1
|
Alsulami KA, Bakr AA, Alshehri AA, Aodah AH, Almughem FA, Alamer AA, Alharbi LA, Alsuwayeh DS, Halwani AA, Alamoudi AA, Alfassam HA, Tawfik EA. Fabrication and evaluation of ribavirin-loaded electrospun nanofibers as an antimicrobial wound dressing. Saudi Pharm J 2024; 32:102058. [PMID: 38601973 PMCID: PMC11004991 DOI: 10.1016/j.jsps.2024.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Background Skin is regarded as an essential first line of defense against harmful pathogens and it hosts an ecosystem of microorganisms that create a widely diverse skin microbiome. In chronic wounds, alterations in the host-microbe interactions occur forming polymicrobial biofilms that hinder the process of wound healing. Ribavirin, an antiviral drug, possesses antimicrobial activity, especially against Pseudomonas aeruginosa and Candida albicans, which are known as the main opportunistic pathogens in chronic wounds. Rationale In this study, electrospun nanofiber systems loaded with ribavirin were developed as a potential wound dressing for topical application in chronic wounds. Ribavirin was chosen in this study owing to the emerging cases of antimicrobial (antibiotics and antifungal) resistance and the low attempts to discover new antimicrobial agents, which encouraged the repurposing use of current medication as an alternative solution in case of resistance to the available agents. Additionally, the unique mechanism of action of ribavirin, i.e., perturbing the bacterial virulence system without killing or stopping their growth and rendering the pathogens disarmed, might be a promising choice to prevent drug resistance. Cyclodextrin (CD) was utilized to formulate ribavirin as an electrospun nanofibers delivery system to enhance the absorption and accelerate the release of ribavirin for topical use. Results The results demonstrated a successful ribavirin nanofibers fabrication that lacked beads and pores on the nanofibrous surfaces. Ribavirin underwent a physical transformation from crystalline to amorphous form, as confirmed by X-ray diffraction analysis. This change occurred due to the molecular dispersion after the electrospinning process. Additionally, the CD enhanced the encapsulation efficiency of ribavirin in the nanofibers as observed from the drug-loading results. Polyvinylpyrrolidone (PVP) and CD increased ribavirin released into the solution and the disintegration of fibrous mats which shrank and eventually dissolved into a gel-like substance as the ribavirin-loaded fibers began to break down from their border toward the midpoint. Cytotoxicity of ribavirin and CD was evaluated against human dermal fibroblasts (HFF-1) and the results showed a relatively safe profile of ribavirin upon 24-hour cell exposure, while CD was safe within 24- and 48-hour. Conclusion This study provides valuable insights into the potential application of our nanofibrous system for treating chronic wounds; however, further antimicrobial and in-vivo studies are required to confirm its safety and effectiveness.
Collapse
Affiliation(s)
- Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abrar A. Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Ali A. Alamer
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Lujain A. Alharbi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Deema S. Alsuwayeh
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulrahman A. Halwani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A. Alamoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haya A. Alfassam
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
2
|
Atturu P, Mudigonda S, Wang CZ, Wu SC, Chen JW, Forgia MFF, Dahms HU, Wang CK. Adipose-derived stem cells loaded photocurable and bioprintable bioinks composed of GelMA, HAMA and PEGDA crosslinker to differentiate into smooth muscle phenotype. Int J Biol Macromol 2024; 265:130710. [PMID: 38492701 DOI: 10.1016/j.ijbiomac.2024.130710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Developing a polymer-based photocrosslinked 3D printable scaffolds comprised of gelatin methacryloyl (G) and hyaluronic acid methacryloyl (H) incorporated with two molecular weights of polyethylene glycol diacrylate (P) of various concentrations that enables rabbit adipose-derived stem cells (rADSCs) to survive, grow, and differentiate into smooth muscle cells (SMCs). Then, the chemical modification and physicochemical properties of the PGH bioinks were evaluated. The cell viability was assessed via MTT, CCK-8 assay and visualized employing Live/Dead assay. In addition, the morphology and nucleus count of differentiated SMCs were investigated by adopting TRAP (tartrate-resistant acid phosphatase) staining, and quantitative RT-PCR analysis was applied to detect gene expression using two different SMC-specific gene markers α-SMA and SM-MHC. The SMC-specific protein markers namely α-SMA and SM-MHC were applied to investigate SMC differentiation ability by implementing Immunocytofluorescence staining (ICC) and western blotting. Moreover, the disk, square, and tubular cellular models of PGH7 (GelMA/HAMA=2/1) + PEGDA-8000 Da, 3% w/v) hybrid bioink were printed using an extrusion bioprinting and cell viability of rADSCs was also analysed within 3D printed square construct practising Live/Dead assay. The results elicited the overall viability of SMCs, conserving its phenotype in biocompatible PGH7 hybrid bioink revealing its great potential to regenerate SMCs associated organs repair.
Collapse
Affiliation(s)
- Pavanchandh Atturu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sunaina Mudigonda
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chau-Zen Wang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Physiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shun-Cheng Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Physiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Post-Baccalaureate Program in Nursing, Asia University, Taichung 41354, Taiwan
| | - Jhen-Wei Chen
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mary Fornica Francis Forgia
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Physiology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Todorović N, Čanji Panić J, Pavlić B, Popović S, Ristić I, Rakić S, Rajšić I, Vukmirović S, Srđenović Čonić B, Milijašević B, Milošević N, Lalić-Popović M. Supercritical fluid technology as a strategy for nifedipine solid dispersions formulation: In vitro and in vivo evaluation. Int J Pharm 2024; 649:123634. [PMID: 38000651 DOI: 10.1016/j.ijpharm.2023.123634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Supercritical fluid technology (SFT) is an insufficiently investigated approach for the production of solid dispersions, it is environmentally acceptable and has a high potential for application in the pharmaceutical industry. The aim of this work was to formulate and characterize nifedipine solid dispersions (SDs) produced by the SFT and compare the results with ones obtained by the classical solvent based kneading method. The following in vitro tests were conducted: assay and yield, solvent residues, solid state characterization (FTIR, DSC, XRD), flowability, hygroscopicity, solubility, dissolution and stability. Additionally, bioavailability was examined on an animal model (Wistar rats). The formulation selection for in vivo study was performed using the multilevel categoric experimental design and the health risk assessment. Solid state characterization revealed that formulation obtained by the SFT method and higher ratio of polymer (1:5) have had nifedipine in completely amorphous form. Polymer ratio and method of SDs preparation do influence the investigation characteristics. Dissolution rate was fastest in SDs prepared by the SFT and higher polymer ration (1:5). In vivo data of selected SDs prepared by the kneading (ratio 1:1) and the SFT (ratio 1:5) showed alteration in pharmacokinetic profile after i.v. and p.o. application.
Collapse
Affiliation(s)
- Nemanja Todorović
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Jelena Čanji Panić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Republic of Serbia
| | - Senka Popović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Republic of Serbia
| | - Ivan Ristić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Republic of Serbia
| | - Srđan Rakić
- University of Novi Sad, Faculty of Sciences, Department of Physics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Republic of Serbia
| | - Ivana Rajšić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacology and Toxicology, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Saša Vukmirović
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacology and Toxicology, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Branislava Srđenović Čonić
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia; University of Novi Sad, Faculty of Medicine Novi Sad, Centre for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Boris Milijašević
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacology and Toxicology, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Nataša Milošević
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia
| | - Mladena Lalić-Popović
- University of Novi Sad, Faculty of Medicine Novi Sad, Department of Pharmacy, Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia; University of Novi Sad, Faculty of Medicine Novi Sad, Centre for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Hajduk Veljkova 3, 21000 Novi Sad, Republic of Serbia.
| |
Collapse
|
4
|
Lewandowska K, Szulc M. Miscibility studies on carboxymethyl chitosan and poly(N-vinylpyrrolidone) mixtures. Int J Biol Macromol 2023; 248:125985. [PMID: 37499714 DOI: 10.1016/j.ijbiomac.2023.125985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
The production of polymer mixtures is a widely used method to improve polymer performance, as such mixtures can combine advantageous properties from each component. In this study, mixtures based on carboxymethyl chitosan (CMCh) and poly(N-vinylpyrrolidone) (PVP) were characterized using steady shear measurements, viscometry, infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and atomic force microscopy. Viscometry and steady shear studies were performed on solutions of the native polymers and their mixtures with various weight proportions (80/20, 50/50, and 20/80%w/w). The rheological tests revealed that the apparent viscosity of solutions of CMCh/PVP mixtures was higher than that of the native polymer solutions. The rheological data showed that CMCh solutions and their mixtures were typical pseudoplastic liquids, which could be accurately described by the Cross and power law models. Viscometric parameters were determined using the method proposed by Garcia et al., which indicated good miscibility between CMCh and PVP in aqueous solution. Furthermore, the morphology, structure, and thermal properties of CMCh films changed when PVP was added. The obtained analytical data showed the formation of stable mixtures of CMCh and PVP, with a high miscibility ratio between these polymers, through intermolecular interactions between the polymer chains.
Collapse
Affiliation(s)
- Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland.
| | - Marta Szulc
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Zhang J, Tang S, Ding N, Ma P, Zhang Z. Surface-modified Ti 3C 2 MXene nanosheets for mesenchymal stem cell osteogenic differentiation via photothermal conversion. NANOSCALE ADVANCES 2023; 5:2921-2932. [PMID: 37260501 PMCID: PMC10228341 DOI: 10.1039/d3na00187c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 06/02/2023]
Abstract
In the field of bone tissue engineering, the practical application of growth factors is limited by various factors such as systemic toxicity, instability, and the potential to induce inflammation. To circumvent these limitations, the use of physical signals, such as thermal stimulation, to regulate stem cells has been proposed as a promising alternative. The present study aims to investigate the potential of the two-dimensional nanomaterial Ti3C2 MXene, which exhibits unique photothermal properties, to induce osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) via photothermal conversion. Surface modification of Ti3C2 MXene nanosheets with PVP (Ti3C2-PVP) was employed to enhance their colloidal stability in physiological solutions. Characterization and cellular experiments showed that Ti3C2-PVP nanosheets have favorable photothermal properties and biocompatibility. Our study demonstrated that the induction of photothermal stimulation by co-culturing Ti3C2-PVP nanosheets with BMSCs and subsequent irradiation with 808 nm NIR significantly promoted cell proliferation, adhesion and osteogenic differentiation of BMSCs. In conclusion, the results of this study suggest that Ti3C2-PVP is a promising material for bone tissue engineering applications as it can modulate the cellular functions of BMSCs through photothermal conversion.
Collapse
Affiliation(s)
- Jiebing Zhang
- School of Stomatology, Capital Medical University Beijing PR China
| | - Shuang Tang
- School of Stomatology, Capital Medical University Beijing PR China
| | - Ning Ding
- School of Stomatology, Capital Medical University Beijing PR China
| | - Ping Ma
- School of Stomatology, Capital Medical University Beijing PR China
| | - Zutai Zhang
- School of Stomatology, Capital Medical University Beijing PR China
| |
Collapse
|
6
|
Marques P, Villarroel-Vicente C, Collado A, García A, Vila L, Duplan I, Hennuyer N, Garibotto F, Enriz RD, Dacquet C, Staels B, Piqueras L, Cortes D, Sanz MJ, Cabedo N. Anti-inflammatory effects and improved metabolic derangements in ob/ob mice by a newly synthesized prenylated benzopyran with pan-PPAR activity. Pharmacol Res 2023; 187:106638. [PMID: 36586645 DOI: 10.1016/j.phrs.2022.106638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Selective peroxisome proliferator-activated receptors (PPARs) are widely used to treat metabolic complications; however, the limited effect of PPARα agonists on glucose metabolism and the adverse effects associated with selective PPARγ activators have stimulated the development of novel pan-PPAR agonists to treat metabolic disorders. Here, we synthesized a new prenylated benzopyran (BP-2) and evaluated its PPAR-activating properties, anti-inflammatory effects and impact on metabolic derangements. EXPERIMENTAL APPROACH BP-2 was used in transactivation assays to evaluate its agonism to PPARα, PPARβ/δ and PPARγ. A parallel-plate flow chamber was employed to investigate its effect on TNFα-induced leukocyte-endothelium interactions. Flow cytometry and immunofluorescence were used to determine its effects on the expression of endothelial cell adhesion molecules (CAMs) and chemokines and p38-MAPK/NF-κB activation. PPARs/RXRα interactions were determined using a gene silencing approach. Analysis of its impact on metabolic abnormalities and inflammation was performed in ob/ob mice. KEY RESULTS BP-2 displayed strong PPARα activity, with moderate and weak activity against PPARβ/δ and PPARγ, respectively. In vitro, BP-2 reduced TNFα-induced endothelial ICAM-1, VCAM-1 and fractalkine/CX3CL1 expression, suppressed mononuclear cell arrest via PPARβ/δ-RXRα interactions and decreased p38-MAPK/NF-κB activation. In vivo, BP-2 improved the circulating levels of glucose and triglycerides in ob/ob mice, suppressed T-lymphocyte/macrophage infiltration and proinflammatory markers in the liver and white adipose tissue, but increased the expression of the M2-like macrophage marker CD206. CONCLUSION AND IMPLICATIONS BP-2 emerges as a novel pan-PPAR lead candidate to normalize glycemia/triglyceridemia and minimize inflammation in metabolic disorders, likely preventing the development of further cardiovascular complications.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Aida Collado
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Ainhoa García
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Isabelle Duplan
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Nathalie Hennuyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Francisco Garibotto
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco 917-5700, San Luis, Argentina
| | - Ricardo D Enriz
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco 917-5700, San Luis, Argentina
| | | | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Laura Piqueras
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, Valencia, Spain.
| | - María-Jesús Sanz
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.
| |
Collapse
|
7
|
Li X, Shu X, Shi Y, li H, Pei X. MOFs and bone: Application of MOFs in bone tissue engineering and bone diseases. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Fadeeva IV, Trofimchuk ES, Forysenkova AA, Ahmed AI, Gnezdilov OI, Davydova GA, Kozlova SG, Antoniac A, Rau JV. Composite Polyvinylpyrrolidone-Sodium Alginate-Hydroxyapatite Hydrogel Films for Bone Repair and Wound Dressings Applications. Polymers (Basel) 2021; 13:polym13223989. [PMID: 34833286 PMCID: PMC8621946 DOI: 10.3390/polym13223989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Today, the synthesis of biocompatible and bioresorbable composite materials such as “polymer matrix-mineral constituent,” which stimulate the natural growth of living tissues and the restoration of damaged parts of the body, is one of the challenging problems in regenerative medicine. In this study, composite films of bioresorbable polymers of polyvinylpyrrolidone (PVP) and sodium alginate (SA) with hydroxyapatite (HA) were obtained. HA was introduced by two different methods. In one of them, it was synthesized in situ in a solution of polymer mixture, and in another one, it was added ex situ. Phase composition, microstructure, swelling properties and biocompatibility of films were investigated. The crosslinked composite PVP-SA-HA films exhibit hydrogel swelling characteristics, increasing three times in mass after immersion in a saline solution. It was found that composite PVP-SA-HA hydrogel films containing HA synthesized in situ exhibited acute cytotoxicity, associated with the presence of HA synthesis reaction byproducts—ammonia and ammonium nitrate. On the other hand, the films with HA added ex situ promoted the viability of dental pulp stem cells compared to the films containing only a polymer PVP-SA blend. The developed composite hydrogel films are recommended for such applications, such as membranes in osteoplastic surgery and wound dressing.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
- Correspondence: (I.V.F.); (J.V.R.)
| | - Elena S. Trofimchuk
- Department of High-Molecular Compounds, Lomonosov Moscow State University, GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia;
| | - Anna A. Forysenkova
- Baikov Institute of Metallurgy and Material Science RAS, Leninsky, 49, 119334 Moscow, Russia;
| | - Abdulrahman I. Ahmed
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
- Department of Physics, University of Al-Hamadaniya, Mosul 41001, Iraq
| | - Oleg I. Gnezdilov
- Department of Physics, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia; (A.I.A.); (O.I.G.)
| | - Galina A. Davydova
- Institute of Theoretical and Experimental Biophysics of RAS, Institutskaya 3, 142290 Pushchino, Moscow reg., Russia;
- National Medical Research Center of Obstetrics, Gynecology and Perinatology, Academician Oparin Str., 117997 Moscow, Russia
| | - Svetlana G. Kozlova
- Department of Natural Science, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia;
| | - Aurora Antoniac
- Department of Metallic Materials Science and Physical Metallurgy, University Politehnica of Bucharest, Street Splaiul Independentei, 060042 Bucharest, Romania;
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 00133 Rome, Italy
- Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya Street, Build. 8/2, 119991 Moscow, Russia
- Correspondence: (I.V.F.); (J.V.R.)
| |
Collapse
|
9
|
Lewandowska K, Szulc M. Characterisation of Hyaluronic Acid Blends Modified by Poly( N-Vinylpyrrolidone). Molecules 2021; 26:molecules26175233. [PMID: 34500667 PMCID: PMC8433758 DOI: 10.3390/molecules26175233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The viscosity behaviour and physical properties of blends containing hyaluronic acid (HA) and poly(N-vinylpyrrolidone) (PVP) were studied by the viscometric technique, steady shear tests, tensile tests and infrared spectroscopy. Viscometric and rheological measurements were carried out using blends of HA/PVP with different HA weight fractions (0, 0.2, 0.5, 0.8 and 1). The polymer films and HA/PVP blend films were prepared using the solution casting method. The study of HA blends by viscometry showed that HA/PVP was miscible with the exception of the blend with high HA content. HA and its blends showed a shear-thinning flow behaviour. The non-Newtonian indices (n) of HA/PVP blends were calculated by the Ostwald-de Waele equation, indicating a shear-thinning effect in which pseudoplasticity increased with increasing HA contents. Mechanical properties, such as tensile strength and elongation at the break, were higher for HA/PVP films with wHA = 0.5 compared to those with higher HA contents. The elongation at the break of HA/PVP blend films displayed a pronounced increase compared to HA films. Moreover, infrared analysis confirmed the existence of interactions between HA and PVP. The blending of HA with PVP generated films with elasticity and better properties than homopolymer films.
Collapse
|
10
|
Olejnik M, Breisch M, Sokolova V, Loza K, Prymak O, Rosenkranz N, Westphal G, Bünger J, Köller M, Sengstock C, Epple M. The effect of short silica fibers (0.3 μm 3.2 μm) on macrophages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144575. [PMID: 33486165 DOI: 10.1016/j.scitotenv.2020.144575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Silica fibers with a dimension of 0.3 μm ∙ 3.2 μm2 nm were prepared by a modified Stöber synthesis as model particles. The particles were characterized by scanning electron microscopy, elemental analysis, thermogravimetry and X-ray powder diffraction. Their uptake by macrophages (THP-1 cells and NR8383 cells) was studied by confocal laser scanning microscopy and scanning electron microscopy. The uptake by cells was very high, but the silica fibers were not harmful to NR8383 cells in concentrations up to 100 μg mL-1. Only above 100 μg mL-1, significant cell toxic effects were observed, probably induced by a high dose of particles that had sedimented on the cells and led to the adverse effects. The chemotactic response as assessed by the particle-induced migration assay (PICMA) was weak in comparison to a control of agglomerated silica particles. The as-prepared fibers were fully X-ray amorphous but crystallized to β-cristobalite after heating to 1000 °C and converted to α-cristobalite upon cooling to ambient temperature. The fibers had sintered to larger aggregates but retained their elongated primary shape. The particle cytotoxicity towards THP-1 cells was not significantly enhanced by the crystallization.
Collapse
Affiliation(s)
- Mateusz Olejnik
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Marina Breisch
- BG University Hospital Bergmannsheil, Surgical Research, Ruhr University Bochum, Bochum, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Nina Rosenkranz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Götz Westphal
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany
| | - Manfred Köller
- BG University Hospital Bergmannsheil, Surgical Research, Ruhr University Bochum, Bochum, Germany
| | - Christina Sengstock
- BG University Hospital Bergmannsheil, Surgical Research, Ruhr University Bochum, Bochum, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
11
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
12
|
Wang Y, Wang M, Bai L, Zhang L, Cheng Z, Zhu X. Facile synthesis of poly(N-vinyl pyrrolidone) block copolymers with “more-activated” monomers by using photoinduced successive RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01763a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Well-defined PNVP block copolymers with more-activated monomers were synthesized by a single RAFT polymerization method under irradiation with visible light at room temperature.
Collapse
Affiliation(s)
- Yingjie Wang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Mengqi Wang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Liangjiu Bai
- School of Chemistry and Materials Science
- Ludong University
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province
- Yantai 264025
- China
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| |
Collapse
|
13
|
Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol 2019; 38:368-387. [PMID: 31677857 DOI: 10.1016/j.tibtech.2019.10.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Since their conception 50 years ago, molecularly imprinted polymers (MIPs) have seen extensive development both in terms of synthetic routes and applications. Cells are perhaps the most challenging target for molecular imprinting. Although early work was based almost entirely around microprinting methods, recent developments have shifted towards epitope imprinting to generate MIP nanoparticles (NPs). Simultaneously, the development of techniques such as solid phase MIP synthesis has solved many historic issues of MIP production. This review briefly describes various approaches used in cell imprinting with a focus on applications of the created materials in imaging, drug delivery, diagnostics, and tissue engineering.
Collapse
|
14
|
Zhong J, Kankala RK, Wang SB, Chen AZ. Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers (Basel) 2019; 11:E1627. [PMID: 31600886 PMCID: PMC6836088 DOI: 10.3390/polym11101627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022] Open
Abstract
Recently, metal-organic frameworks (MOFs) have garnered enormous attention from researchers owing to their superior physicochemical properties, which are of particular interest in various fields such as catalysis and the diverse areas of biomedicine. Despite their position in the utilization for various applications compared to other innovative nanocarriers such as dendrimers and mesoporous silica nanoparticles (MSNs), in terms of advantageous physicochemical attributes, as well as attractive textural properties, ease of characterization, and abundant surface chemistry for functionalization and other benefits, MOFs yet suffer from several issues such as poor degradability, which might lead to accumulation-induced biocompatibility risk. In addition, some of the MOFs suffer from a shortcoming of poor colloidal stability in the aqueous solution, hindering their applicability in diverse biomedical fields. To address these limitations, several advancements have been made to fabricate polymeric nanocomposites of MOFs for their utility in various biomedical fields. In this review, we aim to provide a brief emphasis on various organic polymers used for coating over MOFs to improve their physicochemical attributes considering a series of recently reported intriguing studies. Finally, we summarize with perspectives.
Collapse
Affiliation(s)
- Jun Zhong
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, China.
- College of Chemical Engineering Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
15
|
Bermejo A, Collado A, Barrachina I, Marqués P, El Aouad N, Franck X, Garibotto F, Dacquet C, Caignard DH, Suvire FD, Enriz RD, Piqueras L, Figadère B, Sanz MJ, Cabedo N, Cortes D. Polycerasoidol, a Natural Prenylated Benzopyran with a Dual PPARα/PPARγ Agonist Activity and Anti-inflammatory Effect. JOURNAL OF NATURAL PRODUCTS 2019; 82:1802-1812. [PMID: 31268307 DOI: 10.1021/acs.jnatprod.9b00003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dual peroxisome proliferator-activated receptor-α/γ (PPARα/γ) agonists regulate both lipid and glucose homeostasis under different metabolic conditions and can exert anti-inflammatory activity. We investigated the potential dual PPARα/γ agonism of prenylated benzopyrans polycerasoidol (1) and polycerasoidin (2) and their derivatives for novel drug development. Nine semisynthetic derivatives were prepared from the natural polycerasoidol (1) and polycerasoidin (2), which were evaluated for PPARα, -γ, -δ and retinoid X receptor-α activity in transactivation assays. Polycerasoidol (1) exhibited potent dual PPARα/γ agonism and low cytotoxicity. Structure-activity relationship studies revealed that a free phenol group at C-6 and a carboxylic acid at C-9' were key features for dual PPARα/γ agonism activity. Molecular modeling indicated the relevance of these groups for optimal ligand binding to the PPARα and PPARγ domains. In addition, polycerasoidol (1) exhibited a potent anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium in a concentration-dependent manner via RXRα/PPARγ interactions. Therefore, polycerasoidol (1) can be considered a hit-to-lead molecule for the further development of novel dual PPARα/γ agonists capable of preventing cardiovascular events associated with metabolic disorders.
Collapse
Affiliation(s)
- Almudena Bermejo
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Center of Citriculture and Vegetal Production , IVIA , Moncada, 46100 Valencia , Spain
| | - Aida Collado
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| | - Isabel Barrachina
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| | - Patrice Marqués
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | | | - Xavier Franck
- UMR CNRS 6014/FR 3038, COBRA, Université de Rouen , Mont-Saint-Aignan 76821 , France
| | - Francisco Garibotto
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Catherine Dacquet
- Départament des Sciences Expérimentales , Institut de Recherches Servier , Suresnes 92150 , France
| | - Daniel H Caignard
- Départament des Sciences Expérimentales , Institut de Recherches Servier , Suresnes 92150 , France
| | - Fernando D Suvire
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia , Universidad Nacional de San Luis-IMIBIO-SL-CONICET , Chacabuco 915 , San Luis , Argentina
| | - Laura Piqueras
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Bruno Figadère
- UMR CNRS 8076, LERMIT , Université Paris-Sud, UFR de Pharmacie , Châtenay-Malabry 92290 , France
| | - María-Jesús Sanz
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Nuria Cabedo
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
- Institute of Health Research-INCLIVA , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Diego Cortes
- Department of Pharmacology , University of Valencia , 46113 Valencia Spain
| |
Collapse
|
16
|
Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnol Adv 2018; 37:109-131. [PMID: 30472307 DOI: 10.1016/j.biotechadv.2018.11.008] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 01/12/2023]
Abstract
Poly(vinyl alcohol) (PVA) has attracted considerable research interest and is recognized among the largest volume of synthetic polymers that have been produced worldwide for almost one century. This is due to its exceptional properties which dictated its extensive use in a wide variety of applications, especially in medical and pharmaceutical fields. However, studies revealed that PVA-based biomaterials present some limitations that can restrict their use or performances. To overcome these limitations, various methods have been reported, among which blending with poly(vinylpyrrolidone) (PVP) showed promising results. Thus, our aim was to offer a systematic overview on the current state concerning the preparation, properties and various applications of biomaterials based on synergistic effect of mixtures between PVA and PVP. Future trends towards where the biomaterials research is headed were discussed, showing the promising opportunities that PVA and PVP can offer.
Collapse
|
17
|
Sterner O, Karageorgaki C, Zürcher M, Zürcher S, Scales CW, Fadli Z, Spencer ND, Tosatti SGP. Reducing Friction in the Eye: A Comparative Study of Lubrication by Surface-Anchored Synthetic and Natural Ocular Mucin Analogues. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20150-20160. [PMID: 28561563 DOI: 10.1021/acsami.6b16425] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biomaterials used in the ocular environment should exhibit specific tribological behavior to avoid discomfort and stress-induced epithelial damage during blinking. In this study, two macromolecules that are commonly employed as ocular biomaterials, namely, poly(vinylpyrrolidone) (PVP) and hyaluronan (HA), are compared with two known model glycoproteins, namely bovine submaxillary mucin (BSM) and α1-acid glycoprotein (AGP), with regard to their nonfouling efficiency, wettability, and tribological properties when freely present in the lubricant, enabling spontaneous adsorption, and when chemisorbed under low contact pressures. Chemisorbed coatings were prepared by means of photochemically triggered nitrene insertion reactions. BSM and AGP provided boundary lubrication when spontaneously adsorbed in a hydrophobic contact with a coefficient of friction (CoF) of ∼0.03-0.04. PVP and HA were found to be excellent boundary lubricants when chemisorbed (CoF ≤ 0.01). Notably, high-molecular-weight PVP generated thick adlayers, typically around 14 nm, and was able to reduce the CoF below 0.005 when slid against a BSM-coated poly(dimethylsiloxane) pin in a tearlike fluid.
Collapse
Affiliation(s)
- Olof Sterner
- SuSoS AG , Lagerstrasse 14, CH-8006 Dübendorf, Switzerland
| | | | | | - Stefan Zürcher
- SuSoS AG , Lagerstrasse 14, CH-8006 Dübendorf, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Charles W Scales
- Johnson & Johnson Vision Care Inc. , Jacksonville, Florida 32256, United States
| | - Zohra Fadli
- Johnson & Johnson Vision Care Inc. , Jacksonville, Florida 32256, United States
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
18
|
Párraga J, Andujar SA, Rojas S, Gutierrez LJ, El Aouad N, Sanz MJ, Enriz RD, Cabedo N, Cortes D. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands. Eur J Med Chem 2016; 122:27-42. [PMID: 27343851 DOI: 10.1016/j.ejmech.2016.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/11/2023]
Abstract
Dopamine receptors (DR) ligands are potential drug candidates for treating neurological disorders including schizophrenia or Parkinson's disease. Three series of isoquinolines: (E)-1-styryl-1,2,3,4-tetrahydroisoquinolines (series 1), 7-phenyl-1,2,3,7,8,8a-hexahydrocyclopenta[ij]-IQs (HCPIQs) (series 2) and (E)-1-(prop-1-en-1-yl)-1,2,3,4- tetrahydroisoquinolines (series 3), were prepared to determine their affinity for both D1 and D2-like DR. The effect of different substituents on the nitrogen atom (methyl or allyl), the dioxygenated function (methoxyl or catechol), the substituent at the β-position of the THIQ skeleton, and the presence or absence of the cyclopentane motif, were studied. We observed that the most active compounds in the three series (2c, 2e, 3a, 3c, 3e, 5c and 5e) possessed a high affinity for D2-like DR and these remarkable features: a catechol group in the IQ-ring and the N-substitution (methyl or allyl). The series showed the following trend to D2-RD affinity: HCPIQs > 1-styryl > 1-propenyl. Therefore, the substituent at the β-position of the THIQ and the cyclopentane ring also modulated this affinity. Among these dopaminergic isoquinolines, HCPIQs stood out for unexpected selectivity to D2-DR since the Ki D1/D2 ratio reached values of 2465, 1010 and 382 for compounds 3a, 3c and 3e, respectively. None of the most active THIQs in D2 DR displayed relevant cytotoxicity in human neutrophils and HUVEC. Finally, and in agreement with the experimental data, molecular modeling studies on DRs of the most characteristic ligands of the three series revealed stronger molecular interactions with D2 DR than with D1 DR, which further supports to the encountered enhanced selectivity to D2 DR.
Collapse
Affiliation(s)
- Javier Párraga
- Departamento de Farmacología, Laboratorio de Farmacoquímica, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Sebastián A Andujar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Sebastián Rojas
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Lucas J Gutierrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | | | - M Jesús Sanz
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Nuria Cabedo
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain.
| | - Diego Cortes
- Departamento de Farmacología, Laboratorio de Farmacoquímica, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
19
|
Esfandyari-Manesh M, Darvishi B, Ishkuh FA, Shahmoradi E, Mohammadi A, Javanbakht M, Dinarvand R, Atyabi F. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:626-33. [DOI: 10.1016/j.msec.2016.01.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 12/24/2015] [Accepted: 01/24/2016] [Indexed: 01/24/2023]
|
20
|
Huang G, Tse WH, Zhang J. Deposition of a hydrophilic nanocomposite-based coating on silicone hydrogel through a laser process to minimize UV exposure and bacterial contamination. RSC Adv 2016. [DOI: 10.1039/c6ra12991a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Silicone hydrogel used as contact lens is deposited a nanocomposite coating by a matrix assisted pulsed laser evaporation (MAPLE), which can protect eyes from UV exposure, and against bacterial contamination.
Collapse
Affiliation(s)
- Guobang Huang
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
| | - Wai Hei Tse
- Department of Medical Biophysics
- University of Western Ontario
- London
- Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering
- University of Western Ontario
- London
- Canada
- Department of Medical Biophysics
| |
Collapse
|
21
|
Plenderleith RA, Pateman CJ, Rodenburg C, Haycock JW, Claeyssens F, Sammon C, Rimmer S. Arginine-glycine-aspartic acid functional branched semi-interpenetrating hydrogels. SOFT MATTER 2015; 11:7567-7578. [PMID: 26280624 DOI: 10.1039/c5sm00695c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.
Collapse
Affiliation(s)
- Richard A Plenderleith
- The Polymer and Biomaterials Chemistry Laboratories, Department of Chemistry, University of Sheffield, Sheffield, South Yorkshire S3 7HF, UK.
| | - Christopher J Pateman
- Department of Materials and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | - Cornelia Rodenburg
- Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - John W Haycock
- Department of Materials and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials and Engineering, Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | - Chris Sammon
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield, South Yorkshire, S1 1WN, UK
| | - Stephen Rimmer
- The Polymer and Biomaterials Chemistry Laboratories, Department of Chemistry, University of Sheffield, Sheffield, South Yorkshire S3 7HF, UK.
| |
Collapse
|
22
|
Synthesis and antibacterial activities of cadiolides A, B and C and analogues. Bioorg Med Chem 2015; 23:3618-28. [DOI: 10.1016/j.bmc.2015.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 12/16/2022]
|
23
|
Dey A, Bera R, Ahmed S, Chakrabarty D. Smart superabsorbent UV resistant etherified PVA gel: Synthesis and characterization. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Sterner O, Giazzon M, Zürcher S, Tosatti S, Liley M, Spencer ND. Delineating fibronectin bioadhesive micropatterns by photochemical immobilization of polystyrene and poly(vinylpyrrolidone). ACS APPLIED MATERIALS & INTERFACES 2014; 6:18683-18692. [PMID: 25253530 DOI: 10.1021/am5042093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bioadhesive micropatterns, capable of laterally confining cells to a 2D lattice, have proven effective in simulating the in vivo tissue environment. They reveal fundamental aspects of the role of adhesion in cell mechanics, proliferation, and differentiation. Here we present an approach based on photochemistry for the fabrication of synthetic polymer micropatterns. Perfluorophenyl azide (PFPA), upon deep-UV exposure, forms a reactive nitrene capable of covalently linking to a molecule that is in close proximity. PFPA has been grafted onto a backbone of poly(allyl amine), which readily forms a self-assembled monolayer on silicon wafers or glass. A film of polystyrene was applied by spin-coating, and by laterally confining the UV exposure through a chromium-on-quartz photomask, monolayers of polymers could be immobilized in circular microdomains. Poly(vinylpyrrolidone) (PVP) was attached to the background to form a barrier to nonspecific protein adsorption and cell adhesion. Micropatterns were characterized with high-lateral-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), which confirmed the formation of polystyrene domains within a PVP background. Fluorescence-microscopy adsorption assays with rhodamine-labeled bovine serum albumin demonstrated the nonfouling efficiency of PVP and, combined with TOF-SIMS, allowed for a comprehensive characterization of the pattern geometry. The applicability of the micropatterned platform in single-cell assays was tested by culturing two cell types, WM 239 melanoma cells and SaOs-2 osteoblasts, on micropatterned glass, either with or without backfilling of the patterns with fibronectin. It was demonstrated that the platform was efficient in confining cells to the fibronectin-backfilled micropatterns for at least 48 h. PVP is thus proposed as a viable, highly stable alternative to poly(ethylene glycol) for nonfouling applications. Due to the versatility of the nitrene-insertion reaction, the platform could be extended to other polymer pairs or proteins and the surface chemistry adapted to specific applications.
Collapse
Affiliation(s)
- Olof Sterner
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Yang Q, Wang K, Nie J, Du B, Tang G. Poly(N-vinylpyrrolidinone) Microgels: Preparation, Biocompatibility, and Potential Application as Drug Carriers. Biomacromolecules 2014; 15:2285-93. [DOI: 10.1021/bm5004493] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qing Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kai Wang
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guping Tang
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Das S, Subuddhi U. Controlled delivery of dexamethasone to the intestine from poly(vinyl alcohol)–poly(acrylic acid) microspheres containing drug-cyclodextrin complexes: influence of method of preparation of inclusion complex. RSC Adv 2014. [DOI: 10.1039/c4ra02736a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
27
|
Aranaz I, Martínez-Campos E, Nash ME, Tardajos MG, Reinecke H, Elvira C, Ramos V, López-Lacomba JL, Gallardo A. Pseudo-double network hydrogels with unique properties as supports for cell manipulation. J Mater Chem B 2014; 2:3839-3848. [DOI: 10.1039/c4tb00371c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing new hydrogels for the support of confluent cell growth and from which cell sheets can be easily detached or transplanted.
Collapse
Affiliation(s)
- Inmaculada Aranaz
- Polymer Functionalization Group
- Department of Applied Macromolecular Chemistry
- Institute of Polymer Science and Technology
- CSIC
- Madrid 28006, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group
- Institute of Biofunctional Studies
- Pharmacy Faculty
- Complutense University of Madrid (UCM)
- Madrid 28040, Spain
| | - Maria E. Nash
- Polymer Functionalization Group
- Department of Applied Macromolecular Chemistry
- Institute of Polymer Science and Technology
- CSIC
- Madrid 28006, Spain
| | - Myriam G. Tardajos
- Polymer Functionalization Group
- Department of Applied Macromolecular Chemistry
- Institute of Polymer Science and Technology
- CSIC
- Madrid 28006, Spain
| | - Helmut Reinecke
- Polymer Functionalization Group
- Department of Applied Macromolecular Chemistry
- Institute of Polymer Science and Technology
- CSIC
- Madrid 28006, Spain
| | - Carlos Elvira
- Polymer Functionalization Group
- Department of Applied Macromolecular Chemistry
- Institute of Polymer Science and Technology
- CSIC
- Madrid 28006, Spain
| | - Viviana Ramos
- Tissue Engineering Group
- Institute of Biofunctional Studies
- Pharmacy Faculty
- Complutense University of Madrid (UCM)
- Madrid 28040, Spain
| | - Jose Luis López-Lacomba
- Tissue Engineering Group
- Institute of Biofunctional Studies
- Pharmacy Faculty
- Complutense University of Madrid (UCM)
- Madrid 28040, Spain
| | - Alberto Gallardo
- Polymer Functionalization Group
- Department of Applied Macromolecular Chemistry
- Institute of Polymer Science and Technology
- CSIC
- Madrid 28006, Spain
| |
Collapse
|
28
|
Hao Y, Shih H, Muňoz Z, Kemp A, Lin CC. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Acta Biomater 2014; 10:104-14. [PMID: 24021231 DOI: 10.1016/j.actbio.2013.08.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/05/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
We report here a synthetically simple yet highly tunable and diverse visible light mediated thiol-vinyl gelation system for fabricating cell-instructive hydrogels. Gelation was achieved via a mixed-mode step-and-chain-growth photopolymerization using functionalized 4-arm poly(ethylene glycol) as backbone macromer, eosin-Y as photosensitizer, and di-thiol containing molecule as dual purpose co-initiator/cross-linker. N-vinylpyrrolidone (NVP) was used to accelerate gelation kinetics and to adjust the stiffness of the hydrogels. Visible light (wavelength: 400-700 nm) was used to initiate rapid gelation (gel points: ~20s) that reached completion within a few minutes. The major differences between current thiol-vinyl gelation and prior visible light mediated photopolymerization are that: (1) the co-initiator triethanolamine (TEA) used in the previous systems was replaced with multifunctional thiols and (2) mixed-mode polymerized gels contain less network heterogeneity. The gelation kinetics and gel properties at the same PEG macromer concentration could be tuned by changing the identity of vinyl groups and di-thiol cross-linkers, as well as concentration of cross-linker and NVP. Specifically, acrylate-modified PEG afforded the fastest gelation rate, followed by acrylamide and methacrylate-functionalized PEG. Increasing NVP concentration also accelerated gelation and led to a higher network cross-linking density. Further, increasing di-thiol peptide concentration in the gel formulation increased hydrogel swelling and decreased gel stiffness. Due to the formation of thiol-ether-ester bonds following thiol-acrylate reaction, the gels degraded hydrolytically following a pseudo first order degradation kinetics. Degradation rate was controlled by adjusting thiol or NVP content in the polymer precursor solution. The cytocompatibility and utility of this hydrogel system were evaluated using in situ encapsulation of human mesenchymal stem cells (hMSC). Encapsulated hMSCs remained alive (>90%) throughout the duration of the study and the cells were differentiated down osteogenic lineage with varying degrees by controlling the rate and mode of gel degradation.
Collapse
|
29
|
Shahbuddin M, Bullock AJ, MacNeil S, Rimmer S. Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. J Mater Chem B 2013; 2:727-738. [PMID: 32261291 DOI: 10.1039/c3tb21640c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polysaccharides interact with cells in ways that can be conducive to wound healing. We have recently reported that konjac glucomannan (KGM) which is comprised of d-mannose and d-glucose linked by β-1,4 glycosidic chains, stimulates fibroblast proliferation. The aim of this study was to produce a range of crosslinked KGMs and bicomponent KGM containing hydrogels and to examine their potential for wound healing. Two types of KGM hydrogel were synthesized, biodegradable from crosslinked KGM and non-biodegradable by forming semi-IPNs and graft-conetworks with a second synthetic component, poly(N-vinyl pyrrolidinone-co-poly(ethyleneglycol)diacrylate) (P(NVP-co-PEGDA)), which was produced by UV initiated radical polymerization. Crosslinked KGM was formed by bimolecular termination of macro-radicals formed by oxidation with Ce(iv). Semi-IPNs were formed by copolymerization of NVP and PEGDA in the presence of KGM and in the graft-conetworks the KGM was also crosslinked using the Ce(iv) procedure. The hydrogels had different swelling properties and differences could be observed in their chemical structure using 13C solid state NMR, DSC and FTIR. Both forms were cytocompatible but only the graft-conetworks had the ability to stimulate fibroblast metabolic activity and to stimulate the migration of both fibroblasts and keratinocytes. In conclusion a form of KGM hydrogel has been produced that could benefit wound healing.
Collapse
Affiliation(s)
- Munira Shahbuddin
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Broad Lane, S37HQ, Sheffield, UK.
| | | | | | | |
Collapse
|
30
|
Párraga J, Cabedo N, Andujar S, Piqueras L, Moreno L, Galán A, Angelina E, Enriz RD, Ivorra MD, Sanz MJ, Cortes D. 2,3,9- and 2,3,11-Trisubstituted tetrahydroprotoberberines as D2 dopaminergic ligands. Eur J Med Chem 2013; 68:150-66. [PMID: 23974015 DOI: 10.1016/j.ejmech.2013.07.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
|
31
|
Singh D, Choudhary V, Dinda AK, Koul V. Interpenetrating Polymer Networks Based on Gelatin and Poly(Vinyl Pyrollidone): Evaluation of Degradation, Histocompatibility, Cytotoxicity, and Drug Release. INT J POLYM MATER PO 2012. [DOI: 10.1080/00914037.2011.617340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Liu X, Xu Y, Wu Z, Chen H. Poly(N-vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromol Biosci 2012; 13:147-54. [DOI: 10.1002/mabi.201200269] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/27/2012] [Indexed: 12/22/2022]
|
33
|
Gilmore L, Rimmer S, McArthur SL, Mittar S, Sun D, MacNeil S. Arginine functionalization of hydrogels for heparin binding--a supramolecular approach to developing a pro-angiogenic biomaterial. Biotechnol Bioeng 2012; 110:296-317. [PMID: 22753043 DOI: 10.1002/bit.24598] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 11/05/2022]
Abstract
Our aim was to synthesize a biomaterial that stimulates angiogenesis for tissue engineering applications by exploiting the ability of heparin to bind and release vascular endothelial growth factor (VEGF). The approach adopted involved modification of a hydrogel with positively charged peptides (oligolysine or oligoarginine) to achieve heparin binding. Precursor hydrogels were produced from copolymerization of N-vinyl pyrolidone, diethylene glycol bis allyl carbonate and acrylic acid (PNDA) and functionalized after activation of the carboxylic acid groups with trilysine or triarginine peptides (PNDKKK and PNDRRR). Both hydrogels were shown to bind and release bioactive VEGF165 with arginine-modified hydrogel outperforming the lysine-modified hydrogel. Cytocompatibility of the hydrogels was confirmed in vitro with primary human dermal fibroblasts and human dermal microvascular endothelial cells (HUDMECs). Proliferation of HUDMECs was stimulated by triarginine-functionalized hydrogels, and to a lesser extent by lysine functionalized hydrogels once loaded with heparin and VEGF. The data suggests that heparin-binding hydrogels provide a promising approach to a pro-angiogenic biomaterial.
Collapse
Affiliation(s)
- Louisa Gilmore
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| | | | | | | | | | | |
Collapse
|
34
|
Esfandyari-Manesh M, Javanbakht M, Dinarvand R, Atyabi F. Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as selective receptors and new carriers for the sustained release of carbamazepine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:963-972. [PMID: 22331374 DOI: 10.1007/s10856-012-4565-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
Water-compatible imprinted nanoparticles were prepared for carbamazepine as a template and used for the selective extraction and controlled release of carbamazepine. Assay materials and drug delivery carriers were typically used in aqueous environments, so it is generally preferable to prepare solvent-free molecularly imprinted nanoparticles in water using the miniemulsion polymerization method. The present work investigates a bio-analytical strategy generically applicable to imprinted materials for molecular recognition studies, including equilibrium and non-equilibrium binding, and release experiments, increasing the knowledge of the molecular interactions between the template molecules and imprinted nanoparticles. The results showed that the imprinted nanoparticles exhibited a higher binding level and slower release rate than non-imprinted nanoparticles. The selectivity of imprinted nanoparticles for carbamazepine studied in comparison with an analogue compound, oxcarbazepine, the main metabolite of carbamazepine. The recovery and selectivity of carbamazepine in human serum was determined to be 100%, 1.7 times that of oxcarbazepine. The results indicated that carbamazepine-imprinted nanoparticles are appropriate for serum level determination of the drug in therapeutic range. The template to functional monomer ratio as a key factor controlling the recognition and release kinetic mechanism of imprinted nanoparticles is discussed. The imprinted nanoparticles prepared at the appropriate template to functional monomer mole ratio (2:8) exhibited the best drug affinity (5.1 times higher) and a slower drug release rate due to the interaction of carbamazepine with the imprinted cavities within the nanoparticles. Loaded imprinted nanoparticles as drug reservoirs were able to prolong carbamazepine release, in 1% wt sodium dodecyl sulfate aqueous solution, for more than 8 days.
Collapse
|
35
|
Lapworth JW, Hatton PV, Goodchild RL, Rimmer S. Thermally reversible colloidal gels for three-dimensional chondrocyte culture. J R Soc Interface 2012; 9:362-75. [PMID: 21775322 PMCID: PMC3243393 DOI: 10.1098/rsif.2011.0308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/28/2011] [Indexed: 11/12/2022] Open
Abstract
Healthy cells are required in large numbers to form a tissue-engineered construct and primary cells must therefore be increased in number in a process termed 'expansion'. There are significant problems with existing procedures, including cell injury and an associated loss of phenotype, but three-dimensional culture has been reported to offer a solution. Reversible gels, which allow for the recovery of cells after expansion would therefore have great value in the expansion of chondrocytes for tissue engineering applications, but they have received relatively little attention to date. In this study, we examined the synthesis and use of thermoresponsive polymers that form reversible three-dimensional gels for chondrocyte cell culture. A series of polymers comprising N-isopropylacrylamide (NIPAM) and styrene was synthesized before studying their thermoresponsive solution behaviour and gelation. A poly(NIPAM-co-styrene-graft-N-vinylpyrrolidone) variant was also synthesized in order to provide increased water content. Both random- and graft-copolymers formed particulate gels above the lower critical solution temperature and, on cooling, re-dissolved to allow enzyme-free cell recovery. Chondrocytes remained viable in all of these materials for 24 days, increased in number and produced collagen type II and glycosaminoglycans.
Collapse
Affiliation(s)
- James W. Lapworth
- Polymer and Biomaterials Chemistry Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
- Biomaterials Research Group, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Paul V. Hatton
- Biomaterials Research Group, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Rebecca L. Goodchild
- Biomaterials Research Group, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Stephen Rimmer
- Polymer and Biomaterials Chemistry Laboratories, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
36
|
Liu XL, Wu ZQ, Li D, Chen H. Poly(N-vinylpyrrolidone)-modified surfaces repel plasma protein adsorption. CHINESE JOURNAL OF POLYMER SCIENCE 2012. [DOI: 10.1007/s10118-012-1118-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, Li R, Ding Y, Jiang X, Liu B. The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 2011; 32:9525-35. [PMID: 21903260 DOI: 10.1016/j.biomaterials.2011.08.072] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/23/2011] [Indexed: 12/18/2022]
Abstract
Poly(ε-caprolactone)-b-Poly(N-vinylpyrrolidone) (PCL-b-PVP) copolymers with different PVP block length were synthesized by xanthate-mediated reverse addition fragment transfer polymerization (RAFT) and the xanthate chain transfer agent on chain end was readily translated to hydroxy or aldehyde for conjugating various functional moieties, such as fluorescent dye, biotin hydrazine and tumor homing peptide iRGD. Thus, PCL-PVP nanoparticles were prepared by these functionalized PCL-b-PVP copolymers. Furthermore, paclitaxel-loaded PCL-PVP nanoparticles with satisfactory drug loading content (15%) and encapsulation efficiency (>90%) were obtained and used in vitro and in vivo antitumor examination. It was demonstrated that the length of PVP block had a significant influence on cytotoxicity, anti-BSA adsorption, circulation time, stealth behavior, biodistribution and antitumor activity for the nanoparticles. iRGD on PCL-PVP nanoparticle surface facilitated the nanoparticles to accumulate in tumor site and enhanced their penetration in tumor tissues, both of which improved the efficacy of paclitaxel-loaded nanoparticles in impeding tumor growth and prolonging the life time of H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Zhenshu Zhu
- Laboratory of Mesoscopic Chemistry and Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cytotoxicity and biocompatibility evaluation of a poly(magnesium acrylate) hydrogel synthesized for drug delivery. Int J Pharm 2011; 413:126-33. [DOI: 10.1016/j.ijpharm.2011.04.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022]
|
39
|
Abashzadeh S, Hajimiri MH, Atyabi F, Amini M, Dinarvand R. Novel physical hydrogels composed of opened-ring poly(vinyl pyrrolidone) and chitosan derivatives: Preparation and characterization. J Appl Polym Sci 2011. [DOI: 10.1002/app.33800] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Smith LE, Bonesi M, Smallwood R, Matcher SJ, MacNeil S. Using swept-source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J Tissue Eng Regen Med 2010; 4:652-8. [DOI: 10.1002/term.281] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Telford AM, James M, Meagher L, Neto C. Thermally cross-linked PNVP films as antifouling coatings for biomedical applications. ACS APPLIED MATERIALS & INTERFACES 2010; 2:2399-2408. [PMID: 20735114 DOI: 10.1021/am100406j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Protein repellent coatings are widely applied to biomedical devices in order to reduce the nonspecific adhesion of plasma proteins, which can lead to failure of the device. Poly(N-vinylpyrrolidone) (PNVP) is a neutral, hydrophilic polymer with outstanding antifouling properties often used in these applications. In this paper, we characterize for the first time a cross-linking mechanism that spontaneously occurs in PNVP films upon thermal annealing. The degree of cross-linking of PNVP films and their solubility in water can be tailored by controlling the annealing, with no need for additional chemical treatment or irradiation. The physicochemical properties of the cross-linked films were investigated by X-ray photoelectron spectroscopy, infrared spectroscopy, neutron and X-ray reflectometry, ellipsometry, and atomic force microscopy, and a mechanism for the thermally induced cross-linking based on radical formation was proposed. The treated films are insoluble in water and robust upon immersion in harsh acid environment, and maintain the excellent protein-repellent properties of unmodified PNVP, as demonstrated by testing fibrinogen and immunoglobulin G adsorption with a quartz crystal microbalance. Thermal cross-linking of PNVP films could be exploited in a wide range of biotechnological applications to give antifouling properties to objects of any size, essentially making this an alternative to high-tech surface modification techniques.
Collapse
Affiliation(s)
- Andrew M Telford
- School of Chemistry, Building F11, The University of Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
42
|
Chen J, Liu M, Chen W, Zhang N, Zhu S, Zhang S, Xiong Y. Synthesis, swelling and drug-release behaviour of a poly(N,N-diethylacrylamide-co-(2-dimethylamino) ethyl methacrylate) hydrogel. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 22:1049-68. [PMID: 20594406 DOI: 10.1163/092050610x498196] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, poly(N,N-diethylacrylamide-co-(2-dimethylamino) ethyl methacrylate) (poly(DEA-co-DMAEMA)) hydrogels were synthesized by changing the initial DEA/DMAEMA mol ratio. The hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) and lower critical solution temperature (LCST) of the hydrogels increase with the increase of DMAEMA content in the feed. The deswelling and reswelling kinetics and cytotoxicity of the different composition ratios of DEA to DMAEMA in the co-polymerized hydrogels were also investigated in detail. The absorption and release behaviour of the model drug, bovine serum albumin, were found to be dependent on hydrogel composition and environment temperature, which suggests that these materials have potential application as intelligent drug carriers.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P R China
| | | | | | | | | | | | | |
Collapse
|
43
|
Kirf D, Higginbotham CL, Rowan NJ, Devery SM. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications. Biomed Mater 2010; 5:35002. [PMID: 20404400 DOI: 10.1088/1748-6041/5/3/035002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.
Collapse
Affiliation(s)
- Dominik Kirf
- Department of Life and Physical Science, Athlone Institute of Technology, Ireland.
| | | | | | | |
Collapse
|
44
|
Zhou Z, Yang D, Nie J, Ren Y, Cui F. Injectable Poly(ethylene glycol) Dimethacrylate-based Hydrogels with Hydroxyapatite. J BIOACT COMPAT POL 2009. [DOI: 10.1177/0883911509341774] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Injectable hydrogels are attractive materials for tissue engineering as they provide fast reaction rates, low heat release, and biocompatibility for cell proliferation and permanent interface with surrounding tissue. A series of injectable poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogels with four different weight fractions of hydroxyapatite (HA) particles were prepared and thermal and mechanical properties evaluated. The cytocompatibility was assessed by examining the viability and morphology of human mesenchymal stem cells (hMSCs) seeded on the hydrogels. The in situ crosslink process displayed a vast decrease in the maximal temperature and an increase in the maximal temperature time. Cytocompatibility evaluation by MTT assay, scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM) showed that the cells on the composite hydrogels possessed better viability and adherence than the hydrogels without HA. The results indicated that composite hydrogels have potential as injectable materials for tissue engineering application.
Collapse
Affiliation(s)
- Ziyou Zhou
- State Key Laboratory of Chemical Resource Engineering Key Lab. of Beijing City on Preparation and Processing of Novel Polymer Materials; College of Material Science and Engineering Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongzhi Yang
- State Key Laboratory of Chemical Resource Engineering Key Lab. of Beijing City on Preparation and Processing of Novel Polymer Materials; College of Material Science and Engineering Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering Key Lab. of Beijing City on Preparation and Processing of Novel Polymer Materials; College of Material Science and Engineering Beijing University of Chemical Technology, Beijing, 100029, P. R. China,
| | - Yongjuan Ren
- Department of Materials Science and Engineering Tsinghua University, Beijing, 100084, P. R. China
| | - Fuzhai Cui
- Department of Materials Science and Engineering Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
45
|
Freemont TJ, Saunders BR. pH-Responsive microgel dispersions for repairing damaged load-bearing soft tissue. SOFT MATTER 2008; 4:919-924. [PMID: 32907122 DOI: 10.1039/b718441g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An important challenge for colloid scientists is to design injectable dispersions that provide structural support for damaged soft tissue and enable regeneration of tissue over the longer term. In this article we highlight a new area of research that aims to produce pH-responsive microgel dispersions that restore the mechanical properties of damaged, load-bearing, soft tissue. Chronic back pain due to degeneration of the intervertebral disc (IVD) is a major health problem and is the primary potential application for the work discussed. pH-Responsive microgel dispersions contain cross-linked polymer particles that swell when the pH approaches the pKa of the incorporated ionic co-monomer. The work considered here involves microgel particles containing MAA (methacrylic acid). The particles show pronounced pH-triggered swelling. The concentrated microgel dispersions change from a fluid to a gel at pH values greater than ca. 6.2, which is within the physiological pH range. The rheological properties are pH-dependent and can be adjusted using particle composition or concentration. Degenerated IVDs containing injected, gelled, microgel dispersions show improved mechanical properties. The disc height under biomechanically meaningful loads can be restored to values observed in non-degenerated IVDs. We also discuss the steps required to provide a minimally invasive injectable microgel system for restoring both the IVD mechanical properties and regenerating tissue in vivo. The approach discussed should also be suitable for other soft tissue types in the body.
Collapse
Affiliation(s)
- Tony J Freemont
- Division of Regenerative Medicine, School of Medicine, Stopford Building, The University of Manchester, Oxford Road, Manchester, UKM13 9PT
| | - Brian R Saunders
- Biomaterials Research Group, Manchester Materials Science Centre, School of Materials, The University of Manchester, Grosvenor Street, Manchester, UKM1 7HS
| |
Collapse
|
46
|
Perlin L, MacNeil S, Rimmer S. Cell adhesive hydrogels synthesised by copolymerisation of arg-protected Gly-Arg-Gly-Asp-Ser methacrylate monomers and enzymatic deprotection. Chem Commun (Camb) 2008:5951-3. [DOI: 10.1039/b813392a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Abstract
This manuscript presents hydrogels (HGs) from a tissue engineering perspective being especially written for those who are approaching this field by offering a concise but inclusive review of hydrogel synthesis, properties, characterization methods, and applications.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy.
| |
Collapse
|
48
|
|
49
|
Bhattacharyya D, Pillai K, Chyan OMR, Tang L, Timmons RB. A NEW CLASS OF THIN FILM HYDROGELS PRODUCED BY PLASMA POLYMERIZATION. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2007; 19:2222-2228. [PMID: 19079730 PMCID: PMC2600724 DOI: 10.1021/cm0630688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A simple, direct route to preparation of surface immobilized hydrogel films is described. Specifically, low pressure RF pulsed plasma polymerization of 1-amino-2-propanol and 2-(ethylamino)ethanol monomers produced thin hydrogel films deposited on substrates located in the plasma reactor. The successful syntheses were carried out under plasma conditions which not only yield the hydrogel but are also sufficiently energetic to produce films strongly grafted to the substrates. The polymer films obtained exhibit the thermoresponsive property of hydrogels, as shown by film color change with temperature. Additional evidence for the phase transition properties of these films was obtained using water contact angle and capillary rise measurements. The plasma polymerization approach provides an unusually simple route to synthesis of hydrogels in which the films are pin-hole free and are of easily controlled thickness. An important added advantage, particularly for applications involving biomaterials, is the conformal property of the plasma generated polymer films. The results obtained suggest that this approach should be applicable to a variety of other monomers and, based on differences observed with the present two monomers, suggest synthesis of films which exhibit a range of phase transition temperatures.
Collapse
Affiliation(s)
- Dhiman Bhattacharyya
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX – 76019-0065
| | | | | | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX – 76019-0138
| | - Richard B. Timmons
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX – 76019-0065
| |
Collapse
|
50
|
Devine DM, Devery SM, Lyons JG, Geever LM, Kennedy JE, Higginbotham CL. Multifunctional polyvinylpyrrolidinone-polyacrylic acid copolymer hydrogels for biomedical applications. Int J Pharm 2006; 326:50-9. [PMID: 16926073 DOI: 10.1016/j.ijpharm.2006.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/30/2006] [Accepted: 07/04/2006] [Indexed: 11/30/2022]
Abstract
Copolymers of N-vinylpyrrolidinone and acrylic acid, crosslinked with ethylene glycol dimethacrylate and polyethylene glycol 600 dimethacrylate were prepared by UV-polymerisation. These polymers were analysed for their extractable content by Soxhlet extraction of the samples at 100 degrees C for 72 h. Aspirin and paracetamol were incorporated into the polymer structure at 25 wt.% during the curing process and their presence confirmed by Fourier transform infrared spectroscopy. It was found that the release rate of the drug from the polymer matrix was dependent on intermolecular bonding between the polymer and active agent with aspirin being released slower than paracetamol in all cases. Results showed that paracetamol was completely released after 24h whereas complete release of aspirin took up to 70 h. Finally preliminary in vitro biocompatibility testing was performed for crosslinked polyvinylpyrrolidinone, by determining human hepatoma HepG2 cell viability in the MTT assay and DNA damage in the comet assay following direct contact with various concentrations of polyvinylpyrrolidinone-containing media. Cytotoxicity data suggests a dose-dependent effect for both crosslinkers, with concentrations in the range 0.025-2.5 mg ml(-1) showing a marginal decrease in viability to, at most, 70% that of untreated cells. Again DNA migration in the comet assay following short-term exposure to EGDMA crosslinked hydrogels correlates with MTT data.
Collapse
Affiliation(s)
- Declan M Devine
- Centre for Biopolymer and Biomolecular Research, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| | | | | | | | | | | |
Collapse
|