL, UV-Vis, SEM, TEM, XPS, and BET analysis techniques. Under visible light conditions, Methylene blue (MB) was used as the target degradation product to evaluate its photocatalytic performance. The results showed that the degradation rate constant of Bi2MoO6/ZnO (0.4-BZO) was about twice that of the traditional photocatalysis of ZnO. The Bi2MoO6/ZnO composite catalyst maintained stable performance after four consecutive runs. The high photocatalytic activity of Bi2MoO6/ZnO was attributed to the efficient electron transport of the heterojunction, which accelerates the separation of electron-hole pairs and reduces the probability of carrier recombination near the Bi2MoO6/ZnO heterojunction. Bi2MoO6/ZnO nanocomposites have potential applications in the field of photodegradation.
Collapse
Affiliation(s)
- Liyun Yan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jiahui Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qing-an Qiao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Honglan Cai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuqi Dong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Juan Jin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hongwei Gao
- School of Life Science, Ludong University, Yantai 264025, China
| |
Collapse
|
11
|
Yan L, Xu S, Xi F. Disposal Immunosensor for Sensitive Electrochemical Detection of Prostate-Specific Antigen Based on Amino-Rich Nanochannels Array-Modified Patterned Indium Tin Oxide Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3810. [PMID: 36364585 PMCID: PMC9658386 DOI: 10.3390/nano12213810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
Sensitive detection of prostate-specific antigens (PSA) in serum is essential for the prevention and early treatment of prostate cancer. Simple and disposable electrochemical immunosensors are highly desirable for screening and mobile detection of PSAs in high-risk populations. Here, an electrochemical immunosensor was constructed based on amino-rich nanochannels array-modified patterned, inexpensive, and disposable indium tin oxide (ITO) electrodes, which can be employed for the sensitive detection of PSA. Using an amino-group-containing precursor, a vertically ordered mesoporous silica nanochannel film (VMSF) containing amino groups (NH2-VMSF) was rapidly grown on ITO. When NH2-VMSF contained template surfactant micelle (SM), the outer surface of NH2-VMSF was directionally modified by aldehyde groups, which enabled further covalent immobilization of the recognitive antibody to prepare the immuno-recognitive interface. Owing to the charge-based selective permeability, NH2-VMSF can electrostatically adsorb negatively charged redox probes in solution (Fe(CN)63-/4-). The electrochemical detection of PSA is realized based on the mechanism that the antigen-antibody complex can reduce the diffusion of redox probes in solution to the underlying electrode, leading to the decrease in electrochemical signal. The constructed immunosensor can achieve sensitive detection of PSA in the range from 10 pg/mL to 1 μg/mL with a limit of detection (LOD) of 8.1 pg/mL. Sensitive detection of PSA in human serum was also achieved. The proposed disposable immunosensor based on cheap electrode and nanochannel array is expected to provide a new idea for developing a universal immunosensing platform for sensitive detection of tumor markers.
Collapse
Affiliation(s)
- Liang Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengna Xi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Chanarsa S, Jakmunee J, Ounnunkad K. A sandwich-like configuration with a signal amplification strategy using a methylene blue/aptamer complex on a heterojunction 2D MoSe 2/2D WSe 2 electrode: Toward a portable and sensitive electrochemical alpha-fetoprotein immunoassay. Front Cell Infect Microbiol 2022; 12:916357. [PMID: 36389169 PMCID: PMC9646986 DOI: 10.3389/fcimb.2022.916357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/26/2022] [Indexed: 09/29/2023] Open
Abstract
Liver cancer is one of the most common global health problems that features a high mortality rate. Alpha-fetoprotein (AFP) is a potential liver cancer biomarker for the diagnosis of liver cancer. The quantitative detection of AFP at an ultratrace level has important medical significance. Using the reaction of the antibody-antigen pair in an immunosensor enables the sensitive and selective AFP assay. Finding a strategy in signal generation and amplification is challenging to fabricate new sensitive electrochemical immunosensors for AFP detection. This study demonstrates the construction of a simple, reliable, and label-free immunosensor for the detection of AFP on a smart phone. Exfoliated two-dimensional (2D) molybdenum diselenide (MoSe2) and 2D tungsten diselenide (WSe2) were employed to modify the disposable screen-printed carbon electrode (SPCE) to use as the electrochemical platform, which is affixed to a small potentiostat connected to a smart phone. The modified electrode offers antibody immobilization and allows detection of AFP via an immunocomplex forming a sandwich-like configuration with the AFP-corresponding aptamer. A heterojunction 2D MoSe2/2D WSe2 composite improves the SPCE's reactivity and provides a large surface area and good adsorption capacity for the immobilizing antibodies. The signal generation for the immunosensor is from the electrochemical response of methylene blue (MB) intercalating into the aptamer bound on the electrode. The response for the proposed sandwich-like immunosensor is proportional to the AFP concentration (1.0-50,000 pg ml-1). The biosensor has potential for the development of a simple and robust point-of-care diagnostic platform for the clinical diagnosis of liver cancer, achieving a low limit of detection (0.85 pg ml-1), high sensitivity, high selectivity, good stability, and excellent reproducibility.
Collapse
Affiliation(s)
- Supakeit Chanarsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Wu H, Wang MD, Zhu JQ, Li ZL, Wang WY, Gu LH, Shen F, Yang T. Mesoporous Nanoparticles for Diagnosis and Treatment of Liver Cancer in the Era of Precise Medicine. Pharmaceutics 2022; 14:1760. [PMID: 36145508 PMCID: PMC9500788 DOI: 10.3390/pharmaceutics14091760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancer is the seventh-most-common cancer worldwide and the fourth-leading cause of cancer mortality. In the current era of precision medicine, the diagnosis and management of liver cancer are full of challenges and prospects. Mesoporous nanoparticles are often designed as specific carriers of drugs and imaging agents because of their special morphology and physical and chemical properties. In recent years, the design of the elemental composition and morphology of mesoporous nanoparticles have greatly improved their drug-loading efficiency, biocompatibility and biodegradability. Especially in the field of primary liver cancer, mesoporous nanoparticles have been modified as highly tumor-specific imaging contrast agents and targeting therapeutic medicine. Various generations of complexes and structures have been determined for the complicated clinical management requirements. In this review, we summarize these advanced mesoporous designs in the different diagnostic and therapeutic fields of liver cancer and discuss the relevant advantages and disadvantages of transforming applications. By comparing the material properties, drug-delivery characteristics and application methods of different kinds of mesoporous materials in liver cancer, we try to help determine the most suitable drug carriers and information media for future clinical trials. We hope to improve the fabrication of biomedical mesoporous nanoparticles and provide direct evidence for specific cancer management.
Collapse
Affiliation(s)
- Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Jia-Qi Zhu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
| | - Zhen-Li Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Wan-Yin Wang
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Li-Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310053, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai 200438, China
- Eastern Hepatobiliary Clinical Research Institute, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| |
Collapse
|
14
|
Fabrication of self-healing magnetic nanoreceptors for glycoprotein via integrating boronate-affinity-oriented and sequential surface imprinting. Anal Chim Acta 2022; 1221:340108. [DOI: 10.1016/j.aca.2022.340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|
15
|
Zhang M, Guo X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
PCR-free electrochemical genosensor for Mycobacterium tuberculosis complex detection based on two-dimensional Ti3C2 Mxene-polypyrrole signal amplification. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Sun L, Liu J, Li L, Zhen D, Dai Z, Tang S, Zhu B, Chen L, Chen H, Gong M, Tang Z, Hu Y. Advances of biosensors for UO22+ detecting based on specific DNAzyme. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|