1
|
Bedos L, Wickham H, Gabriel V, Zdyrski C, Allbaugh RA, Sahoo DK, Sebbag L, Mochel JP, Allenspach K. Culture and characterization of canine and feline corneal epithelial organoids: A new tool for the study and treatment of corneal diseases. Front Vet Sci 2022; 9:1050467. [PMID: 36406087 PMCID: PMC9672346 DOI: 10.3389/fvets.2022.1050467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, we isolated and cultured canine and feline 3D corneal organoids. Samples derived from corneal limbal epithelium from one canine and one feline patient were obtained by enucleation after euthanasia. Stem cell isolation and organoid culture were performed by culturing organoids in Matrigel. Organoids were subsequently embedded in paraffin for further characterization. The expression of key corneal epithelial and stromal cell markers in canine and feline organoids was evaluated at the mRNA level by RNA-ISH and at the protein level by immunofluorescence (IF) and immunohistochemistry (IHC), while histochemical analysis was performed on both tissues and organoids using periodic-acid Schiff (PAS), Sirius Red, Gomori's Trichrome, and Colloidal Iron stains. IF showed consistent expression of AQP1 within canine and feline organoids and tissues. P63 was present in canine tissues, canine organoids, and feline tissues, but not in feline organoids. Results from IHC staining further confirmed the primarily epithelial origin of the organoids. Canine and feline 3D corneal organoids can successfully be cultured and maintained and express epithelial and stem cell progenitor markers typical of the cornea. This novel in vitro model can be used in veterinary ophthalmology disease modeling, corneal drug testing, and regenerative medicine.
Collapse
Affiliation(s)
- Leila Bedos
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Hannah Wickham
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Vojtech Gabriel
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Christopher Zdyrski
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Rachel A. Allbaugh
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Lionel Sebbag
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jonathan P. Mochel
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- 3D Health Solutions Inc., Ames, IA, United States
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
- SMART Lab, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- 3D Health Solutions Inc., Ames, IA, United States
- *Correspondence: Karin Allenspach
| |
Collapse
|
2
|
Kang K, Zhou Q, McGinn L, Nguyen T, Luo Y, Djalilian A, Rosenblatt M. High fat diet induced gut dysbiosis alters corneal epithelial injury response in mice. Ocul Surf 2022; 23:49-59. [PMID: 34808360 PMCID: PMC8792274 DOI: 10.1016/j.jtos.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Commensal microbiome secretes various metabolites that can exert important effects on the host immunity and inflammation and can alter cellular functions. However, little is known regarding the effect of microbiome on corneal immunity and genetic expression. The purpose of this study is to describe the effect of diet-induced gut dysbiosis on corneal immunity and corneal gene expression after wounding. METHODS This study is approved by the Animal Care and Use of the University of Illinois. Six-week-old female C57BL6 mice were fed on a normal chow diet (ND), isocaloric low-fat control diet (LFD), or a 21% milk high-fat diet (HFD) for six weeks. 2 mm corneal epithelial debridement was performed (n = 10). Fecal samples from mice were used for microbial diversity analysis (n > 3). Immunofluorescence staining of corneal wholemount tissue post-debridement was used to visualize immune cell distribution. RNA Seq was performed on tissue samples from corneas following debridement. RESULTS Mice fed differing diets had significant alterations in gut microbial diversities. After corneal debridement, HFD mice experienced delayed wound healing in comparison to LFD mice and ND mice groups. However, fecal transplantation led to normalization of wound closure rates. Increased γδTCR staining was observed in the LFD group, and decreased LY6G was observed in HFD group (p < 0.05). Gene Ontology terms of differentially expressed genes included response to external stimulus, cell proliferation, migration, adhesion, defense response and leukocyte migration. Top over-represented pathways included ECM-receptor interaction, Cytokine-cytokine receptor interaction, Focal adhesion and Leukocyte trans-endothelial migration. CONCLUSIONS Gut microbial dysbiosis alters corneal immune cell distribution, corneal response to injury, and genes related to epithelial function and corneal immunity.
Collapse
Affiliation(s)
- Kai Kang
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Qiang Zhou
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Lander McGinn
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuncin Luo
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Djalilian
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Rosenblatt
- Illinois Eye and Ear Infirmary, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Promoting limbal stem cells proliferation and maintenance using post-thaw human amniotic membranes fortified by platelet lysate. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Utheim TP, Aass Utheim Ø, Salvanos P, Jackson CJ, Schrader S, Geerling G, Sehic A. Concise Review: Altered Versus Unaltered Amniotic Membrane as a Substrate for Limbal Epithelial Cells. Stem Cells Transl Med 2018; 7:415-427. [PMID: 29573222 PMCID: PMC5905228 DOI: 10.1002/sctm.17-0257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cell deficiency (LSCD) can result from a variety of corneal disorders, including chemical and thermal burns, infections, and autoimmune diseases. The symptoms of LSCD may include irritation, epiphora, blepharospasms, photophobia, pain, and decreased vision. There are a number of treatment options, ranging from nonsurgical treatments for mild LSCD to various forms of surgery that involve different cell types cultured on various substrates. Ex vivo expansion of limbal epithelial cells (LEC) involves the culture of LEC harvested either from the patient, a living relative, or a cadaver on a substrate in the laboratory. Following the transfer of the cultured cell sheet onto the cornea of patients suffering from LSCD, a successful outcome can be expected in approximately three out of four patients. The phenotype of the cultured cells has proven to be a key predictor of success. The choice of culture substrate is known to affect the phenotype. Several studies have shown that amniotic membrane (AM) can be used as a substrate for expansion of LEC for subsequent transplantation in the treatment of LSCD. There is currently a debate over whether AM should be denuded (i.e., de-epithelialized) prior to LEC culture, or whether this substrate should remain intact. In addition, crosslinking of the AM has been used to increase the thermal and mechanical stability, optical transparency, and resistance to collagenase digestion of AM. In the present review, we discuss the rationale for using altered versus unaltered AM as a culture substrate for LEC. Stem Cells Translational Medicine 2018;7:415-427.
Collapse
Affiliation(s)
- Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University HospitalNorway
- Department of OphthalmologyDrammen Hospital, Vestre Viken Hospital TrustNorway
- Department of OphthalmologyStavanger University HospitalNorway
- Department of Clinical Medicine, Faculty of MedicineUniversity of BergenNorway
- Department of Oral Biology, Faculty of DentistryUniversity of OsloNorway
- Department of Plastic and Reconstructive SurgeryOslo University HospitalNorway
| | | | - Panagiotis Salvanos
- Department of OphthalmologyDrammen Hospital, Vestre Viken Hospital TrustNorway
| | - Catherine J. Jackson
- Department of Medical Biochemistry, Oslo University HospitalNorway
- Department of Oral Biology, Faculty of DentistryUniversity of OsloNorway
- Department of Plastic and Reconstructive SurgeryOslo University HospitalNorway
| | | | - Gerd Geerling
- Department of OphthalmologyUniversity of DüsseldorfGermany
| | - Amer Sehic
- Department of Oral Biology, Faculty of DentistryUniversity of OsloNorway
| |
Collapse
|
5
|
Jie J, Yang J, He H, Zheng J, Wang W, Zhang L, Li Z, Chen J, Vimalin Jeyalatha M, Dong N, Wu H, Liu Z, Li W. Tissue remodeling after ocular surface reconstruction with denuded amniotic membrane. Sci Rep 2018; 8:6400. [PMID: 29686390 PMCID: PMC5913251 DOI: 10.1038/s41598-018-24694-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022] Open
Abstract
Amniotic membrane (AM) has been widely used as a temporary or permanent graft in the treatment of various ocular surface diseases. In this study, we compared the epithelial wound healing and tissue remodeling after ocular surface reconstruction with intact amniotic membrane (iAM) or denuded amniotic membrane (dAM). Partial limbal and bulbar conjunctival removal was performed on New Zealand rabbits followed by transplantation of cryo-preserved human iAM or dAM. In vivo observation showed that the epithelial ingrowth was faster on dAM compared to iAM after AM transplantation. Histological observation showed prominent epithelial stratification and increased goblet cell number on dAM after 2 weeks of follow up. Collagen VII degraded in dAM within 2 weeks, while remained in iAM even after 3 weeks. The number of macrophages and α-SMA positive cells in the stroma of remodelized conjunctiva in the dAM transplantation group was considerably less. In conclusion, dAM facilitates epithelial repopulation and goblet cell differentiation, further reduces inflammation and scar formation during conjunctival and corneal limbal reconstruction.
Collapse
Affiliation(s)
- Jing Jie
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Guilin Women and Children's Hospital, Guilin, Guangxi, China
| | - Jie Yang
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Zhengzhou Second Hospital, Zhengzhou, Henan, China
| | - Hui He
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Jianlan Zheng
- Xiamen University affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Wenyan Wang
- Xiamen University affiliated Chenggong Hospital, Xiamen, Fujian, China
| | - Liying Zhang
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Zhiyuan Li
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Jingyao Chen
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - M Vimalin Jeyalatha
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
| | - Nuo Dong
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Huping Wu
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Zuguo Liu
- Eye Institute of Xiamen University, Xiamen, Fujian, China
- Medical College of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China
| | - Wei Li
- Eye Institute of Xiamen University, Xiamen, Fujian, China.
- Medical College of Xiamen University, Xiamen, Fujian, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian, China.
- The Affiliated Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
- Xiamen University affiliated Xiamen Eye Center, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Nguyen KN, Bobba S, Richardson A, Park M, Watson SL, Wakefield D, Di Girolamo N. Native and synthetic scaffolds for limbal epithelial stem cell transplantation. Acta Biomater 2018; 65:21-35. [PMID: 29107055 DOI: 10.1016/j.actbio.2017.10.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022]
Abstract
UNLABELLED Limbal stem cell deficiency (LSCD) is a complex blinding disease of the cornea, which cannot be treated with conventional corneal transplants. Instead, a stem cell (SC) graft is required to replenish the limbal epithelial stem cell (LESC) reservoir, which is ultimately responsible for regenerating the corneal epithelium. Current therapies utilize limbal tissue biopsies that harbor LESCs as well as tissue culture expanded cells. Typically, this tissue is placed on a scaffold that supports the formation of corneal epithelial cell sheets, which are then transferred to diseased eyes. A wide range of biological and synthetic materials have been identified as carrier substrates for LESC, some of which have been used in the clinic, including amniotic membrane, fibrin, and silicon hydrogel contact lenses, each with their own advantages and limitations. This review will provide a brief background of LSCD, focusing on bio-scaffolds that have been utilized in limbal stem cell transplantation (LSCT) and materials that are being developed as potentially novel therapeutics for patients with this disease. STATEMENT OF SIGNIFICANCE The outcome of patients with corneal blindness that receive stem cell grafts to restore eye health and correct vision varies considerably and may be due to the different biological and synthetic scaffolds used to deliver these cells to the ocular surface. This review will highlight the positive attributes and limitations of the myriad of carriers developed for clinical use as well as those that are being trialled in pre-clinical models. The overall focus is on developing a standardized therapy for patients, however due to the multiple causes of corneal blindness, a personal regenerative medicine approach may be the best option.
Collapse
Affiliation(s)
- Kim N Nguyen
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Bobba
- Prince of Wales Hospital Clinical School, Sydney, Australia
| | | | - Mijeong Park
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Denis Wakefield
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Nick Di Girolamo
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Shirzadeh E, Heidari Keshel S, Ezzatizadeh V, Jabbehdari S, Baradaran-Rafii A. Unrestricted somatic stem cells, as a novel feeder layer: Ex vivo culture of human limbal stem cells. J Cell Biochem 2017; 119:2666-2678. [PMID: 29087592 DOI: 10.1002/jcb.26434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Ex vivo culture of limbal stem cells (LSCs) is a current promising approach for reconstruction of the ocular surface. In this context, 3T3 feeder layer cells (mouse embryo fibroblast) are generally utilized to maintain and expand LSCs. The aim of this study is to develop a novel culture method (animal-derived products free) to expand LSCs, using umbilical cord derived human unrestricted somatic stem cells (hUSSCs) instead of 3T3 cell with an emphasis on maintaining of the Stemness in LSCs. Using flow-cytometer, isolated hUSSCs were characterized for CD105, CD90, CD166, CD34, CD45, CD31 cell surface markers and their differentiation capability into adipogenic as well as osteogenic lineages were evaluated. In addition to colony-forming efficiency (CFE), epithelial lineage differentiation and karyotyping, LSC properties were evaluated for ABCG2, ΔNP63-α, CK19, CK3, and CK12 mRNA and protein expressions using quantitative RT-PCR (qRT-PCR) and immunocytochemistry, when these cells were co-cultured with hUSSCs (in comparison with 3T3 feeder layer). LSCs, co-cultured with hUSSCs, showed normal karyotype (46, XX), while they could efficiently form colony (86 ± 3) and display up-regulation of the genes associated with stemness and down-regulation of corneal epithelial differentiation genes. Consistent with 3T3 feeder cells, hUSSCs with spindle-shaped morphology and quick splitting up properties had ability to preserve the stem like-cell phenotype of LSCs. These findings were confirmed by qRT-PCR and flow-cytometer. Findings of present study suggest hUSSCs as a promising alternative method for 3T3 feeder layer cells, to preserve growth and stemness of LSCs ex vivo culture.
Collapse
Affiliation(s)
- Ebrahim Shirzadeh
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran.,Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ezzatizadeh
- Department of Stem Cell and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Medical Genetics Department, Royesh Medical Laboratory Centre, Tehran, Iran
| | - Sayena Jabbehdari
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Alireza Baradaran-Rafii
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| |
Collapse
|
8
|
Kobayashi Y, Hayashi R, Quantock AJ, Nishida K. Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells. Stem Cell Res 2017; 25:256-265. [PMID: 29179035 DOI: 10.1016/j.scr.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
The expression of p63 in surface ectodermal cells during development of the cornea, skin, oral mucosa and olfactory placodes is integral to the process of cellular self-renewal and the maintenance of the epithelial stem cell status. Here, we used TALEN technology to generate a p63 knock-in (KI) human induced pluripotent stem (hiPS) cell line in which p63 expression can be visualized via enhanced green fluorescent protein (EGFP) expression. The KI-hiPS cells maintained pluripotency and expressed the stem cell marker gene, ΔNp63α. They were also able to successfully differentiate into functional corneal epithelial cells as assessed by p63 expression in reconstructed corneal epithelium. This approach enables the tracing of p63-expressing cell lineages throughout epithelial development, and represents a promising application in the field of stem cell research.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamdaoka, Suita, Osaka 565-0871, Japan.
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Comparative Analysis of the Basement Membrane Composition of the Human Limbus Epithelium and Amniotic Membrane Epithelium. Cornea 2012; 31:564-9. [DOI: 10.1097/ico.0b013e3182254b78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
11
|
Bibliography. Refractive surgery. Current world literature. Curr Opin Ophthalmol 2011; 22:304-5. [PMID: 21654397 DOI: 10.1097/icu.0b013e3283486839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|