1
|
Fang L, Deng Y, Lakshmanan P, Liu W, Tang X, Zou W, Zhang T, Wang X, Xiao R, Zhang J, Chen X, Su X. Selective increase of antibiotic-resistant denitrifiers drives N 2O production in ciprofloxacin-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135673. [PMID: 39217949 DOI: 10.1016/j.jhazmat.2024.135673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Agricultural systems significantly contribute to global N2O emissions, which is intensified by excessive fertilization and antibiotic residues, attracting global concerns. However, the dynamics and pathways of antibiotics-induced soil N2O production coupled with microbial metabolism remain controversial. Here, we explored the pathways of N2O production in agricultural soils exposed to ciprofloxacin (CIP), and revealed the underlying mechanisms of CIP degradation and the associated microbial metabolisms using 15N-isotope labeling and molecular techniques. CIP exposure significantly increases the total soil N2O production rate. This is attributed to an unexpected shift from heterotrophic and autotrophic nitrification to denitrification and an increased abundance of denitrifiers Methylobacillus members under CIP exposure. The most striking strain M. flagellatus KT is further discovered to harbor N2O-producing genes but lacks a N2O-reducing gene, thereby stimulating denitrification-based N2O production. Moreover, this denitrifying strain is probably capable of utilizing the byproducts of CIP as carbon sources, evidenced by genes associated with CIP resistance and degradation. Molecular docking further shows that CIP is well ordered in the catalytic active site of CotA laccase, thus affirming the potential for this strain to degrade CIP. These findings advance the mechanistic insights into N2O production within terrestrial ecosystems coupled with the organic contaminants degradation.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yue Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4067, Australia
| | - Weibing Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Wenxin Zou
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaozhong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Germany
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Chongqing 400715, China
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Farkas D, Proctor K, Kim B, Avignone Rossa C, Kasprzyk-Hordern B, Di Lorenzo M. Assessing the impact of soil microbial fuel cells on atrazine removal in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135473. [PMID: 39151358 DOI: 10.1016/j.jhazmat.2024.135473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Widespread pesticide use in agriculture is a major source of soil pollution, driving biodiversity loss and posing serious threads to human health. The recalcitrant nature of most of these pesticides demands for effective remediation strategies. In this study, we assess the ability of soil microbial fuel cell (SMFC) technology to bioremediate soil polluted by the model pesticide atrazine. To elucidate the degradation mechanism and consequently define effective implementation strategies, we provide the first comprehensive investigation of the SMFC performance, in which the monitoring of the electrochemical performance of the system is combined with Quadrupole Time-of-Flight (QTOF) mass spectrometry and microbial analyses. Our results show that, while both SMFC and natural attenuation lead to a reduction on atrazine levels, the SMFC modulates the activity of different microbial pathways. As a result, atrazine degradation by natural attenuation leads to high levels of deisoproylatrazine (DIPA), a very toxic degradation metabolite, while DIPA levels in soil treated by SMFC remain comparatively low. The beta diversity and differential abundance analyses revealed how the microbial community evolves over time in the SMFCs degrading atrazine, demonstrating the enrichment of electroactive taxa on the anode, and the enrichment of a mixture of electroactive and atrazine-degrading taxa at the cathode. The detection and taxonomic classification of peripheral atrazine degrading genes, atzA, atzB and atzC, was carried out in combination with the differential abundance analysis. Results revealed that these genes are likely harboured by members of the order Rhizobiales enriched at the cathode, thus promoting atrazine degradation via the conversion of hydroxyatrazine (HA) into N-isopropylammelide (NIPA), as confirmed by mass spectrometry data. Overall, the comprehensive approach adopted in this work, provides fundamental insights into the degradation pathways of atrazine in soil by SMFC technology, which is critical for practical applications, thus suggesting an effective approach to advance research in the field.
Collapse
Affiliation(s)
- Daniel Farkas
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kathryn Proctor
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Bongkyu Kim
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK; SELS Center, Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | | | | | - Mirella Di Lorenzo
- Department of Chemical Engineering and Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
3
|
Zhang X, Wu M, Zhang T, Gao H, Ou Y, Li M. Effects of biochar immobilization of Serratia sp. F4 OR414381 on bioremediation of petroleum contamination and bacterial community composition in loess soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134137. [PMID: 38555671 DOI: 10.1016/j.jhazmat.2024.134137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.
Collapse
Affiliation(s)
- Xuhong Zhang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Manli Wu
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an 710055, China.
| | - Ting Zhang
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Gao
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yawen Ou
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengqi Li
- Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Wu H, Li A, Gao S, Xing Z, Zhao P. The performance, mechanism and greenhouse gas emission potential of nitrogen removal technology for low carbon source wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166491. [PMID: 37633391 DOI: 10.1016/j.scitotenv.2023.166491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Excessive nitrogen can lead to eutrophication of water bodies. However, the removal of nitrogen from low carbon source wastewater has always been challenging due to the limited availability of carbon sources as electron donors. Biological nitrogen removal technology can be classified into three categories: heterotrophic biological technology (HBT) that utilizes organic matter as electron donors, autotrophic biological technology (ABT) that relies on inorganic electrons as electron donors, and heterotrophic-autotrophic coupling technology (CBT) that combines multiple electron donors. This work reviews the research progress, microbial mechanism, greenhouse gas emission potential, and challenges of the three technologies. In summary, compared to HBT and ABT, CBT shows greater application potential, although pilot-scale implementation is yet to be achieved. The composition of nitrogen removal microorganisms is different, mainly driven by electron donors. ABT and CBT exhibit the lowest potential for greenhouse gas emissions compared to HBT. N2O, CH4, and CO2 emissions can be controlled by optimizing conditions and adding constructed wetlands. Furthermore, these technologies need further improvement to meet increasingly stringent emission standards and address emerging pollutants. Common measures include bioaugmentation in HBT, the development of novel materials to promote mass transfer efficiency of ABT, and the construction of BES-enhanced multi-electron donor systems to achieve pollutant prevention and removal. This work serves as a valuable reference for the development of clean and sustainable low carbon source wastewater treatment technology, as well as for addressing the challenges posed by global warming.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
5
|
Yi M, Wang H, Ma X, Wang C, Wang M, Liu Z, Lu M, Cao J, Ke X. Efficient nitrogen removal of a novel Pseudomonas chengduensis strain BF6 mainly through assimilation in the recirculating aquaculture systems. BIORESOURCE TECHNOLOGY 2023; 379:129036. [PMID: 37037330 DOI: 10.1016/j.biortech.2023.129036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - He Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, PR China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China.
| |
Collapse
|
6
|
Wu H, Li A, Zhang H, Gao S, Li S, Cai J, Yan R, Xing Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. CHEMOSPHERE 2023; 336:139235. [PMID: 37343397 DOI: 10.1016/j.chemosphere.2023.139235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Suqi Li
- College of Life and Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jindou Cai
- School of Culture and Tourism, Chongqing City Management College, Chongqing, 402160, PR China
| | - Ruixiao Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
7
|
Cai X, Li J, Guan F, Luo X, Yu Z, Yuan Y. Complete pentachlorophenol biodegradation in a dual-working electrode bioelectrochemical system: Performance and functional microorganism identification. WATER RESEARCH 2023; 230:119529. [PMID: 36580804 DOI: 10.1016/j.watres.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bioelectrochemical system (BES) can effectively promote the reductive dechlorination of chlorophenols (CPs). However, the complete degradation of CPs with sequential dechlorination and mineralization processes has rarely achieved from the BES. Here, a dual-working electrode BES was constructed and applied for the complete degradation of pentachlorophenol (PCP). Combined with DNA-stable isotope probing (DNA-SIP), the biofilms attached on the anodic and cathodic electrode in the BES were analyzed to explore the dechlorinating and mineralizing microorganisms. Results showed that PCP removal efficiency in the dual-working BES (84% for 21 days) was 4.1 and 4.7 times higher than those of conventional BESs with a single anodic or cathodic working electrode, respectively. Based on DNA-SIP and high-throughput sequencing analysis, the cathodic working electrode harbored the potential dechlorinators (Comamonas, Pseudomonas, Methylobacillus, and Dechlorosoma), and the anodic working enriched the potential intermediate mineralizing bacteria (Comamonas, Stenotrophomonas, and Geobacter), indicating that PCP could be completely degraded under the synergetic effect of these functional microorganisms. Besides, the potential autotrophic functional bacteria that might be involved in the PCP dechlorination were also identified by SIP labeled with 13C-NaHCO3. Our results proved that the dual-working BES could accelerate the complete degradation of PCP and enrich separately the functional microbial consortium for the PCP dechlorination and mineralization, which has broad potential for bioelectrochemical techniques in the treatment of wastewater contaminated with CPs or other halogenated organic compounds.
Collapse
Affiliation(s)
- Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
8
|
Wu H, Li A, Yang X, Wang J, Liu Y, Zhan G. The research progress, hotspots, challenges and outlooks of solid-phase denitrification process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159929. [PMID: 36356784 DOI: 10.1016/j.scitotenv.2022.159929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Anjie Li
- College of Grassland and Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xu Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| |
Collapse
|
9
|
Zhang Q, Wu M, Ailijiang N, Mamat A, Chang J, Pu M, He C. Impact of Voltage Application on Degradation of Biorefractory Pharmaceuticals in an Anaerobic-Aerobic Coupled Upflow Bioelectrochemical Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15364. [PMID: 36430083 PMCID: PMC9690855 DOI: 10.3390/ijerph192215364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.
Collapse
Affiliation(s)
- Qiongfang Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Leshan 614000, China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
10
|
Wu H, Li A, Wang J, Li X, Cui M, Yang N, Liu Y, Zhang L, Wang X, Zhan G. A novel electrochemical sensor based on autotropic and heterotrophic nitrifying biofilm for trichloroacetic acid toxicity monitoring. ENVIRONMENTAL RESEARCH 2022; 210:112985. [PMID: 35192804 DOI: 10.1016/j.envres.2022.112985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 μg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 μg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.
Collapse
Affiliation(s)
- Heng Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaoyun Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Mengyao Cui
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Nuan Yang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Yiliang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|