1
|
Keceli HG, Bayram C, Celik E, Ercan N, Demirbilek M, Nohutcu RM. Dual delivery of platelet-derived growth factor and bone morphogenetic factor-6 on titanium surface to enhance the early period of implant osseointegration. J Periodontal Res 2020; 55:694-704. [PMID: 32776328 DOI: 10.1111/jre.12756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To test the surface properties and in vitro effects of a new sequential release system on MC3T3-E1 cells for improved osseointegration. BACKGROUND BMP6-loaded anodized titanium coated with PDGF containing silk fibroin (SF) may improve osseointegration. METHODS Titanium surfaces were electrochemically anodized, and SF layer was covered via electrospinning. Five experimental groups (unanodized Ti (Ti), anodized Ti (AnTi), anodized + BMP6-loaded Ti (AnTi-BMP6), anodized + BMP6 loaded + silk fibroin-coated Ti (AnTi-BMP6-SF), and anodized + BMP6-loaded + silk fibroin with PDGF-coated Ti (AnTi-BMP6-PDGF-SF)) were tested. After SEM characterization, contact angle analysis, and FTIR analysis, the amount of released PDGF and BMP6 was detected using ELISA. Cell proliferation (XTT), mineralization, and gene expression (RUNX2 and ALPL) were also evaluated. RESULTS After successful anodization and loading of PDGF and BMP6, contact angle measurements showed hydrophobicity for TiO2 and hydrophilicity for protein-adsorbed surfaces. In FTIR, protein-containing surfaces exhibited amide-I, amide-II, and amide-III bands at 1600 cm-1 -1700 cm-1 , 1520 cm-1 -1540 cm-1 , and 1220 cm-1 -1300 cm-1 spectrum levels with a significant peak in BMP6- and/or SF-loaded groups at 1100 cm-1 . PDGF release and BMP6 release were delayed, and relatively slower release was detected in SF-coated surfaces. Higher MC3T3-E1 proliferation and mineralization and lower gene expression of RUNX2 and ALPL were detected in AnTi-BMP6-PDGF-SF toward day 28. CONCLUSION The new system revealed a high potential for an improved early osseointegration period by means of a better factor release curve and contribution to the osteoblastic cell proliferation, mineralization, and associated gene expression.
Collapse
Affiliation(s)
- H Gencay Keceli
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Cem Bayram
- Department of Nanotechnology and Nanomedicine, Institute of Science and Technology, Hacettepe University, Ankara, Turkey
| | - Ekin Celik
- Medical Biology Department, Faculty of Medicine, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - Nuray Ercan
- Periodontology Department, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| | - Murat Demirbilek
- Advanced Technologies Application and Research Center, Hacettepe University, Ankara, Turkey
| | - Rahime Meral Nohutcu
- Periodontology Department, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Hashimoto K, Kaito T, Furuya M, Seno S, Okuzaki D, Kikuta J, Tsukazaki H, Matsuda H, Yoshikawa H, Ishii M. In vivo dynamic analysis of BMP-2-induced ectopic bone formation. Sci Rep 2020; 10:4751. [PMID: 32179857 PMCID: PMC7076033 DOI: 10.1038/s41598-020-61825-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Bone morphogenetic protein (BMP)-2 plays a central role in bone-tissue engineering because of its potent bone-induction ability. However, the process of BMP-induced bone formation in vivo remains poorly elucidated. Here, we aimed to establish a method for intravital imaging of the entire process of BMP-2-induced ectopic bone formation. Using multicolor intravital imaging in transgenic mice, we visualized the spatiotemporal process of bone induction, including appearance and motility of osteoblasts and osteoclasts, angiogenesis, collagen-fiber formation, and bone-mineral deposition. Furthermore, we investigated how PTH1-34 affects BMP-2-induced bone formation, which revealed that PTH1-34 administration accelerated differentiation and increased the motility of osteoblasts, whereas it decreased morphological changes in osteoclasts. This is the first report on visualization of the entire process of BMP-2-induced bone formation using intravital imaging techniques, which, we believe, will contribute to our understanding of ectopic bone formation and provide new parameters for evaluating bone-forming activity.
Collapse
Affiliation(s)
- Kunihiko Hashimoto
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Masayuki Furuya
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Japan Organization of Occupational Health and Safety Osaka Rosai Hospital, Osaka, 591-8025, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science & Technology, Osaka University, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Tsukazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science & Technology, Osaka University, Osaka, 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, du Toit LC, Pillay V. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules 2016; 21:E1580. [PMID: 27879635 PMCID: PMC6272998 DOI: 10.3390/molecules21111580] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Pariksha J Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
4
|
Agrawal V, Sinha M. A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater 2016; 105:904-925. [PMID: 26728994 DOI: 10.1002/jbm.b.33599] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein-2 (BMP-2) has unique bone regeneration property. The powerful osteoinductive nature makes it considered as second line of therapy in nonunion bone defect. A large number of carriers and delivery systems made up of different materials have been investigated for controlled and sustained release of BMP-2. The delivery systems are in the form of hydrogel, microsphere, nanoparticles, and fibers. The carriers used for the delivery are made up of metals, ceramics, polymers, and composites. Implantation of these protein-loaded carrier leads to cell adhesion, degradation which eventually releases the drug/protein at site specific. But, problems like ectopic growth, lesser protein delivery, inactivation of the protein are reported in the available carrier systems. Therefore, it is need of an hour to modify the available carrier systems as well as explore other biomaterials with desired properties. In this review, all the reported carrier systems made of metals, ceramics, polymers, composites are evaluated in terms of their processing conditions, loading capacity and release pattern of BMP-2. Along with these biomaterials, the attempts of protein modification by adding some functional group to BMP-2 or extracting functional peptides from the protein to achieve the desired effect, is also evaluated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 904-925, 2017.
Collapse
Affiliation(s)
- Vishal Agrawal
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| | - Mukty Sinha
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Ahmedabad-, 380054, India
| |
Collapse
|
5
|
Fahmy RA, Mahmoud N, Soliman S, Nouh SR, Cunningham L, El-Ghannam A. Acceleration of Alveolar Ridge Augmentation Using a Low Dose of Recombinant Human Bone Morphogenetic Protein-2 Loaded on a Resorbable Bioactive Ceramic. J Oral Maxillofac Surg 2015. [DOI: 10.1016/j.joms.2015.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81:112-121. [PMID: 26163110 DOI: 10.1016/j.bone.2015.07.007] [Citation(s) in RCA: 384] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Regeneration of bone defects caused by trauma, infection, tumours or inherent genetic disorders is a clinical challenge that usually necessitates bone grafting materials. Autologous bone or autograft is still considered the clinical "gold standard" and the most effective method for bone regeneration. However, limited bone supply and donor site morbidity are the most important disadvantages of autografting. Improved biomaterials are needed to match the performance of autograft as this is still superior to that of synthetic bone grafts. Osteoinductive materials would be the perfect candidates for achieving this task. The aim of this article is to review the different groups of bone substitutes in terms of their most recently reported osteoinductive properties. The different factors influencing osteoinductivity by biomaterials as well as the mechanisms behind this phenomenon are also presented, showing that it is very limited compared to osteoinductivity shown by bone morphogenetic proteins (BMPs). Therefore, a new term to describe osteoinductivity by biomaterials is proposed. Different strategies for adding osteoinductivity (BMPs, stem cells) to bone substitutes are also discussed. The overall objective of this paper is to gather the current knowledge on osteoinductivity of bone grafting materials for the effective development of new graft substitutes that enhance bone regeneration.
Collapse
Affiliation(s)
- Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| |
Collapse
|
7
|
Luo X, Barbieri D, Duan R, Yuan H, Bruijn JD. Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits. Acta Biomater 2015; 26:331-7. [PMID: 26234489 DOI: 10.1016/j.actbio.2015.07.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Strontium (Sr) has been shown to favor bone formation and is used clinically to treat osteoporosis. We have previously reported that Sr addition in apatite/polylactide composites could enhance the BMP-induced bone formation around implants at ectopic site in healthy animals. In this study we aimed to investigate the effectiveness of Sr addition on the local bone formation in osteoporosis. Apatite/polylactide composite granules with different Sr content were loaded with equal amount of rhBMP-2 and implanted intramuscularly in healthy rabbits (Con) and rabbits that received bilateral ovariectomy and daily injection of glucocorticoid (OP) for 12 weeks. The potential effect of Sr on the final volume of BMP-induced bone in both groups was investigated histologically and histomorphometrically. The de novo bone formed in OP implants was significantly less than in Con group when the implants contained no Sr, indicating that the BMP-induced osteogenesis was impaired in OP animals. Sr substitution as low as 0.5 mol% in apatite increased the bone volume in OP implants to levels comparable to that in the Con group, indicating a positive effect of Sr addition on the local bone formation in OP animals. In addition, more adipose tissue formed in parallel with the appearance of cartilage tissue in OP implants, suggesting that the differentiation potential of stem cell in OP animals may have shifted towards adipogenesis and chondrogenesis. From these results, we conclude that the use of Sr addition to enhance the bone growth surrounding implants in osteoporosis merits further study. STATEMENT OF SIGNIFICANCE The impaired bone healing capacity of osteoporotic patients might result in poor osteointegration and surgical failure in case implants are placed. In this study we aimed to enhance the bone formation around implants under such scenario by adding strontium as the stimulus. Different from other studies, the samples were loaded with rhBMP-2 and implanted at an ectopic site (spinal muscles of New Zealand rabbits) to exclude the influence of conductive bone repair. The results showed that the addition of strontium could enhance the BMP-2-induced bone formation on implants in osteopenic rabbits to levels comparable to that in healthy rabbits. Secondarily, we observed more adipose tissue and cartilage tissue in osteopenic implants, suggesting the role of adipogenesis and chondrogenesis in osteopenia/osteoporosis.
Collapse
|
8
|
Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration. Int J Mol Sci 2015; 16:16034-52. [PMID: 26184187 PMCID: PMC4519937 DOI: 10.3390/ijms160716034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Anorganic bovine bone matrix (Bio-Oss®) has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2) has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter) were formed in a white rabbit model and then implanted or not (controls) with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas) than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6)) had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6)) at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.
Collapse
|
9
|
Kutikov AB, Song J. Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomater Sci Eng 2015; 1:463-480. [PMID: 27175443 PMCID: PMC4860614 DOI: 10.1021/acsbiomaterials.5b00122] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biodegradable tissue engineering scaffolds have great potential for delivering cells/therapeutics and supporting tissue formation. Polyesters, the most extensively investigated biodegradable synthetic polymers, are not ideally suited for diverse tissue engineering applications due to limitations associated with their hydrophobicity. This review discusses the design and applications of amphiphilic block copolymer scaffolds integrating hydrophilic poly(ethylene glycol) (PEG) blocks with hydrophobic polyesters. Specifically, we highlight how the addition of PEG results in striking changes to the physical properties (swelling, degradation, mechanical, handling) and biological performance (protein & cell adhesion) of the degradable synthetic scaffolds in vitro. We then perform a critical review of how these in vitro characteristics translate to the performance of biodegradable amphiphilic block copolymer-based scaffolds in the repair of a variety of tissues in vivo including bone, cartilage, skin, and spinal cord/nerve. We conclude the review with recommendations for future optimizations in amphiphilic block copolymer design and the need for better-controlled in vivo studies to reveal the true benefits of the amphiphilic synthetic tissue scaffolds.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
- Department of Cell and Developmental Biology. University of Massachusetts Medical School. 55 Lake Ave North, Worcester, MA 01655, USA
| |
Collapse
|
10
|
Brockmeyer P, Kramer K, Krohn S, Kauffmann P, Mauth C, Dard M, Schliephake H, Gruber RM. Influence of synthetic polyethylene glycol hydrogels on new bone formation during mandibular augmentation procedures in Goettingen minipigs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:194. [PMID: 26032116 DOI: 10.1007/s10856-015-5526-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Polyethylene glycol hydrogels (PEG) have been used as slow release carrier for osteoinductive growth factors in order to achieve a retarded delivery. However, there have been concerns about negative effects on bone regeneration. This study aims to test whether PEG hydrogels themselves affect new bone formation (NBF), when used as a carrier during mandibular augmentation procedures. In a randomized split-mouth design, bilateral mandibular bone defects were surgically created in 12 Goettingen minipigs, and subsequently augmented, using PEG hydrogel on one side of the mandible. The contralateral sides, without PEG, served as controls. After 4 and 12 weeks, bone formation was evaluated in six animals each. A comparison of the data, using a three-way analysis of variance (ANOVA), revealed a significant effect of the healing time and the region of the graft on the distribution and enhancement of NBF (P < .0001, respectively). Although a 0.3% (95%-CI [-5.5; 4.8]) lower volume density of newly formed bone could be observed over all PEG hydrogel sections, in contrast to the contralateral controls, the analysis revealed no clinically significant effects of the PEG hydrogel treatment on the total level (P = 0.90), and the distribution of NBF (P = 0.54). In conclusion, PEG hydrogels do not affect NBF when used as a carrier for osteoinductive growth factors during mandibular augmentation procedures.
Collapse
Affiliation(s)
- Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Centre Goettingen, Robert-Koch-Str. 40, 37075, Gōttingen, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
12
|
Sampath Kumar T, Madhumathi K, Rajkamal B, Zaheatha S, Rajathi Malar A, Alamelu Bai S. Enhanced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers. Colloids Surf B Biointerfaces 2014; 123:542-8. [DOI: 10.1016/j.colsurfb.2014.09.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/26/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022]
|
13
|
He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One 2014; 9:e104061. [PMID: 25084008 PMCID: PMC4118996 DOI: 10.1371/journal.pone.0104061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy.
Collapse
Affiliation(s)
- Xiaoning He
- Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yang Liu
- Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Yuan
- Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Li Lu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Hong JY, Kang SW, Kim JW, Suh SW, Ko YJ, Park JH. Optimal condition of heparin-conjugated fibrin with bone morphogenetic protein-2 for spinal fusion in a rabbit model. Cytotherapy 2014; 16:1441-8. [PMID: 24934306 DOI: 10.1016/j.jcyt.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/22/2014] [Accepted: 04/05/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AIMS Heparin-conjugated fibrin (HCF) is a carrier for long-term release of bone morphogenetic protein-2 (BMP-2) and has been shown to promote bone formation in animal models. We performed an experimental study to determine the optimal dose of BMP-2 with an HCF carrier that promotes bone formation comparable to that of autograft while minimizing complications in spinal fusion. METHODS Twenty-four rabbits underwent posterolateral fusion of the L5-6 spinal segments. Different concentrations of HCF BMP-2 (1/10, 1/20, 1/30 or 1/40) were implanted in the spines of experimental rabbits, and autograft or INFUSE was implanted in the spines of control animals. Eight weeks after treatment, spinal fusion efficacy was evaluated by plain radiography, micro-computed tomography (micro-CT), mechanical testing and histomorphometry. RESULTS Similar to autograft, the 1/40 HCF BMP-2 showed significant bone formation on micro-CT and histomorphometry with mechanical stability. However, the other HCF BMP-2 concentrations did not show significant bone formation compared with autograft. Although conventional BMP-2 (INFUSE) led to higher bone formation and stability, it also led to excessive ectopic bone and fibrous tissue formation. CONCLUSIONS This study suggests the optimal concentration of BMP-2 using HCF for spinal fusion, which may decrease the complications of high-dose conventional BMP-2.
Collapse
Affiliation(s)
- Jae-Young Hong
- Department of Orthopedics, Korea University Ansan Hospital, Ansan, South Korea
| | - Sun-Woong Kang
- Next-Generation Pharmaceutical Research Center, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jung-Wook Kim
- Department of Orthopedics, Korea University Ansan Hospital, Ansan, South Korea
| | - Seung-Woo Suh
- Scoliosis Research Institute, Department of Orthopedics, Korea University Guro Hospital, Seoul, South Korea
| | - You-Jin Ko
- Department of Orthopedics, Korea University Ansan Hospital, Ansan, South Korea
| | - Jung-Ho Park
- Department of Orthopedics, Korea University Ansan Hospital, Ansan, South Korea.
| |
Collapse
|
15
|
Nie X, Zhang J, Xu Q, Liu X, Li Y, Wu Y, Chen C. Targeting peptide iRGD-conjugated amphiphilic chitosan-co-PLA/DPPE drug delivery system for enhanced tumor therapy. J Mater Chem B 2014; 2:3232-3242. [DOI: 10.1039/c3tb21744b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Bogomilova A, Höhn M, Günther M, Herrmann A, Troev K, Wagner E, Schreiner L. A polyphosphoester conjugate of melphalan as antitumoral agent. Eur J Pharm Sci 2013; 50:410-9. [DOI: 10.1016/j.ejps.2013.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/23/2013] [Accepted: 08/08/2013] [Indexed: 11/16/2022]
|
17
|
Mantripragada VP, Lecka-Czernik B, Ebraheim NA, Jayasuriya AC. An overview of recent advances in designing orthopedic and craniofacial implants. J Biomed Mater Res A 2013; 101:3349-64. [PMID: 23766134 PMCID: PMC4854641 DOI: 10.1002/jbm.a.34605] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 01/22/2023]
Abstract
Great deal of research is still going on in the field of orthopedic and craniofacial implant development to resolve various issues being faced by the industry today. Despite several disadvantages of the metallic implants, they continue to be used, primarily because of their superior mechanical properties. In order to minimize the harmful effects of the metallic implants and its by-products, several modifications are being made to these materials, for instance nickel-free stainless steel, cobalt-chromium and titanium alloys are being introduced to eliminate the toxic effects of nickel being released from the alloys, introduce metallic implants with lower modulus, reduce the cost of these alloys by replacing rare elements with less expensive elements etc. New alloys like tantalum, niobium, zirconium, and magnesium are receiving attention given their satisfying mechanical and biological properties. Non-oxide ceramics like silicon nitride and silicon carbide are being currently developed as a promising implant material possessing a combination of properties such as good wear and corrosion resistance, increased ductility, good fracture and creep resistance, and relatively high hardness in comparison to alumina. Polymer/magnesium composites are being developed to improve mechanical properties as well as retain polymer's property of degradation. Recent advances in orthobiologics are proving interesting as well. This paper thus deals with the latest improvements being made to the existing implant materials and includes new materials being introduced in the field of biomaterials.
Collapse
|
18
|
Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. ScientificWorldJournal 2013; 2013:863157. [PMID: 24163634 PMCID: PMC3791836 DOI: 10.1155/2013/863157] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies.
Collapse
|
19
|
Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0107-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Huh JB, Kim SE, Kim HE, Kang SS, Choi KH, Jeong CM, Lee JY, Shin SW. Effects of anodized implants coated with Escherichia coli-derived rhBMP-2 in beagle dogs. Int J Oral Maxillofac Surg 2012; 41:1577-84. [DOI: 10.1016/j.ijom.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 02/20/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
|
21
|
Wang C, Wang M. Dual-source dual-power electrospinning and characteristics of multifunctional scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2381-97. [PMID: 22592965 PMCID: PMC3464384 DOI: 10.1007/s10856-012-4669-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/30/2012] [Indexed: 05/31/2023]
Abstract
Electrospun tissue engineering scaffolds are attractive due to their distinctive advantages over other types of scaffolds. As both osteoinductivity and osteoconductivity play crucial roles in bone tissue engineering, scaffolds possessing both properties are desirable. In this investigation, novel bicomponent scaffolds were constructed via dual-source dual-power electrospinning (DSDPES). One scaffold component was emulsion electrospun poly(D,L-lactic acid) (PDLLA) nanofibers containing recombinant human bone morphogenetic protein (rhBMP-2), and the other scaffold component was electrospun calcium phosphate (Ca-P) particle/poly(lactic-co-glycolic acid) (PLGA) nanocomposite fibers. The mass ratio of rhBMP-2/PDLLA fibers to Ca-P/PLGA fibers in bicomponent scaffolds could be controlled in the DSDPES process by adjusting the number of syringes used to supply solutions for electrospinning. Through process optimization, both types of fibers could be evenly distributed in bicomponent scaffolds. The structure and properties of each type of fibers in the scaffolds were studied. The morphological and structural properties and wettability of scaffolds were assessed. The effects of emulsion composition for rhBMP-2/PDLLA fibers and mass ratio of fibrous components in bicomponent scaffolds on in vitro release of rhBMP-2 from scaffolds were investigated. In vitro degradation of scaffolds was also studied by monitoring their morphological changes, weight losses and decreases in average molecular weight of fiber matrix polymers.
Collapse
Affiliation(s)
- Chong Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| |
Collapse
|
22
|
Han S, Li M, Liu X, Gao H, Wu Y. Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf B Biointerfaces 2012; 102:833-41. [PMID: 23107962 DOI: 10.1016/j.colsurfb.2012.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/24/2012] [Accepted: 09/06/2012] [Indexed: 01/30/2023]
Abstract
Novel biodegradable amphiphilic copolymer nanoparticles based on gelatin, poly(lactide) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) (gelatin-co-PLA-DPPE) have been successfully fabricated. In order to estimate the feasibility as drug carriers, an anti-tumor model drug doxorubicin hydrochloride salt (DOX) was incorporated into polymeric nanoparticles by double emulsion or nanoprecipitation method. The nanoparticle size, size distribution and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX and different fabrication methods of nanoparticles. In addition, in vitro release experiments exhibited the release behavior was affected by pH of release media. The DOX-loaded nanoparticles showed that faster release at pH 5.0 than their release at pH 7.4 buffer. The DOX-loaded copolymer nanoparticles showed comparable anticancer efficacy with the free drug in vitro and in vivo. These results demonstrate a feasible application of the gelatin derivative as a promising nanocarrier for delivery of anti-tumor drugs.
Collapse
Affiliation(s)
- Siyuan Han
- National Center for Nanoscience and Technology, Laboratory of Nanobiomedicine and Nanosafety, Division of Nanomedicine and Nanobiology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | |
Collapse
|
23
|
Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Acta Biomater 2012; 8:3128-37. [PMID: 22543006 DOI: 10.1016/j.actbio.2012.04.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 03/19/2012] [Accepted: 04/16/2012] [Indexed: 12/16/2022]
Abstract
A local delivery system with sustained and efficient release of therapeutic agents from an appropriate carrier is desirable for orthopedic applications. Novel composite scaffolds made of poly (lactic-co-glycolic acid) with tricalcium phosphate (PLGA/TCP) were fabricated by an advanced low-temperature rapid prototyping technique, which incorporated either endogenous bone morphogenetic protein-2 (BMP-2) (PLGA/TCP/BMP-2) or phytomolecule icaritin (ICT) (PLGA/TCP/ICT) at low, middle and high doses. PLGA/TCP served as control. In vitro degradation, osteogenesis and release tests showed statistical differences among PLGA/TCP/ICT, PLGA/TCP and PLGA/TCP/BMP-2 groups, where PLGA/TCP/ICT had the desired slow release of bioactive icaritin in a dose-dependent manner, whereas there was almost no BMP-2 release from the PLGA/TCP/BMP-2 scaffolds. PLGA/TCP/ICT significantly increased more ALP activity, upregulated mRNA expression of osteogenic genes and enhanced calcium deposition and mineralization in rabbit bone marrow stem cells cultured on scaffolds compared with the other two groups. These results indicate the desired degradation rate, osteogenic capability and release property in PLGA/TCP/ICT composite scaffold, as icaritin preserved its bioactivity and structure after incorporation, while PLGA/TCP/BMP-2 did not show an initially expected osteogenic potential, owing to loss of the original bioactivity of BMP-2 during its incorporation and fabrication procedure. The results suggest that PLGA/TCP composite scaffolds incorporating osteogenic ICT might be a promising approach for bone tissue bioengineering and regeneration.
Collapse
|
24
|
Rahman CV, Ben-David D, Dhillon A, Kuhn G, Gould TWA, Müller R, Rose FRAJ, Shakesheff KM, Livne E. Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model. J Tissue Eng Regen Med 2012; 8:59-66. [DOI: 10.1002/term.1497] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Cheryl V. Rahman
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Dror Ben-David
- Department of Anatomy and Cell Biology; Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| | - Amritpaul Dhillon
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Gisela Kuhn
- Institute for Biomechanics; ETH Zurich; Switzerland
| | - Toby W. A. Gould
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Ralph Müller
- Institute for Biomechanics; ETH Zurich; Switzerland
| | | | - Kevin M. Shakesheff
- Division of Drug Delivery and Tissue Engineering; University of Nottingham; UK
| | - Erella Livne
- Department of Anatomy and Cell Biology; Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
25
|
Yasuda H, Yano K, Wakitani S, Matsumoto T, Nakamura H, Takaoka K. Repair of critical long bone defects using frozen bone allografts coated with an rhBMP-2-retaining paste. J Orthop Sci 2012; 17:299-307. [PMID: 22271007 DOI: 10.1007/s00776-012-0196-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/03/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Massive frozen stocked allogeneic bone grafts are often used to reconstruct large bone defects caused by trauma or tumor resections. However, the long-term failure rate of such massive allografts was reported to be 25% because of infection, fracture, and nonunion. In this study, we evaluated the ability of a recombinant human bone morphogenetic protein (rhBMP)-2-retaining paste to promote the osteogenic potential of frozen stocked allogeneic bone grafts to repair intercalated femoral shaft defects in a rat model. METHODS After confirming the transplantation intolerance between two rat strains (Wistar and Lewis) by skin transplantation from Lewis rats to Wistar rats, an 8-mm-long bone segment was removed from the Wistar rats, and a frozen stocked allograft coated with the rhBMP-2-retaining paste from the Lewis rats was placed into the defect and subjected to intramedullary fixation with an 18-gauge injection needle pin. The allografted femurs were evaluated by radiographic, histologic, and biomechanical examinations at specified time points. RESULTS The results revealed successful repair of critical-size cortical bone defects by implanting frozen stocked allografts coated with the rhBMP-2-retaining synthetic biodegradable carrier paste from an immunologically intolerant host. CONCLUSIONS This experimental study suggest that allogeneic bone grafting in combination with rhBMP-2 and its local delivery system may represent an innovative approach to the reconstruction of bone defects.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Department of Orthopedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Wang H, Han S, Sun J, Fan T, Tian C, Wu Y. Amphiphilic dextran derivatives nanoparticles for the delivery of mitoxantrone. J Appl Polym Sci 2012. [DOI: 10.1002/app.36534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Efficacy of interspinous process lumbar fusion with recombinant human bone morphogenetic protein-2 delivered with a synthetic polymer and β-tricalcium phosphate in a rabbit model. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2011; 21:1338-45. [PMID: 22203476 DOI: 10.1007/s00586-011-2130-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 12/02/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION As a powerful bone-inducing cytokine, rhBMP-2 has been used as a bone graft substitute in combination with animal-derived collagen to achieve interbody or posterolateral spinal fusion. Successful interspinous process fusion using rhBMP-2 in combination with synthetic carrier materials would offer a safe, minimally invasive spinal fusion option for the treatment of spinal disorders. The aims of the present study were to achieve interspinous process fusion by implanting rhBMP-2-retaining degradable material instead of bone grafting and to evaluate efficacy for vertebral stabilization. MATERIALS AND METHODS A polymer gel (200 mg), β-tricalcium phosphate powder (400 mg), and rhBMP-2 (0, 30, 60 or 120 μg) were mixed to generate a plastic implant, which was then placed during surgery to bridge the L5-6 interspinous processes of 58 rabbits. Control animals received implants either without rhBMP-2 or with autogenous bone chips from the iliac crest. L5-6 vertebrae were recovered 8 weeks postoperatively. Interspinous process fusion was evaluated by radiography, biomechanical bending test, intradiscal pressure (IDP) measurement, and histology. RESULTS In bending tests, strength of fusion was significantly greater in BMP60 and BMP120 groups than in sham, BMP0, BMP30 or autogenous bone groups. IDP at L5-6 was significantly reduced in BMP60 and BMP120 groups compared to sham, BMP0, BMP30, and autograft groups. Histologically, coronal sections of the fusion mass showed a bone mass bridging both spinous processes. CONCLUSION Solid interspinous process fusion was achieved in rabbit models by 8 weeks after implanting the biodegradable bone-inducing material. These results suggest a potential new less-invasive option without bone grafting for the treatment of lumbar disorders.
Collapse
|
28
|
Local delivery of siRNA using a biodegradable polymer application to enhance BMP-induced bone formation. Biomaterials 2011; 32:9642-8. [DOI: 10.1016/j.biomaterials.2011.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/09/2011] [Indexed: 02/04/2023]
|
29
|
Madurantakam PA, Rodriguez IA, Beckman MJ, Simpson DG, Bowlin GL. Evaluation of biological activity of bone morphogenetic proteins on exposure to commonly used electrospinning solvents. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511424012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bone tissue engineering is one of the emerging strategies for developing functionally viable bone substitutes. The recent trend in bone tissue engineering is to combine the benefits of a three-dimensional nanofibrous scaffold with biologically active molecules and responsive stem cells. Electrospinning is the most versatile of the scaffold fabrication strategies and may involve the use of an organic solvent at one stage or another. In spite of all distinct advantages of electrospinning, valid concerns about potentially denaturing interactions between the organic solvent and the biomolecules exist. Efforts are ongoing to incorporate osteoinductive molecules, such as bone morphogenetic proteins (BMPs), during the electrospinning process. The challenge lies in ensuring that the biological activity of these incorporated molecules survives the process. This study was specifically designed to investigate the effects of exposure to commonly used organic solvents on heterodimeric BMP-2/7 using slot-blot assay quantified by infrared imaging and on embryonic myoblasts stably transfected with BMP-specific response element linked to a luciferase reporter – C2C12BRA. Overall, the biological activity of these molecules significantly decreased when exposed to organic solvents but can be restored to their original values by increasing the polarity of the solvent. It was found that an aqueous buffer can effectively overcome the deleterious effects of organic solvents on BMPs, thus generating osteoinductive bone scaffolds.
Collapse
Affiliation(s)
- Parthasarathy A Madurantakam
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Isaac A Rodriguez
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew J Beckman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - David G Simpson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gary L Bowlin
- Tissue Engineering Laboratory, Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
30
|
Schmitt C, Lutz R, Doering H, Lell M, Ratky J, Schlegel KA. Bio-Oss® blocks combined with BMP-2 and VEGF for the regeneration of bony defects and vertical augmentation. Clin Oral Implants Res 2011; 24:450-60. [DOI: 10.1111/j.1600-0501.2011.02351.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Schmitt
- Department of Oral and Maxillofacial Surgery; University of Erlangen-Nuremberg; Erlangen; Germany
| | - Rainer Lutz
- Department of Oral and Maxillofacial Surgery; University of Erlangen-Nuremberg; Erlangen; Germany
| | - Hendrik Doering
- Department of Oral and Maxillofacial Surgery; University of Erlangen-Nuremberg; Erlangen; Germany
| | - Michael Lell
- Department of Radiology; University of Erlangen-Nuremberg; Erlangen; Germany
| | - Jozsef Ratky
- Research Institute for Animal Breeding and Nutrition; Herceghalom; Hungary
| | - Karl Andreas Schlegel
- Department of Oral and Maxillofacial Surgery; University of Erlangen-Nuremberg; Erlangen; Germany
| |
Collapse
|
31
|
Kim S, Tsao H, Kang Y, Young DA, Sen M, Wenke JC, Yang Y. In vitro evaluation of an injectable chitosan gel for sustained local delivery of BMP-2 for osteoblastic differentiation. J Biomed Mater Res B Appl Biomater 2011; 99:380-90. [PMID: 21905214 DOI: 10.1002/jbm.b.31909] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 11/11/2022]
Abstract
We investigated the effect of sustained release of bone morphogenetic protein-2 (BMP-2) from an injectable chitosan gel on osteoblastic differentiation in vitro. We first characterized the release profile of BMP-2 from the gels, and then examined the cellular responses of preosteoblast mouse stromal cells (W-20-17) and human embryonic palatal mesenchymal (HEPM) cells to BMP-2. The release profiles of different concentrations of BMP-2 exhibited sustained releases (41% for 2 ng/mL and 48% for 20 ng/mL, respectively) from the chitosan gels over a three-week period. Both cell types cultured in the chitosan gels were viable and significantly proliferated for 3 days (p < 0.05). Chitosan gels loaded with BMP-2 enhanced ALP activity of W-20-17 by 3.6-fold, and increased calcium mineral deposition of HEPM by 2.8-fold at 14 days of incubation, compared to control groups initially containing the same amount of BMP-2. In addition, schitosan gels loaded with BMP-2 exhibited significantly greater osteocalcin synthesis of W-20-17 at seven days, and of HEPM at both 7 and 14 days compared with the control groups (p<0.05). This study suggests that the enhanced effects of BMP-2 released from chitosan gels on cell differentiation and mineralization are species and cell type dependent.
Collapse
Affiliation(s)
- Sungwoo Kim
- Department of Restorative Dentistry and Biomaterials, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Li M, Huang Q, Wu Y. A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers. PEST MANAGEMENT SCIENCE 2011; 67:831-6. [PMID: 21370387 DOI: 10.1002/ps.2120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/11/2010] [Accepted: 12/23/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND The aim of the present work was to synthesise novel amphiphilic chitosan-co-(D,L-lactide) (chitosan-PLA) copolymers and to study the formation of pesticide-loaded polymeric submicron particles. These copolymeric submicron particle systems are expected to be potential candidates for applications in pesticide delivery. RESULTS The chemical structures of the copolymers were confirmed by Fourier transform infrared spectroscopy (FT-IR), (1) H nuclear magnetic resonance ((1) H NMR) and thermogravimetric analysis (TGA). Imidacloprid as a lipophilic model pesticide can be incorporated into chitosan-PLA submicron particles by nanoprecipitation and the emulsion/solvent evaporation method. Size, the size distribution, the imidacloprid loading content (LC) and the imidacloprid release behaviour were investigated. CONCLUSION Conjugation of PLA to chitosan was shown to be an available method for the preparation of submicron particles for lipophilic pesticide delivery. The imidacloprid-loaded submicron particles showed a sustained release process. As the mass ratio of copolymer to imidacloprid increased, the submicron particles size and LC decreased. The chitosan-PLA submicron particles could be useful as pesticide carriers for imidacloprid delivery systems.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Pesticide Chemistry and Application, MOA, Institute of Plant Protection, CAAS, Beijing, China
| | | | | |
Collapse
|
33
|
|
34
|
Okada M, Yano K, Namikawa T, Uemura T, Hoshino M, Kazuki K, Takaoka K, Nakamura H. Bone Morphogenetic Protein-2 Retained in Synthetic Polymer/β-Tricalcium Phosphate Composite Promotes Hypertrophy of a Vascularized Long Bone Graft in Rabbits. Plast Reconstr Surg 2011; 127:98-106. [DOI: 10.1097/prs.0b013e3181f95a73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Synthesis, NMR characterization and in vitro cytotoxicity evaluation of new poly(oxyethylene aminophosphonate)s. Eur J Med Chem 2010; 45:6039-44. [DOI: 10.1016/j.ejmech.2010.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/23/2022]
|
36
|
Uemura T, Ohta Y, Nakao Y, Manaka T, Nakamura H, Takaoka K. Epinephrine accelerates osteoblastic differentiation by enhancing bone morphogenetic protein signaling through a cAMP/protein kinase A signaling pathway. Bone 2010; 47:756-65. [PMID: 20637325 DOI: 10.1016/j.bone.2010.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 01/09/2023]
Abstract
Topical effects of a catecholamine on bone morphogenetic protein (BMP)-induced ectopic bone formation were investigated in both in vivo and in vitro experimental systems. Epinephrine enhanced bone induction by BMP-2. Thus, the mass of ossicles ectopically induced by BMP-2 (5 μg) was increased by the addition of a low dose (10, 20, 40, or 80 μg) of epinephrine into a biodegradable BMP-2 carrier, in a dose-dependent manner. To investigate the mechanism by which epinephrine enhances BMP activity, in vitro experiments were carried out using osteogenic cells. The expression level of alkaline phosphatase (ALP) in cells, a marker of osteoblastic differentiation, was consistently elevated by BMP-2 (50 ng/ml) and was further elevated by the addition of epinephrine (10(-8)M). The epinephrine-enhanced ALP elevation was specifically abolished by an antagonist to β2-adrenergic receptors (Butoxamine) and by a protein kinase A inhibitor (H89). Furthermore, BMP-induced mRNA expression of ALP and osteocalcin (marker proteins of osteoblastic differentiation) and of Osterix (a transcription factor essential for terminal differentiation to osteoblasts) in ST2 cells was significantly enhanced by the addition of epinephrine (10(-8)M). In luciferase expression assays using the promoter sequence of the Id1 gene (an immediate early response gene to BMP), luciferase activity was elevated by BMP-2 treatment (50 ng/ml) and this activity was further enhanced by the addition of epinephrine (10(-8)M). Epinephrine-enhanced luciferase activity was abolished by mutation of the cAMP-response element (CRE) sequence in the Id1 promoter, indicating that CRE-binding transcription proteins induced by epinephrine addition may act as enhancers of Smad-mediated BMP signaling.
Collapse
Affiliation(s)
- Takuya Uemura
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi,Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Laflamme C, Curt S, Rouabhia M. Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol 2010; 55:689-701. [PMID: 20627196 DOI: 10.1016/j.archoralbio.2010.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 06/04/2010] [Accepted: 06/21/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the in vitro osteogenic activity of EGF in association with bone morphogenetic proteins BMP2 and BMP7. METHODS SaOS-2 (osteoblast-like cell line from human osteosarcoma) were cultured in the presence of EGF and BMPs for various culture periods to assess (a) cell proliferation by MTT assay, (b) Runx2, alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression using quantitative RT-PCR and ELISA, and (c) bone tissue mineralization using Alizarin Red staining. RESULTS EGF alone was able to stimulate osteoblast growth in a time-dependent manner. When mixed with BMP2, BMP7, and their combination, EGF greatly promoted osteoblast growth, compared to the BMP- and EGF-stimulated cells, suggesting a possible synergistic effect between EGF and BMPs on osteoblast growth. Stimulation with EGF, EGF/BMP2, and EGF/BMP2/BMP7 for 7 days upregulated Runx2 mRNA expression by the osteoblasts. EGF downregulated ALP mRNA expression, which was recovered when the BMP2/BMP7 combination was added to the osteoblast culture. Tested on OC mRNA expression, EGF had no effect and inhibited the enhancing effect of BMP2 and BMP7 on osteocalcin expression. The bone mineralization assay showed that EGF reduced both the number and size of the bone nodules. This reducing effect was observable even in the presence of BMP2 and BMP7. CONCLUSION This study demonstrated that EGF may act in the early phase to promote osteoblast growth and specific marker expression rather than the late phase involving cell differentiation/mineralization.
Collapse
Affiliation(s)
- Claude Laflamme
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Pavillon de médecine dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
38
|
Kim SJ, Shin HS, Shin SW. Effect of bone block graft with rhBMP-2 on vertical bone augmentation. Int J Oral Maxillofac Surg 2010; 39:883-8. [PMID: 20566269 DOI: 10.1016/j.ijom.2010.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 05/11/2010] [Indexed: 11/28/2022]
Abstract
The effectiveness of vertical bone augmentation was evaluated in the cranial bone of 15 rabbits using a block of deproteinized bovine bone plus 10% porcine collagen (DBBB) and a cortico-cancellous human bone block (CHBB) with recombinant human bone morphogenetic protein-2 (rhBMP-2) in comparison with a guided bone regeneration (GBR) technique. The rabbits were divided into six groups: DBBB alone, DBBB/rhBMP-2, DBBB/membrane, CHBB alone, CHBB/rhBMP-2 and CHBB/membrane groups. After 12 weeks, the rabbits were killed. The CHBB groups showed higher values than the DBBB groups in terms of vertical height, the area of new bone fill and the maintained grafted area. In the CHBB groups, the CHBB/rhBMP-2 group revealed similar results to GBR. This animal study verifies that a CHBB with rhBMP-2 could be an alternative treatment option for vertical bone augmentation.
Collapse
Affiliation(s)
- S-J Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University, Seoul, South Korea
| | | | | |
Collapse
|
39
|
Yu NYC, Schindeler A, Little DG, Ruys AJ. Biodegradable poly(alpha-hydroxy acid) polymer scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2010; 93:285-95. [PMID: 20127987 DOI: 10.1002/jbm.b.31588] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Synthetic graft materials are emerging as a viable alternative to autogenous bone graft and bone allograft for the treatment of critical-sized bone defects. These materials can be osteoconductive but are rarely intrinsically osteogenic, although this can be greatly enhanced by the application of bone morphogenetic proteins (BMPs). This review will discuss the versatility of biodegradable poly(alpha-hydroxy acids) for the delivery of BMPs for bone tissue engineering. Poly(alpha-hydroxy acids) have a considerable potential for customization and adaptability via modification of design parameters, including scaffold architecture, composition, and biodegradability. Different fabrication techniques will also be discussed.
Collapse
Affiliation(s)
- Nicole Y C Yu
- Biomedical Engineering, School of AMME J07, University of Sydney, Sydney, Australia.
| | | | | | | |
Collapse
|
40
|
Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2010; 25:1539-60. [PMID: 19824042 DOI: 10.1002/btpr.246] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Critical-sized defects in bone, whether induced by primary tumor resection, trauma, or selective surgery have in many cases presented insurmountable challenges to the current gold standard treatment for bone repair. The primary purpose of a tissue-engineered scaffold is to use engineering principles to incite and promote the natural healing process of bone which does not occur in critical-sized defects. A synthetic bone scaffold must be biocompatible, biodegradable to allow native tissue integration, and mimic the multidimensional hierarchical structure of native bone. In addition to being physically and chemically biomimetic, an ideal scaffold is capable of eluting bioactive molecules (e.g., BMPs, TGF-betas, etc., to accelerate extracellular matrix production and tissue integration) or drugs (e.g., antibiotics, cisplatin, etc., to prevent undesired biological response such as sepsis or cancer recurrence) in a temporally and spatially controlled manner. Various biomaterials including ceramics, metals, polymers, and composites have been investigated for their potential as bone scaffold materials. However, due to their tunable physiochemical properties, biocompatibility, and controllable biodegradability, polymers have emerged as the principal material in bone tissue engineering. This article briefly reviews the physiological and anatomical characteristics of native bone, describes key technologies in mimicking the physical and chemical environment of bone using synthetic materials, and provides an overview of local drug delivery as it pertains to bone tissue engineering is included.
Collapse
Affiliation(s)
- Joshua R Porter
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
41
|
Eguchi Y, Wakitani S, Imai Y, Naka Y, Hashimoto Y, Nakamura H, Takaoka K. Antitumor necrotic factor agent promotes BMP-2-induced ectopic bone formation. J Bone Miner Metab 2010; 28:157-64. [PMID: 19866334 DOI: 10.1007/s00774-009-0127-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 09/08/2009] [Indexed: 12/21/2022]
Abstract
Etanercept (ETN), which is a recombinant human soluble tumor necrosis factor (TNF) receptor that inhibits TNF activity, is effective in the treatment of rheumatoid arthritis. We investigated the effect of ETN on recombinant human bone morphogenetic protein-2 (rhBMP-2)-induced ectopic bone formation in vivo. A block copolymer composed of poly-D,L-lactic acid with random insertion of p-dioxanone and polyethylene glycol (PLA-DX-PEG polymer) was used as the delivery system. Polymer discs (6 mm, 30 mg) containing 5 microg rhBMP-2 were implanted into the left dorsal muscle pouch of mice (n = 50). In the systemic administration groups (n = 5 per group), ETN was subcutaneously injected (25 mg/human = 12.5 microg/mouse) twice per week in a dose-dependent manner (placebo, 12.5 x 10(-3), 12.5 x 10(-1), 12.5, 125 microg), whereas a single dose of ETN (placebo, 12.5 x 10(-3), 12.5 x 10(-1), 12.5, 125 microg) was embedded in each rhBMP-2 polymer disc in the local administration groups (n = 5 per group). Three weeks after implantation, the mice were killed and the implants were analyzed. Implants in the optimally dosed groups had increased radiodensity, which was consistent with a significant increase in bone mineral content of the ossicles. Bone histomorphology revealed a significant increase in bone volume/total volume, number of osteoblasts, osteoblast surface/bone surface, and a significant decrease in the number of osteoclasts, osteoclast surface/bone surface in the optimal dosed systemic and locally administered groups. These data suggest that the optimal dose of ETN, administered either systemically or locally, enhanced the bone-inducing capacity of BMP with no apparent adverse systemic effects.
Collapse
Affiliation(s)
- Yoshitaka Eguchi
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Bongio M, van den Beucken JJJP, Leeuwenburgh SCG, Jansen JA. Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00795a] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Tokuhara Y, Wakitani S, Imai Y, Nomura C, Hoshino M, Yano K, Taguchi S, Kim M, Kadoya Y, Takaoka K. Local delivery of rolipram, a phosphodiesterase-4-specific inhibitor, augments bone morphogenetic protein-induced bone formation. J Bone Miner Metab 2010; 28:17-24. [PMID: 19554392 DOI: 10.1007/s00774-009-0103-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 05/17/2009] [Indexed: 11/28/2022]
Abstract
Recombinant human bone morphogenetic protein (rhBMP) is a promising therapeutic cytokine for the induction of bone formation, but a weak response in humans remains a major hurdle in its therapeutic application. We have previously reported an rhBMP-2-induced increase in the bone mass of mice receiving systemic rolipram, a specific inhibitor of phosphodiesterase-4. To overcome the side effects of systemic administration of rolipram, we examined the effects of its local release. Polyethylene glycol discs were used as a delivery system. The discs were impregnated with rhBMP-2 and rolipram and implanted into the dorsal muscle pouches in mice. Bone formation was assessed by measuring the bone mineral content (BMC) of the formed bone. First, to determine the optimal dose of rolipram, we added 0-5000 nmol rolipram and 5 microg rhBMP-2 to the pellets and found that 500 nmol rolipram was the most effective concentration for inducing bone formation after 4 weeks. Second, to examine the time course of bone formation, we implanted 5 microg rhBMP-2 with 0 or 500 nmol rolipram and killed mice 5, 7, 10, 14, or 21 days after implantation. Bone formation was accelerated in the rolipram group. Finally, to determine the rolipram-induced increase in the effect of BMP, BMC obtained after treatment with 5 microg rhBMP-2 and 500 nmol rolipram was compared with that obtained after treatment with 5-9 microg rhBMP-2 without rolipram, 4 weeks after implantation. The results indicated that 500 nmol rolipram enhanced the effect of rhBMP-2 by almost 1.5-fold. In summary, locally released rolipram enhanced the capacity of rhBMP-2 to induce bone formation, an effect previously reported with systemic administration. These findings may decrease the cost and increase the efficacy of rhBMP-2 treatment.
Collapse
Affiliation(s)
- Yoshio Tokuhara
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim KN, Yang JE, Jang JW, Sasikala B, Beng W, Kim IK. Morphometric analysis on bone formation effect of β-TCP and rhBMP-2 in rabbit mandible. J Korean Assoc Oral Maxillofac Surg 2010. [DOI: 10.5125/jkaoms.2010.36.3.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Kyu-Nam Kim
- Department of Oral and Maxillofacial surgery, College of Medicine, Inha University, Incheon, Korea
| | - Jung-Eun Yang
- Department of Oral and Maxillofacial surgery, College of Medicine, Inha University, Incheon, Korea
| | - Jea-Won Jang
- Department of Oral and Maxillofacial surgery, College of Medicine, Inha University, Incheon, Korea
| | - Balaraman Sasikala
- Department of Oral and Maxillofacial surgery, College of Medicine, Inha University, Incheon, Korea
| | - Wang Beng
- Department of Oral and Maxillofacial surgery, College of Medicine, Inha University, Incheon, Korea
| | - Il-Kyu Kim
- Department of Oral and Maxillofacial surgery, College of Medicine, Inha University, Incheon, Korea
| |
Collapse
|
45
|
Synthetic alginate is a carrier of OP-1 for bone induction. Clin Orthop Relat Res 2009; 467:3149-55. [PMID: 19475466 PMCID: PMC2772932 DOI: 10.1007/s11999-009-0899-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 05/06/2009] [Indexed: 01/31/2023]
Abstract
Bone morphogenetic proteins (BMPs) can induce bone formation in vivo when combined with appropriate carriers. Several materials, including animal collagens and synthetic polymers, have been evaluated as carriers for BMPs. We examined alginate, an approved biomaterial for human use, as a carrier for BMP-7. In a mouse model of ectopic bone formation, the following four carriers for recombinant human OP-1 (BMP-7) were tested: alginate crosslinked by divalent cations (DC alginate), alginate crosslinked by covalent bonds (CB alginate), Type I atelocollagen, and poly-D,L-lactic acid-polyethyleneglycol block copolymer (PLA-PEG). Discs of carrier materials (5-mm diameter) containing OP-1 (3-30 microg) were implanted beneath the fascia of the back muscles in six mice per group. These discs were recovered 3 weeks after implantation and subjected to radiographic and histologic studies. Ectopic bone formation occurred in a dose-dependent manner after the implantation of DC alginate, atelocollagen, and PLA-PEG, but occurred only at the highest dose implanted with CB alginate. Bone formation with DC alginate/OP-1 composites was equivalent to that with atelocollagen/OP-1 composites. Our data suggest DC alginate, a material free of animal products that is already approved by the FDA and other authorities, is a safe and potent carrier for OP-1. This carrier may also be applicable to various other situations in the orthopaedic field.
Collapse
|
46
|
Xu B, Yuan J, Wang Z, Gao Q. Shell-cross-linked amino acid-modified APLA-b-PEG-Cys copolymer micelle as a drug delivery carrier. J Microencapsul 2009; 26:659-66. [DOI: 10.3109/02652040902968968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Xu B, Yuan J, Ding T, Gao Q. Amphiphilic biodegradable poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) triblock copolymers: synthesis, characterization and their use as drug carriers for folic acid. Polym Bull (Berl) 2009. [DOI: 10.1007/s00289-009-0157-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Bertoldi C, Pinti M, Zaffe D, Cossarizza A, Consolo U, Ceccherelli GB. Morphologic, histochemical, and functional analysis of platelet-rich plasma activity on skeletal cultured cells. Transfusion 2009; 49:1728-37. [DOI: 10.1111/j.1537-2995.2009.02190.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
|
50
|
Yano K, Hoshino M, Ohta Y, Manaka T, Naka Y, Imai Y, Sebald W, Takaoka K. Osteoinductive capacity and heat stability of recombinant human bone morphogenetic protein-2 produced by Escherichia coli and dimerized by biochemical processing. J Bone Miner Metab 2009; 27:355-63. [PMID: 19229473 DOI: 10.1007/s00774-009-0040-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
One problem associated with clinical application of CHO-derived recombinant human bone morphogenetic protein (C-BMP-2) is its high cost due to the need for use of high doses. To solve this problem, Escherichia coli-derived BMP-2 (E-BMP-2) has been examined using the technique of molecular unfolding and refolding. However, it is unclear whether the characteristics of E-BMP-2 are appropriate for clinical application. In this study, we examined the biological activity of E-BMP-2 and its heat tolerance in in vitro and in vivo systems. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the high purity of E-BMP-2. E-BMP-2-induced alkaline phosphatase expression in osteoprogenitor cells (C2C12, ST2, and primary murine calvarial osteoblast cells) was dose-dependent, and consistently elicited ectopic new ossicles of significant size in mice, also in dose-dependent fashion. In addition, E-BMP-2 induced phosphorylation of Smad1/5/8 and mRNA expression of osteoblastic differentiation markers to the same extent as C-BMP-2. On the other hand, when E-BMP-2 was exposed to increasing heat over time, its bone-inducing capacity was maintained until reaching 70 degrees C for 2 h or 90 degrees C for 15 min. Thus, E-BMP-2 will exhibit a decrease in activity with the sterilization procedures required prior to use in surgery. These findings indicate that the biological capacity and heat stability of E-BMP-2 are almost equivalent to those of currently available C-BMP-2, and suggest that E-BMP-2 might, thus, solve current problems of cost impeding routine clinical use of rhBMP-2.
Collapse
Affiliation(s)
- Koichi Yano
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|