1
|
Nandi S, Chakrabarty S, Bandopadhyay P, Azaharuddin M, Pal A, Das A, Basu T. Synthesis of terbium-labelled tetracycline-loaded calcium phosphate nanoparticle and its mode of action on multi-drug-resistant pathogenic bacteria Escherichia coli and Salmonella kentucky. Biochem Biophys Res Commun 2025; 764:151842. [PMID: 40253911 DOI: 10.1016/j.bbrc.2025.151842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
This study dealt with synthesis of a luminescent nano-form of tetracycline, characterization of its important physico-chemical properties, and molecular mechanism of its antibacterial action on tetracycline-resistant bacterial species. Nanonization was done by entrapping tetracycline (Tet) molecules within calcium phosphate nanoparticles (CPNPs) and doping them with fluorescent terbium (Tb) ions. To characterize the particles, techniques like AFM, SEM, TEM, DLS, absorption-fluorescence-FTIR spectrometry and dialysis were used and to investigate their antibacterial potency and mechanism of action, techniques of agar plating, Ni2+-NTA chromatography, absorption-fluorescence-CD spectroscopy, gel electrophoresis and NS-TEM were used. Tet-Tb-CPNPs, prepared as colloidal suspension, were highly mono-dispersed, moderately stable, spherical in shape, ∼30 nm in size and ∼220 kDa in MW; entrapment efficiency of tetracycline within the nanocomposite particles was about 55 % and its release from them was sustained, bringing out above 95 % of entrapped tetracycline over seven days. The bactericidal concentration of Tet-Tb-CPNP on diarrhoea-causing MDR (including tetracycline) bacteria E. coli and S. kentucky was about 40-45 μg/mL. Binding of Tet-Tb-CPNPs with bacterial ribosome resulted in disruption and degradation of ribosomal proteins and RNAs; such ribosomal degradation was the root cause of its antibacterial action. Moreover, the nanonized tetracycline had no significant toxicity on human neuroblastoma SH-SY5Y cells at its antibacterial dose. Therefore, further pharmacological and clinical investigations are utmost important before commercializing Tet-Tb-CPNP as a potential nano-antibiotic.
Collapse
Affiliation(s)
- Susmita Nandi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Soumajit Chakrabarty
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Pathikrit Bandopadhyay
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Abhijit Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741 235, West Bengal, India.
| |
Collapse
|
2
|
Li K, Guo B, Gu J, Ta N, Gu J, Yu H, Sun M, Han T. Emerging advances in drug delivery systems (DDSs) for optimizing cancer complications. Mater Today Bio 2025; 30:101375. [PMID: 39759851 PMCID: PMC11699619 DOI: 10.1016/j.mtbio.2024.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
The management and treatment of tumor complications pose continuous challenges due to the inherent complexity. However, the advent of drug delivery systems (DDSs) brings promising opportunities to address the tumor complications using innovative technological approaches. This review focuses on common oncological complications, including cancer thrombosis, malignant serous effusion, tumor-associated infections, cancer pain, and treatment-related complications. Emphasis was placed on the application and potential of DDSs in mitigating and treating these tumor complications, and we delved into the underlying mechanisms of common cancer-associated complications, discussed the limitations of conventional treatments, and outlined the current status and potential development of DDSs for various complications in this review. Moreover, we have discussed the existing challenges in DDSs research, underscoring the need for addressing issues related to biocompatibility and targeting of DDSs, optimizing drug delivery routes, and enhancing delivery efficiency and precision. In conclusion, DDSs offer promising avenues for treating cancer complications, offering the potential for the development of more effective and safer drug delivery strategies, thereby improving the quality of life and survival rates of cancer patients.
Collapse
Affiliation(s)
- Kerui Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Bei Guo
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Junmou Gu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Na Ta
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Hao Yu
- Department of Endocrinology, General Hospital of Northern Theater Command, Shenyang, 110001, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Wang Z, Gao D, Shu Z. Mechanisms, Applications, and Challenges of Utilizing Nanomaterials in Cryopreservation. ADVANCED ENGINEERING MATERIALS 2024; 26. [DOI: 10.1002/adem.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Indexed: 01/05/2025]
Abstract
Cryopreservation of biological samples, including cells, tissues, and organs, has become an essential component in various biomedical research and applications, such as cellular therapy, tissue engineering, organ transplantation, and conservation of endangered species. However, it faces critical challenges throughout the cryopreservation process, such as loading/unloading of cryoprotective agent (CPA), ice inhibition during cooling, and ultrafast and uniform heating during rewarming. Applying nanomaterials in cryopreservation has emerged as a promising solution to address these challenges in each step due to their unique properties. For instance, in order to deliver nonpermeating CPA into cells, some nanomaterials, such as polymeric nanocapsule, can carry nonpermeating CPA to penetrate into the cells, regulating the intracellular ice crystal. During cooling, some nanomaterials, such as graphene oxide, can bind to basal or prism planes of ice crystals, suppressing the ice growth. During rewarming, some nanomaterials, such as magnetic nanoparticles, can improve the heating performance, preventing devitrification and recrystallization during rewarming. However, challenges in nanomaterials‐assisted cryopreservation remain, including the need for comprehensive studies on nanomaterials toxicity and the development of scalable manufacturing processes for industrial applications. This review examines the role of nanomaterials in cryopreservation, focusing on their mechanisms, applications, and associated challenges.
Collapse
Affiliation(s)
- Ziyuan Wang
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Dayong Gao
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
| | - Zhiquan Shu
- Department of Mechanical Engineering University of Washington Seattle WA 98195 USA
- School of Engineering and Technology University of Washington Tacoma Tacoma WA 98402 USA
| |
Collapse
|
4
|
Min KH, Kim DH, Kim KH, Seo JH, Pack SP. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration. Biomimetics (Basel) 2024; 9:511. [PMID: 39329533 PMCID: PMC11430767 DOI: 10.3390/biomimetics9090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Calcium-based materials, such as calcium carbonate, calcium phosphate, and calcium silicate, have attracted significant attention in biomedical research, owing to their unique physicochemical properties and versatile applications. The distinctive characteristics of these materials, including their inherent biocompatibility and tunable structures, hold significant promise for applications in bone regeneration and tissue engineering. This review explores the biomedical applications of calcium-containing materials, particularly for bone regeneration. Their remarkable biocompatibility, tunable nanostructures, and multifaceted functionalities make them pivotal for advancing regenerative medicine, drug delivery system, and biomimetic scaffold applications. The evolving landscape of biomedical research continues to uncover new possibilities, positioning calcium-based materials as key contributors to the next generation of innovative biomaterial scaffolds.
Collapse
Affiliation(s)
- Ki Ha Min
- Institute of Industrial Technology, Korea University, Sejong 30019, Republic of Korea;
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Koung Hee Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Joo-Hyung Seo
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (D.H.K.); (K.H.K.); (J.-H.S.)
| |
Collapse
|
5
|
Rucci B, Boyle B, Byrne M. Hollow Polyethyleneimine Nanoparticles with Drug Loaded DNA for Chemotherapeutic Applications. Chempluschem 2024; 89:e202400129. [PMID: 38600036 DOI: 10.1002/cplu.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
The next generation of anticancer agents are emerging from rationally designed nanostructured materials. This work involved the synthesis and characterization of novel hollow DNA-conjugated gold nanoparticles (DNA-AuNPs) for controlled drug delivery. Polyethyleneimine (PEI) was bound to AuNPs, forming polymer-shell nanoparticles. Dissolution of the gold core via iodine formed hollow core polymeric nanoparticles (HCPNPs) and a high density (85 molecules/particle) of DNA intercalated with daunorubicin was conjugated. Particles were spherical with an average diameter of 105.7±17.3 nm and zeta potential of 20.4±3.54 mV. We hypothesize the DNA backbone electrostatically condensed to the primary amines on the surface of the particle toroidally, weaving itself within the polymer shell. During the DNA intercalation process, increasing the ionic concentration and decreasing the amine/phosphate ratio 10-fold increased drug intercalation 64 % and 61 %, respectively, allowing us to determine the optimal method of particle synthesis. As intercalation sites increased with increasing DNA strand length, drug loading increased. An average of 874±40.1 daunorubicin molecules were loaded per HCPNP. HCPNPs with drug intercalated DNA have strong potential to be clinically efficacious drug delivery vehicles due to the versatility of DNA and high drug loading capacities.
Collapse
Affiliation(s)
- Brendan Rucci
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Brian Boyle
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Mark Byrne
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
6
|
Park J, Evangelopoulos M, Vasher MK, Kudruk S, Ramani N, Mayer V, Solivan AC, Lee A, Mirkin CA. Enhancing Endosomal Escape and Gene Regulation Activity for Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306902. [PMID: 37932003 PMCID: PMC10947971 DOI: 10.1002/smll.202306902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/19/2023] [Indexed: 11/08/2023]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) is limited by their poor stability and low cellular uptake. When formulated as spherical nucleic acids (SNAs), siRNAs are resistant to nuclease degradation and enter cells without transfection agents with enhanced activity compared to their linear counterparts; however, the gene silencing activity of SNAs is limited by endosomal entrapment, a problem that impacts many siRNA-based nanoparticle constructs. To increase cytosolic delivery, SNAs are formulated using calcium chloride (CaCl2 ) instead of the conventionally used sodium chloride (NaCl). The divalent calcium (Ca2+ ) ions remain associated with the multivalent SNA and have a higher affinity for SNAs compared to their linear counterparts. Importantly, confocal microscopy studies show a 22% decrease in the accumulation of CaCl2 -salted SNAs within the late endosomes compared to NaCl-salted SNAs, indicating increased cytosolic delivery. Consistent with this finding, CaCl2 -salted SNAs comprised of siRNA and antisense DNA all exhibit enhanced gene silencing activity (up to 20-fold), compared to NaCl-salted SNAs regardless of sequence or cell line (U87-MG and SK-OV-3) studied. Moreover, CaCl2 -salted SNA-based forced intercalation probes show improved cytosolic mRNA detection.
Collapse
Affiliation(s)
- Jungsoo Park
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Michael Evangelopoulos
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Matthew K. Vasher
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Sergej Kudruk
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Material Sciences and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
| | - Vinzenz Mayer
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Alexander C. Solivan
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
| | - Andrew Lee
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208
| | - Chad A. Mirkin
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Material Sciences and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208
| |
Collapse
|
7
|
Hu Y, Fang L, Zhang H, Zheng S, Liao M, Cui Q, Wei H, Wu D, Cheng H, Qi Y, Wang H, Xin T, Wang T, Chai R. Emerging biotechnologies and biomedical engineering technologies for hearing reconstruction. SMART MEDICINE 2023; 2:e20230021. [PMID: 39188297 PMCID: PMC11235852 DOI: 10.1002/smmd.20230021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 08/28/2024]
Abstract
Hearing impairment is a global health problem that affects social communications and the economy. The damage and loss of cochlear hair cells and spiral ganglion neurons (SGNs) as well as the degeneration of neurites of SGNs are the core causes of sensorineural hearing loss. Biotechnologies and biomedical engineering technologies provide new hope for the treatment of auditory diseases, which utilizes biological strategies or tissue engineering methods to achieve drug delivery and the regeneration of cells, tissues, and even organs. Here, the advancements in the applications of biotechnologies (including gene therapy and cochlear organoids) and biomedical engineering technologies (including drug delivery, electrode coating, electrical stimulation and bionic scaffolds) in the field of hearing reconstruction are presented. Moreover, we summarize the challenges and provide a perspective on this field.
Collapse
Affiliation(s)
- Yangnan Hu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Le Fang
- Department of NeurologyThe China‐Japan Union Hospital of Jilin UniversityChangchunJilinChina
| | - Hui Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Shasha Zheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Menghui Liao
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Qingyue Cui
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hao Wei
- Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical DisciplineNanjingChina
| | - Danqi Wu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hong Cheng
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yanru Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Tian Wang
- Department of Otolaryngology‐Head and Neck SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunan ProvinceChina
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Zhang G, Kang D, Zhang Z, Li Y, Jiang J, Tu Q, Du J, Wang J. Verification and Analysis of Filter Paper-Based Intracellular Delivery of Exogenous Substances. Anal Chem 2023; 95:4353-4361. [PMID: 36623324 DOI: 10.1021/acs.analchem.2c04675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The intracellular delivery of exogenous substances is an essential technical means in the field of biomedical research, including cell therapy and gene editing. Although many delivery technologies and strategies are present, each technique has its own limitations. The delivery cost is usually a major limiting factor for general laboratories. In addition, simplifying the operation process and shortening the delivery time are key challenges. Here, we develop a filter paper-syringe (FPS) delivery method, a new type of cell permeation approach based on filter paper. The cells in a syringe are forced to pass through the filter paper quickly. During this process, external pressure forces the cells to collide and squeeze with the fiber matrix of the filter paper, causing the cells to deform rapidly, thereby enhancing the permeability of the cell membrane and realizing the delivery of exogenous substances. Moreover, the large gap between the fiber networks of filter paper can prevent the cells from bearing high pressure, thus maintaining high cell vitality. Results showed that the slow-speed filter paper used can realize efficient intracellular delivery of various exogenous substances, especially small molecular substances (e.g., 3-5 kDa dextran and siRNA). Meanwhile, we found that the FPS method not only does not require a lengthy operating step compared with the widely used liposomal delivery of siRNA but also that the delivery efficiency is similar. In conclusion, the FPS approach is a simple, easy-to-operate, and fast (about 2 s) delivery method and may be an attractive alternative to membrane destruction-based transfection.
Collapse
Affiliation(s)
- Guorui Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Zhonghui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Yuanchang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jingjing Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
9
|
Han X, Lu Y, Xu Z, Chu Y, Ma X, Wu H, Zou B, Zhou G. Anionic liposomes prepared without organic solvents for effective siRNA delivery. IET Nanobiotechnol 2023; 17:269-280. [PMID: 36786285 DOI: 10.1049/nbt2.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Currently, organic solvents are necessary for the preparation of anionic liposomes for siRNA delivery. The removal of organic solvent is time-consuming and the residual organic solvent is not only a hidden danger, but also affects the stability of anionic liposomes. Glycerol, which is physiologically compatible and does not need to be removed, is used to promote the dispersion of lipids and the formation of anionic liposomes. Additionally, the preparation process is simple and not time-consuming. The results showed that anionic liposomes, which were typically spherical with a particle size of 188.9 nm were successfully prepared with glycerol. And with the help of Ca2+ , siRNA was encapsulated in anionic liposomes. The highest encapsulation efficiency at 2.4 mM Ca2+ reached 91%. And the formation of calcium phosphate could promote the endosomal escape of siRNA effectively. The results from cell viability showed that the anionic liposomes had no obvious cytotoxicity. It was also verified that anionic liposomes could improve the resistance of siRNA against degradation. Additionally, siRNA delivered by anionic liposomes could play an effective role in knockout. Therefore, anionic liposomes prepared with glycerol will be a safe and effective delivery platform for siRNA and even other nucleic acid drugs.
Collapse
Affiliation(s)
- Xiu Han
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yan Lu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhaoluo Xu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Wang H, Tenkumo T, Nemoto E, Kanda Y, Ogawa T, Sasaki K. Introduction of tenomodulin by gene transfection vectors for rat bone tissue regeneration. Regen Ther 2023; 22:99-108. [PMID: 36712960 PMCID: PMC9842804 DOI: 10.1016/j.reth.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Periodontal ligament is regenerated in association with hard tissue regeneration. Tenomodulin (Tnmd) expression has been confirmed in periodontal ligament and it reportedly inhibits angiogenesis or is involved in collagen fibril maturation. The introduction of Tnmd by gene transfection in bone tissue regeneration therapy might inhibit topical hard tissue formation and induce the formation of dense fibrous tissue. Therefore, the effect of Tnmd introduction by gene transfection technique in vitro and in vivo was investigated in this study. Methods Osteogenesis- and chondrogenesis-related gene expression levels in osteoblastic cells (MC3T3E1) and rat bone marrow derived cells were detected using qPCR three days after gene transfection with plasmid DNA (Tnmd) using non-viral gene transfection vectors: a calcium phosphate-based gene transfection vector (CaP(Tnmd)) or a cationic polymer-based reagent (JetPEI (Tnmd)). Next, an atelocollagen scaffold with or without CaP (Tnmd) or JetPEI (Tnmd) was implanted into a rat calvaria bone defect, and the remaining bone defect volume and the tissue reaction at 28 days after surgery were evaluated. Results Runx 2 and SP7 mRNA was reduced by JetPEI (Tnmd) in both cells, but not in CaP(Tnmd). The volume of expressed Tnmd was at 9 ng/mL in both gene transfection vector. The remaining bone defect volume of JetPEI (Tnmd) was significantly bigger than that of the other groups and CaP (EGFP), and that of CaP (Tnmd) was significantly bigger than that of CaP (EGFP). Conclusions Tnmd introduction treatment inhibits bone formation in artificial bone defect, however, the effect of that was dependent on non-viral gene transfection vector.
Collapse
Affiliation(s)
- Han Wang
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Corresponding author. Fax.: (+81)(022)717-8371.
| | - Eiji Nemoto
- Division of Periodontology, Department of Oral Biology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshiaki Kanda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
11
|
Nanotechnology for DNA and RNA delivery. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
12
|
Application and translation of nano calcium phosphates in biomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
13
|
Akbarpour Arsanjani A, Abuei H, Behzad-Behbahani A, Bagheri Z, Arabsolghar R, Farhadi A. Activating transcription factor 3 inhibits NF‑κB p65 signaling pathway and mediates apoptosis and cell cycle arrest in cervical cancer cells. Infect Agent Cancer 2022; 17:62. [PMID: 36522783 PMCID: PMC9753250 DOI: 10.1186/s13027-022-00475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As a novel tumor suppressor mediator, activating transcription factor 3 (ATF3) has recently aroused an interest in its possible therapeutic applications in various cancers. In this study, we evaluated the effect of ATF3 overexpression on the cellular level of nuclear factor kappa B (NF-κB) in human papillomavirus (HPV)-infected Ca Ski cells. Further, we examined whether ATF3 could mediate cell cycle arrest and alter the apoptosis level of Ca Ski cells. METHODS The biological behavior of Ca Ski cells was evaluated prior and subsequent to the overexpression of ATF3 by MTT assay, fluorescence microscopy, cell cycle and annexin V/PI flow cytometric analysis. The effect of ectopic ATF3 expression on the cellular level of NF-κB in HPV-positive cells was evaluated by western blotting assay. RESULTS The overexpression of ATF3 in Ca Ski cells led to significant apoptosis and cell cycle arrest in the G1 phase. Western blotting assay revealed a discernible reduction of NF-κB p65 level in cervical cancer cells. CONCLUSION ATF3 acts as a tumor suppressor factor in HPV16-infected Ca Ski cells and exerts anti-cancer effects on HPV16-related cervical cancer cells potentially by hindering cell growth and inducing cell cycle arrest through the down-regulation of NF-κB. Our results suggest that ATF3 induction or NF-κB suppression may be useful targets for HPV16-related cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Amirhossein Akbarpour Arsanjani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Bagheri
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rita Arabsolghar
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
15
|
Wang Y, Wang N, Yang Y, Chen Y, Zhang Z. Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. J Nanobiotechnology 2022; 20:499. [PMID: 36424661 DOI: 10.1186/s12951-022-01713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractGene transfection was supposed to be the most promising technology to overcome the vast majority of diseases and it has been popularly reported in clinical applications of gene therapy. In spite of the rapid development of novel transfection materials and methods, the influence of morphology-dependent nanomechanics of malignant osteosarcoma on gene transfection is still unsettled. In this study, cell spreading and adhesion area was adjusted by the prepared micropatterns to regulate focal adhesion (FA) formation and cytoskeletal organization in osteosarcoma cells. The micropattern-dependent FA and cytoskeleton could induce different cellular nanomechanics to affect cell functions. Our results indicated that transfection efficiency was improved with enlarging FA area and cell nanomechanics in micropatterned osteosarcoma. The difference of gene transfection in micropatterned cells was vigorously supported by cellular internalization capacity, Ki67 proliferation ability and YAP mechanotranduction through the regulation of focal adhesion and cytoskeletal mechanics. This study is an attempt to disclose the relationship of cell nanomechanics and gene transfection for efficient gene delivery and develop multifunctional nanomedicine biomaterials for accurate gene therapy in osteosarcoma cells.
Collapse
|
16
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
17
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
18
|
Vorobyev PO, Kochetkov DV, Vasilenko KV, Lipatova AV. Comparative efficiency of accessible transfection methods in model cell lines for biotechnological applications. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Transient gene expression is one of the most common methods in molecular biology, equally relevant for basic research projects and biotechnological industries. Despite the existence of commercial transfection systems, which afford high transfection efficiency and high expression levels of reporter genes, expanding such systems to industrial scales is often problematic due to high costs of the reagents. The well-described methods of cationic and calcium-phosphate transfection are accessible and ensure reproducible results at much lower costs. This study is aimed at comparative validation of calcium phosphate and cationic (polyethylenimine-based) transfection protocols along with the commercially available TurboFect reagent for mono- and cotransfections on a panel of commonly used cell lines including HEK293T, Huh7, BHK-21, CHO and MRC5. The efficiency of transfection with plasmid constructs encoding different fluorescent proteins was measured by flow cytometry. Of all the tested methods, calcium phosphate transfection afforded the highest efficiency of plasmid DNA delivery in all the cell lines except BHK21, for which the PEI method turned out to be more efficient than calcium phosphate transfection, and CHO, for which both methods showed comparable efficiency.
Collapse
Affiliation(s)
- PO Vorobyev
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - DV Kochetkov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - KV Vasilenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - AV Lipatova
- Engelhardt Institute of Molecular Biology, Moscow, Russia
| |
Collapse
|
19
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
20
|
Munir MU, Salman S, Ihsan A, Elsaman T. Synthesis, Characterization, Functionalization and Bio-Applications of Hydroxyapatite Nanomaterials: An Overview. Int J Nanomedicine 2022; 17:1903-1925. [PMID: 35530974 PMCID: PMC9075913 DOI: 10.2147/ijn.s360670] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 01/12/2023] Open
Abstract
Hydroxyapatite (HA) is similar to natural bone regarding composition, and its structure favors in biomedical applications. Continuous research and progress on HA nanomaterials (HA-NMs) have explored novel fabrication approaches coupled with functionalization and characterization methods. These nanomaterials have a significant role in many biomedical areas like sustained drug and gene delivery, bio-imaging, magnetic resonance, cell separation, and hyperthermia treatment due to their promising biocompatibility. This review highlighted the HA-NMs chemical composition, recent progress in synthesis methods, characterization and surface modification methods, ion-doping, and role in biomedical applications. HA-NMs have a substantial role as drug delivery vehicles, coating material, bone implant, coating, ceramic, and composite materials. Here, we try to summarize an overview of HA-NMs with the provision of future directions.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ayehsa Ihsan
- Nanobiotech Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| |
Collapse
|
21
|
Zhang G, Han S, Wang L, Yao Y, Chen K, Chen S. A Ternary Synergistic eNOS Gene Delivery System Based on Calcium Ion and L-Arginine for Accelerating Angiogenesis by Maximizing NO Production. Int J Nanomedicine 2022; 17:1987-2000. [PMID: 35530975 PMCID: PMC9075900 DOI: 10.2147/ijn.s363168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to construct a delivery system based on L-arginine-modified calcium phosphate (CaP) to load eNOS plasmids (peNOS), which could amply nitric oxide (NO) to repair endothelial damage, promote angiogenic activities and alleviate inflammation. Methods pDNA-loaded CaP nanocomplex (CaP/pDNA) were prepared by co-precipitation method, subsequently modified by L-arginine. The gene transfection efficiency, pro-angiogenic and anti-inflammatory ability were investigated in vivo and in vitro. The therapeutic effect on ischemic hindlimb in vivo was assessed. Results L-arginine modification augmented the transfection efficiency of CaP/peNOS to elevate the eNOS expression, and then served as NO substrate catalyzed by eNOS. At the same time, calcium ions produced by degradation of CaP carriers enhanced the activity of eNOS. In vitro experiments, the loading capability and transfection performance of R(L)-CaP were confirmed to be superior to that of CaP. Additionally, HUVECs treated with R(L)-CaP/peNOS showed the strongest NO release, cell migration, tube formation and the lowest inflammatory levels compared to the CaP/peNOS and R(D)-CaP/peNOS groups. We also demonstrated the advantages of R(L)-CaP/peNOS in increasing blood reperfusion in hindlimb ischemia mice by accelerating angiogenesis and reducing inflammation, which can be attributed to the highest eNOS-derived NO production. Conclusion The combination strategy of peNOS transfection, L-arginine supplement and calcium ions addition is a promising therapeutic approach for certain vascular diseases, based on the synergistic NO production.
Collapse
Affiliation(s)
- Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
- Correspondence: Guiming Zhang, Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China, Email
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Lisheng Wang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Kai Chen
- Department of Clinical Research, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
| | - Si Chen
- Department of Anesthesiology, the 991th Hospital of PLA, Xiangyang, 441000, People’s Republic of China
| |
Collapse
|
22
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
23
|
Rabiee N, Bagherzadeh M, Ghadiri AM, Kiani M, Ahmadi S, Jajarmi V, Fatahi Y, Aldhaher A, Tahriri M, Webster TJ, Mostafavi E. Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:919-932. [PMID: 34580605 PMCID: PMC8457547 DOI: 10.1007/s40097-021-00446-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/03/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED There have been numerous advancements in the early diagnosis, detection, and treatment of genetic diseases. In this regard, CRISPR technology is promising to treat some types of genetic issues. In this study, the relationship between calcium (due to its considerable physicochemical properties) and chitosan (as a natural linear polysaccharide) was investigated and optimized for pCRISPR delivery. To achieve this, different forms of calcium, such as calcium nanoparticles (CaNPs), calcium phosphate (CaP), a binary blend of calcium and chitosan including CaNPs/Chitosan and CaP/Chitosan, as well as their tertiary blend including CaNPs-CaP/Chitosan, were prepared via both routine and green procedures using Salvia hispanica to reduce toxicity and increase nanoparticle stability (with a yield of 85%). Such materials were also applied to the human embryonic kidney (HEK-293) cell line for pCRISPR delivery. The results were optimized using different characterization techniques demonstrating acceptable binding with DNA (for both CaNPs/Chitosan and CaNPs-CaP/Chitosan) significantly enhancing green fluorescent protein (EGFP) (about 25% for CaP/Chitosan and more than 14% for CaNPs-CaP/Chitosan). SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40097-021-00446-1.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | | | - Mahsa Kiani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran
- Faculty of Pharmacy, Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, 14155-6451 Iran
- Universal Scientific Education and Research Network (USERN), Tehran, 15875-4413 Iran
| | - Abdullah Aldhaher
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
24
|
Rayamajhi S, Wilson S, Aryal S, DeLong R. Biocompatible FePO 4 Nanoparticles: Drug Delivery, RNA Stabilization, and Functional Activity. NANOSCALE RESEARCH LETTERS 2021; 16:169. [PMID: 34837559 PMCID: PMC8626714 DOI: 10.1186/s11671-021-03626-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
FePO4 NPs are of special interest in food fortification and biomedical imaging because of their biocompatibility, high bioavailability, magnetic property, and superior sensory performance that do not cause adverse organoleptic effects. These characteristics are desirable in drug delivery as well. Here, we explored the FePO4 nanoparticles as a delivery vehicle for the anticancer drug, doxorubicin, with an optimum drug loading of 26.81% ± 1.0%. This loading further enforces the formation of Fe3+ doxorubicin complex resulting in the formation of FePO4-DOX nanoparticles. FePO4-DOX nanoparticles showed a good size homogeneity and concentration-dependent biocompatibility, with over 70% biocompatibility up to 80 µg/mL concentration. Importantly, cytotoxicity analysis showed that Fe3+ complexation with DOX in FePO4-DOX NPs enhanced the cytotoxicity by around 10 times than free DOX and improved the selectivity toward cancer cells. Furthermore, FePO4 NPs temperature-stabilize RNA and support mRNA translation activity showing promises for RNA stabilizing agents. The results show the biocompatibility of iron-based inorganic nanoparticles, their drug and RNA loading, stabilization, and delivery activity with potential ramifications for food fortification and drug/RNA delivery.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA
- Nanotechnology Innovation Center of Kansas State, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66502, USA
| | - Sarah Wilson
- Nanotechnology Innovation Center of Kansas State, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66502, USA
| | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, 75799, USA.
| | - Robert DeLong
- Nanotechnology Innovation Center of Kansas State, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66502, USA.
| |
Collapse
|
25
|
Li S, Wang B, Jiang S, Pan Y, Shi Y, Kong W, Shan Y. Surface-Functionalized Silica-Coated Calcium Phosphate Nanoparticles Efficiently Deliver DNA-Based HIV-1 Trimeric Envelope Vaccines against HIV-1. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53630-53645. [PMID: 34735127 DOI: 10.1021/acsami.1c16989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection remains one of the worst crises in global health. The prevention of HIV-1 infection is a crucial task that needs to be addressed due to the absence of a licensed vaccine against HIV-1. DNA vaccines present a promising alternative approach to combat HIV-1 infection due to their excellent safety profile, lack of severe side effects, and relatively rapid fabrication. Traditional vaccines composed of a monomeric envelope or peptide fragments have been indicated to lack protective efficacy mediated by inducing HIV-1-specific neutralizing antibodies in clinical trials. The immunogenicity and protection against HIV-1 induced by DNA vaccines are limited due to the poor uptake of these vaccines by antigen-presenting cells and their ready degradation by DNases and lysosomes. To address these issues of naked DNA vaccines, we described the feasibility of CpG-functionalized silica-coated calcium phosphate nanoparticles (SCPs) for efficiently delivering DNA-based HIV-1 trimeric envelope vaccines against HIV-1. Vaccines comprising the soluble BG505 SOSIP.664 trimer fused to the GCN4-based isoleucine zipper or bacteriophage T4 fibritin foldon motif with excellent simulation of the native HIV-1 envelope were chosen as trimer-based vaccine platforms. Our results showed that SCP-based DNA immunization could significantly induce both broad humoral immune responses and potent cellular immune responses compared to naked DNA vaccination in vivo. To the best of our knowledge, this study is the first to assess the feasibility of CpG-functionalized SCPs for efficiently delivering DNA vaccines expressing a native-like HIV-1 trimer. These CpG-functionalized SCPs for delivering DNA-based HIV-1 trimeric envelope vaccines may lead to the development of promising vaccine candidates against HIV-1.
Collapse
Affiliation(s)
- Shuang Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Shun Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yuhua Shi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
26
|
A Dick T, Uludağ H. Mineralized polyplexes for gene delivery: Improvement of transfection efficiency as a consequence of calcium incubation and not mineralization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112419. [PMID: 34579928 DOI: 10.1016/j.msec.2021.112419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy is an emerging field in which nucleic acids are used to control protein expression. The necessity of delivering nucleic acids to specific cell types and intracellular sites demands the use of highly specialized gene carriers. As a carrier modification technique, mineralization has been successfully used to modify viral and non-viral carriers, providing new properties that ultimately aim to increase the transfection efficiency. However, for the specific case of polyplexes used in gene therapy, recent literature shows that interaction with calcium, a fundamental step of mineralization, might be effective to increase transfection efficiency, leaving an ambiguity about of the role of mineralization for this type of gene carriers. To answer this question and to reveal the properties responsible for increasing transfection efficiency, we mineralized poly(aspartic acid) coated polyplexes at various CaCl2 and Na3PO4 concentrations, and evaluated the resultant carriers for physicochemical and morphological characteristics, as well as transfection and delivery efficiency with MC3T3-E1 mouse osteoblastic cells. We found that both mineralization and calcium incubation positively affected the transfection efficiency and uptake of polyplexes in MC3T3-E1 cells. However, this effect originated from the properties achieved by polyplexes after the calcium incubation step that are maintained after mineralization, including particle size increase, improved pDNA binding, and adjustment of zeta potential. Considering that mineralization can be a longer process than calcium incubation, we find that calcium incubation might be sufficient and preferred if improved transfection efficiency in vitro is the only effect desired.
Collapse
Affiliation(s)
- Teo A Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Balakrishnan B. Role of Nanoscale Delivery Systems in Tissue Engineering. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Kolanthai E, Fu Y, Kumar U, Babu B, Venkatesan AK, Liechty KW, Seal S. Nanoparticle mediated RNA delivery for wound healing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1741. [PMID: 34369096 DOI: 10.1002/wnan.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Wound healing is a complicated physiological process that comprises various steps, including hemostasis, inflammation, proliferation, and remodeling. The wound healing process is significantly affected by coexisting disease states such as diabetes, immunosuppression, or vascular disease. It can also be impacted by age, repeated injury, or hypertrophic scarring. These comorbidities can affect the rate of wound closure, the quality of wound closure, and tissues' function at the affected sites. There are limited options to improve the rate or quality of wound healing, creating a significant unmet need. Advances in nucleic acid research and the human genome project have developed potential novel approaches to address these outstanding requirements. In particular, the use of microRNA, short hairpin RNA, and silencing RNA is unique in their abilities as key regulators within the physiologic machinery of the cell. Although this innovative therapeutic approach using ribonucleic acid (RNA) is an attractive approach, the application as a therapeutic remains a challenge due to site-specific delivery, off-target effects, and RNA degradation obstacles. An ideal delivery system is essential for successful gene delivery. An ideal delivery system should result in high bioactivity, inhibit rapid dilution, controlled release, allow specific activation timings facilitating physiological stability, and minimize multiple dosages. Currently, these goals can be achieved by inorganic nanoparticle (NP) (e.g., cerium oxide, gold, silica, etc.) based delivery systems. This review focuses on providing insight into the preeminent research carried out on various RNAs and their delivery through NPs for effective wound healing. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
| | - Balaashwin Babu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | | | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
29
|
Wey K, Schirrmann R, Diesing D, Lang S, Brandau S, Hansen S, Epple M. Coating of cochlear implant electrodes with bioactive DNA-loaded calcium phosphate nanoparticles for the local transfection of stimulatory proteins. Biomaterials 2021; 276:121009. [PMID: 34280824 DOI: 10.1016/j.biomaterials.2021.121009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Calcium phosphate nanoparticles were loaded with nucleic acids to enhance the on-growth of tissue to a cochlear implant electrode. The nanoparticle deposition on a metallic electrode surface is possible by electrophoretic deposition (EPD) or layer-by-layer deposition (LbL). Impedance spectroscopy showed that the coating layer did not interrupt the electrical conductance at physiological frequencies and beyond (1-40,000 Hz). The transfection was demonstrated with the model cell lines HeLa and 3T3 as well as with primary explanted spiral ganglion neurons (rat) with the model protein enhanced green fluorescent protein (EGFP). The expression of the functional protein brain-derived neurotrophic factor (BDNF) was also shown. Thus, a coating of inner-ear cochlear implant electrodes with nanoparticles that carry nucleic acids will enhance the ongrowth of spiral ganglion cell axons for an improved transmission of electrical pulses.
Collapse
Affiliation(s)
- Karolin Wey
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Ronja Schirrmann
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Detlef Diesing
- Physical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Hansen
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
30
|
Abstract
Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| | - Matthias Epple
- Inorganic chemistryUniversity of Duisburg-EssenUniversitaetsstr. 5–745117EssenGermany
| |
Collapse
|
31
|
Friedrich B, Auger JP, Dutz S, Cicha I, Schreiber E, Band J, Boccacccini AR, Krönke G, Alexiou C, Tietze R. Hydroxyapatite-Coated SPIONs and Their Influence on Cytokine Release. Int J Mol Sci 2021; 22:ijms22084143. [PMID: 33923700 PMCID: PMC8072956 DOI: 10.3390/ijms22084143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/30/2022] Open
Abstract
Hydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPIONHAp), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy. The results showed a successful synthesis of 190 nm sized particles and their stable coating, resulting in SPIONHAp. Potential cytotoxic effects of SPIONHAp on EL4, THP-1, and Jurkat cells were tested, showing only a minor effect on cell viability at the highest tested concentration (400 µg Fe/mL). The results further showed that hydroxyapatite-coated SPIONs can induce minor TNF-α and IL-6 release by murine macrophages at a concentration of 100 µg Fe/mL. To investigate if and how such particles interact with other substances that modulate the immune response, SPIONHAp-treated macrophages were incubated with LPS (lipopolysaccharides) and dexamethasone. We found that cytokine release in response to these potent pro- and anti-inflammatory agents was modulated in the presence of SPIONHAp. Knowledge of this behavior is important for the management of inflammatory processes following in vivo applications of this type of SPIONs.
Collapse
Affiliation(s)
- Bernhard Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Jean-Philippe Auger
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.-P.A.); (G.K.)
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Eveline Schreiber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Julia Band
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Aldo R. Boccacccini
- Institute of Biomaterials, Department of Materials Science and Engineering, FAU, 91058 Erlangen, Germany;
| | - Gerhard Krönke
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.-P.A.); (G.K.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (B.F.); (I.C.); (E.S.); (J.B.); (C.A.)
- Correspondence:
| |
Collapse
|
32
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
33
|
Dhiman S, Yadav A, Debnath N, Das S. Application of Core/Shell Nanoparticles in Smart Farming: A Paradigm Shift for Making the Agriculture Sector More Sustainable. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3267-3283. [PMID: 33719438 DOI: 10.1021/acs.jafc.0c05403] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Modern agriculture has entered an era of technological plateau where intervention of smarter technology like nanotechnology is imminently required for making this sector economically and environmentally sustainable. Throughout the world, researchers are trying to exploit the novel properties of several nanomaterials to make agricultural practices more efficient. Core/shell nanoparticles (CSNs) have attracted much attention because of their multiple attractive novel features like high catalytic, optical, and electronic properties for which they are being widely used in sensing, imaging, and medical applications. Though it also has the promise to solve a number of issues related to agriculture, its full potential still remains mostly unexplored. This review provides a panoramic view on application of CSNs in solving several problems related to crop production and precision farming practices where the wastage of resources can be minimized. This review also summarizes different classes of CSNs and their synthesis techniques. It emphasizes and analyzes the probable potential applications of CSNs in the field of crop improvement and crop protection, detection of plant diseases and agrochemical residues, and augmentation of chloroplast mediated photosynthesis. In a nutshell, there is enormous scope to formulate and design CSN-based smart tools for applications in agriculture, making this sector more sustainable.
Collapse
Affiliation(s)
- Shikha Dhiman
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Annu Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Nitai Debnath
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| | - Sumistha Das
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
34
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
35
|
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, Khafaga AF, Ohran H, Alaqil AA, Abd El-Hack ME. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front Vet Sci 2021; 7:570748. [PMID: 33490124 PMCID: PMC7820179 DOI: 10.3389/fvets.2020.570748] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) infection (COVID-19) has raised considerable concern on the entire planet. On March 11, 2020, COVID-19 was categorized by the World Health Organization (WHO) as a pandemic infection, and by March 18, 2020, it has spread to 146 countries. The first internal defense line against numerous diseases is personalized immunity. Although it cannot be claimed that personalized nutrition will have an immediate impact on a global pandemic, as the nutritional interventions required a long time to induce beneficial outcomes on immunity development, nutritional strategies are still able to clarify and have a beneficial influence on the interplay between physiology and diet, which could make a positive contribution to the condition in the next period. As such, a specific goal for every practitioner is to evaluate different tests to perceive the status of the patient, such as markers of inflammation, insulin regulation, and nutrient status, and to detect possible imbalances or deficiencies. During the process of disease development, the supplementation and addition of different nutrients and nutraceuticals can influence not only the viral replication but also the cellular mechanisms. It is essential to understand that every patient has its individual needs. Even though many nutrients, nutraceuticals, and drugs have beneficial effects on the immune response and can prevent or ameliorate viral infections, it is essential to detect at what stage in COVID-19 progression the patient is at the moment and decide what kind of nutrition intervention is necessary. Furthermore, understanding the pathogenesis of coronavirus infection is critical to make proper recommendations.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer A. Nagadi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Abdulaziz A. Alaqil
- Department of Animal and Fish Production, King Faisal University, Al-Hufof, Saudi Arabia
| | | |
Collapse
|
36
|
del Valle LJ, Puiggalí J. Hydroxyapatite Based Polymer Composites for Regenerative Medicine Applications. ENCYCLOPEDIA OF MATERIALS: COMPOSITES 2021:785-803. [DOI: 10.1016/b978-0-12-819724-0.00054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Xiang C, Tenkumo T, Ogawa T, Kanda Y, Nakamura K, Shirato M, Sokolova V, Epple M, Kamano Y, Egusa H, Sasaki K. Gene transfection achieved by utilizing antibacterial calcium phosphate nanoparticles for enhanced regenerative therapy. Acta Biomater 2021; 119:375-389. [PMID: 33166711 DOI: 10.1016/j.actbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Protamine-coated multi-shell calcium phosphate (CaP) was developed as a non-viral vector for tissue regeneration therapy. CaP nanoparticles loaded with different amounts of plasmid DNA encoding bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) were used to treat MC3T3E1 cells, and the yield of the released BMP-2 or IGF-1 was measured using ELISA 3 days later. Collagen scaffolds containing CaP nanoparticles were implanted into rat cranial bone defects, and BMP-2 and IGF-1 yields, bone formation, and bone mineral density enhancement were evaluated 28 days after gene transfer. The antibacterial effects of CaP nanoparticles against Streptococcus mutans and Aggregatibacter actinomycetemcomitans increased with an increase in the protamine dose, while they were lower for Staphylococcus aureus and Porphyromonas gingivalis. In the combination treatment with BMP-2 and IGF-1, the concentration ratio of BMP-2 and IGF-1 is an important factor affecting bone formation activity. The calcification activity and OCN mRNA of MC3T3E1 cells subjected to a BMP-2:IGF-1 concentration ratio of 1:4 was higher at 14 days. During gene transfection treatment, BMP-2 and IGF-1 were released simultaneously after gene transfer; the loaded dose of the plasmid DNA encoding IGF-1 did not impact the BMP-2 or IGF-1 yield or new bone formation ratio in vitro and in vivo. In conclusion, two growth factor-releasing systems were developed using an antibacterial gene transfer vector, and the relationship between the loaded plasmid DNA dose and resultant growth factor yield was determined in vitro and in vivo.
Collapse
|
38
|
Wang Y, Yang Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Regulation of gene transfection by cell size, shape and elongation on micropatterned surfaces. J Mater Chem B 2021; 9:4329-4339. [PMID: 34013946 DOI: 10.1039/d1tb00815c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene transfection has been widely studied due to its potential applications in tissue repair and gene therapy. Many studies have focused on designing gene carriers and developing novel transfection techniques. However, the influence of cell size, shape and elongation on gene transfection has rarely been investigated. In this study, poly(vinyl alcohol)-micropatterned surfaces were prepared to precisely manipulate the size, shape and elongation of mesenchymal stem cells, and the influences of these factors on gene transfection were investigated. Cell size showed a significant influence on gene transfection. Elongation could affect the gene transfection of large cells but not small cells. Cells with a large spreading area and high aspect ratio showed high transfection with exogenous plasmid DNA. In particular, the transfection efficiency was the highest in micropatterned cells with a spreading area of 5024 μm2 and an aspect ratio of 8 : 1. In contrast, cell shape had no significant influence on gene transfection. The different influences of cell size, shape and elongation were correlated with their respective impacts on cytoskeletal structures, cellular nanoparticle uptake and DNA synthesis. Cells with a large size and elongated morphology showed well-organized actin filaments with a high cellular modulus, therefore promoting cellular nanoparticle uptake and DNA synthesis. Cells with different shapes showed similarities in actin filament organization, cellular modulus, uptake capacity and DNA synthesis. The results suggest the importance of cell size and elongation in exogenous gene transfection and should provide useful information for gene transfection and gene therapy.
Collapse
Affiliation(s)
- Yongtao Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yingjun Yang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. and Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
39
|
Hosseini S, Epple M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. NANO SELECT 2020. [DOI: 10.1002/nano.202000150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| |
Collapse
|
40
|
Sokolova V, Kostka K, Shalumon KT, Prymak O, Chen JP, Epple M. Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:102. [PMID: 33140175 PMCID: PMC7606283 DOI: 10.1007/s10856-020-06442-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/25/2020] [Indexed: 05/06/2023]
Abstract
Porous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA-nHAP spheres (150-250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA-nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA-nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - K T Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
- Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Kwei-San, Taoyuan, 33305, Taiwan.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
41
|
Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020; 10:2075-2109. [PMID: 33304780 PMCID: PMC7714980 DOI: 10.1016/j.apsb.2020.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In many ways, cancer cells are different from healthy cells. A lot of tactical nano-based drug delivery systems are based on the difference between cancer and healthy cells. Currently, nanotechnology-based delivery systems are the most promising tool to deliver DNA-based products to cancer cells. This review aims to highlight the latest development in the lipids and polymeric nanocarrier for siRNA delivery to the cancer cells. It also provides the necessary information about siRNA development and its mechanism of action. Overall, this review gives us a clear picture of lipid and polymer-based drug delivery systems, which in the future could form the base to translate the basic siRNA biology into siRNA-based cancer therapies.
Collapse
Key Words
- 1,3-propanediol, PEG-b-PDMAEMA-b-Ppy
- 2-propylacrylicacid, PAH-b-PDMAPMA-b-PAH
- APOB, apolipoprotein B
- AQP-5, aquaporin-5
- AZEMA, azidoethyl methacrylate
- Atufect01, β-l-arginyl-2,3-l-diaminopropionicacid-N-palmityl-N-oleyl-amide trihydrochloride
- AuNPs, gold nanoparticles
- B-PEI, branched polyethlenimine
- BMA, butyl methacrylate
- CFTR, cystic fibrosis transmembrane conductance regulator gene
- CHEMS, cholesteryl hemisuccinate
- CHOL, cholesterol
- CMC, critical micelles concentration
- Cancer
- DC-Chol, 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]cholesterol
- DMAEMA, 2-dimethylaminoethyl methacrylate
- DNA, deoxyribonucleic acid
- DOPC, dioleylphosphatidyl choline
- DOPE, dioleylphosphatidyl ethanolamine
- DOTAP, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate
- DOTMA, N-[1-(2,3-dioleyloxy)propy]-N,N,N-trimethylammoniumchloride
- DOX, doxorubicin
- DSGLA, N,N-dis-tearyl-N-methyl-N-2[N′-(N2-guanidino-l-lysinyl)] aminoethylammonium chloride
- DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine
- DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine
- DSPE-MPEG, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt)
- DSPE-PEG-Mal: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] (mmmonium salt), EPR
- Liposomes
- Micelles
- N-acetylgalactosamine, HIF-1α
- Nanomedicine
- PE-PCL-b-PNVCL, pentaerythritol polycaprolactone-block-poly(N-vinylcaprolactam)
- PLA, poly-l-arginine
- PLGA, poly lactic-co-glycolic acid
- PLK-1, polo-like kinase 1
- PLL, poly-l-lysine
- PPES-b-PEO-b-PPES, poly(4-(phenylethynyl)styrene)-block-PEO-block-poly(4-(phenylethynyl)styrene)
- PTX, paclitaxel
- PiRNA, piwi-interacting RNA
- Polymer
- RES, reticuloendothelial system
- RGD, Arg-Gly-Asp peptide
- RISC, RNA-induced silencing complex
- RNA, ribonucleic acid
- RNAi, RNA interference
- RNAse III, ribonuclease III enzyme
- SEM, scanning electron microscope
- SNALP, stable nucleic acid-lipid particles
- SiRNA, short interfering rNA
- Small interfering RNA (siRNA)
- S–Au, thio‒gold
- TCC, transitional cell carcinoma
- TEM, transmission electron microscopy
- Tf, transferrin
- Trka, tropomyosin receptor kinase A
- USPIO, ultra-small superparamagnetic iron oxide nanoparticles
- UV, ultraviolet
- VEGF, vascular endothelial growth factor
- ZEBOV, Zaire ebola virus
- enhanced permeability and retention, Galnac
- hypoxia-inducible factor-1α, KSP
- kinesin spindle protein, LDI
- lipid-protamine-DNA/hyaluronic acid, MDR
- lysine ethyl ester diisocyanate, LPD/LPH
- messenger RNA, MTX
- methotrexate, NIR
- methoxy polyethylene glycol-polycaprolactone, mRNA
- methoxypoly(ethylene glycol), MPEG-PCL
- micro RNA, MPEG
- multiple drug resistance, MiRNA
- nanoparticle, NRP-1
- near-infrared, NP
- neuropilin-1, PAA
- poly(N,N-dimethylacrylamide), PDO
- poly(N-isopropyl acrylamide), pentaerythritol polycaprolactone-block-poly(N-isopropylacrylamide)
- poly(acrylhydrazine)-block-poly(3-dimethylaminopropyl methacrylamide)-block-poly(acrylhydrazine), PCL
- poly(ethylene glycol)-block-poly(2-dimethylaminoethyl methacrylate)-block poly(pyrenylmethyl methacrylate), PEG-b-PLL
- poly(ethylene glycol)-block-poly(l-lysine), PEI
- poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate)-stat-poly(methoxyethyl methacrylate), PEO-b-PCL
- poly(ethylene oxide)-block-poly(Ε-caprolactone), PE-PCL-b-PNIPAM
- poly(Ε-caprolactone), PCL-PEG
- poly(Ε-caprolactone)-polyethyleneglycol-poly(l-histidine), PCL-PEI
- polycaprolactone-polyethyleneglycol, PCL-PEG-PHIS
- polycaprolactone-polyethylenimine, PDMA
- polyethylenimine, PEO-b-P(DEA-Stat-MEMA
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Nikhil D. Amnerkar
- Adv V. R. Manohar Institute of Diploma in Pharmacy, Nagpur, Maharashtra 441110, India
| | - B. Ramesh
- Sri Adichunchunagiri College of Pharmacy, Sri Adichunchunagiri University, BG Nagar, Karnataka 571418, India
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Alaa A.A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Saurabh C. Khadse
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Dist. Dhule, Maharashtra 425 405, India
| | - Rajendran Satheeshkumar
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Meenu Metha
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Garima Shrivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Flavia C. Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 4860, Chile
| |
Collapse
|
42
|
Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A. Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 2020; 41:94-120. [PMID: 33070659 DOI: 10.1080/07388551.2020.1828810] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Indwelling and implanted medical devices are subject to contamination by microbial pathogens during surgery, insertion or injection, and ongoing use, often resulting in severe nosocomial infections. Antimicrobial peptides (AMPs) offer a promising alternative to conventional antibiotics to reduce the incidence of such infections, as they exhibit broad-spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria, microbial biofilms, fungi, and viruses. In this review-perspective, we first provide an overview of the progress made in this field over the past decade with an emphasis on the local release of AMPs from implant surfaces and immobilization strategies for incorporating these agents into a wide range of medical device materials. We then provide a regulatory science perspective addressing the characterization and testing of AMP coatings based on the type of immobilization strategy used with a focus on the US market regulatory niche. Our goal is to help narrow the gulf between academic studies and preclinical testing, as well as to support a future literature base in order to develop the regulatory science of antimicrobial coatings.
Collapse
Affiliation(s)
- Mehdi Kazemzadeh-Narbat
- Office of Device Evaluation, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hao Cheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rosa Chabok
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, USA
| | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Microsystems Technologies Laboratories, MIT, Cambridge, MA, USA.,Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, México
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - K Scott Phillips
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Hosseini S, Wey K, Epple M. Enteric Coating Systems for the Oral Administration of Bioactive Calcium Phosphate Nanoparticles Carrying Nucleic Acids into the Colon. ChemistrySelect 2020. [DOI: 10.1002/slct.202002846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-Essen Universitaetsstr. 5–7 45117 Essen Germany
| | - Karolin Wey
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-Essen Universitaetsstr. 5–7 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-Essen Universitaetsstr. 5–7 45117 Essen Germany
| |
Collapse
|
44
|
Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci 2020; 279:102157. [PMID: 32330734 PMCID: PMC7261203 DOI: 10.1016/j.cis.2020.102157] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
Calcium phosphate is the inorganic mineral of hard tissues such as bone and teeth. Due to their similarities to the natural bone, calcium phosphates are highly biocompatible and biodegradable materials that have found numerous applications in dental and orthopedic implants and bone tissue engineering. In the form of nanoparticles, calcium phosphate nanoparticles (CaP's) can also be used as effective delivery vehicles to transfer therapeutic agents such as nucleic acids, drugs, proteins and enzymes into tumor cells. In addition, facile preparation and functionalization of CaP's, together with their inherent properties such as pH-dependent solubility provide advantages in delivery and release of these bioactive agents using CaP's as nanocarriers. In this review, the challenges and achievements in the intracellular delivery of these agents to tumor cells are discussed. Also, the most important issues in the design and potential applications of CaP-based biominerals are addressed with more focus on their biodegradability in tumor microenvironment.
Collapse
Affiliation(s)
- Razieh Khalifehzadeh
- Department of Chemical Engineering, Stanford University, Shriram Center, 443 Via Ortega, Stanford, California 94305, United States; Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States
| | - Hamed Arami
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States; Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, E-153, Stanford, California 94305, United States.
| |
Collapse
|
45
|
Zhu N, Wang D, Xie F, Qin M, Lin Z, Wang Y. Fabrication and Characterization of Calcium-Phosphate Lipid System for Potential Dental Application. Front Chem 2020; 8:161. [PMID: 32269987 PMCID: PMC7111464 DOI: 10.3389/fchem.2020.00161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid has been widely studied as a vehicle and loading vector, but there have been no reports of any such related application in the dental field. The purpose of this research was to fabricate and characterize a nano-size calcium-phosphate lipid (CL) system as a potential vehicle in dental regeneration study, wherein the biocompatibility with dental pulp stem cells (DPSCs) was evaluated. The effect of CL on DPSCs proliferation was analyzed by a CCK-8 assay, and the anti-inflammatory effect was investigated by quantitative polymerase chain reaction (qPCR). Moreover, the effect of CL on odontogenic differentiation of inflamed DPSCs (iDPSCs) was studied by Alizarin red staining, tissue-non-specific alkaline phosphatase (TNAP) staining, qPCR, and western blot analyses. The results of this study showed that CL did not affect the proliferation of DPSCs, it down-regulated the inflammatory-associated markers (IL-1β, IL-6, TNF-α, COX-2) of DPSCs treated with Escherichia coli lipopolysaccharide (LPS), and enhanced the in-vitro odontogenic differentiation potential of iDPSCs. This novel biomaterial has a broad application prospect for its bioactivity and flexible physical property, and thus represents a promising pulpal regeneration material.
Collapse
Affiliation(s)
- Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Zhiqiang Lin
- Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| |
Collapse
|
46
|
Tenkumo T, Rojas-Sánchez L, Vanegas Sáenz JR, Ogawa T, Miyashita M, Yoda N, Prymak O, Sokolova V, Sasaki K, Epple M. Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste. Acta Biomater 2020; 105:263-279. [PMID: 31982590 DOI: 10.1016/j.actbio.2020.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
We developed a calcium phosphate-based paste containing siRNA against TNF-α and investigated its anti-inflammatory and bone-healing effects in vitro and in vivo in a rat periodontitis model. The bioactive spherical CaP/PEI/siRNA/SiO2 nanoparticles had a core diameter of 40-90 nm and a positive charge (+23 mV) that facilitated cellular uptake. The TNF- α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. CaP/PEI/siRNA/SiO2 nanoparticles cancelled the suppression of alkaline phosphatase (ALP) activity in LPS-stimulated bone marrow-derived cells. In vivo, ALP mRNA was up-regulated, TNF-α mRNA was down-regulated, and the amount of released TNF-α was significantly reduced after topical application of the calcium phosphate-based paste containing siRNA-loaded nanoparticles. The number of TNF-α-positive cells in response to CaP/PEI/siRNA/SiO2 nanoparticle application was lower than that observed in the absence of siRNA. Elevated ALP activity and numerous TRAP-positive cells (osteoclasts) were observed in response to the application of all calcium phosphate pastes. These results demonstrate that local application of a paste consisting of siRNA-loaded calcium phosphate nanoparticles successfully induces TNF-α silencing in vitro and in vivo and removes the suppression of ALP activity stimulated by inflammation. STATEMENT OF SIGNIFICANCE: We developed a calcium phosphate-based paste containing nanoparticles loaded with siRNA against TNF-α. The nanoparticles had a core diameter of 40-90 nm and positive charge (+23 mV). The anti-inflammatory and osteoinductive effects of the paste were investigated in vitro and in vivo in a rat periodontitis model. In vitro, the TNF-α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. The ALP activity of bone marrow-derived cells was recovered. In vivo, TNF-α mRNA was down-regulated and the amount of released TNF-α was significantly reduced, whereas the ALP mRNA was up-regulated. Elevated ALP activity and TRAP-positive cells were observed by immunohistochemistry.
Collapse
Affiliation(s)
- Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Leonardo Rojas-Sánchez
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Juan Ramón Vanegas Sáenz
- Materiales Dentales. Facultad de Odontología, Universidad Americana UAM, Costado Noroeste Camino de Oriente, Managua, Nicaragua
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
Collapse
|
47
|
Bisso S, Leroux JC. Nanopharmaceuticals: A focus on their clinical translatability. Int J Pharm 2020; 578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
|
48
|
Qiao S, Wang Y, Zan R, Wu H, Sun Y, Peng H, Zhang R, Song Y, Ni J, Zhang S, Zhang X. Biodegradable Mg Implants Suppress the Growth of Ovarian Tumor. ACS Biomater Sci Eng 2020; 6:1755-1763. [PMID: 33455395 DOI: 10.1021/acsbiomaterials.9b01703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The common treatment of epithelial ovarian cancer is aggressive surgery followed by platinum-based cytotoxic chemotherapy. However, residual tumor cells are resistant to chemotherapeutic drugs during postoperative recurrence. The treatment of ovarian cancer requires breakthroughs and advances. In recent years, magnesium alloy has been widely developed as a new biodegradable material because of its great potential in the field of medical devices. From the degradation products of magnesium, biodegradable magnesium implants have great potential in antitumor. According to the disease characteristics of ovarian cancer, we choose it to study the antitumor characteristics of biodegradable magnesium. We tested the anti-ovarian tumor properties of Mg through both in vivo and in vitro experiments. According to the optical in vivo imaging and relative tumor volume statistics of mice, high-purity Mg wires significantly inhibited the growth of SKOV3 cells in vivo. We find that the degradation products of Mg, Mg2+, and H2 significantly inhibit the growth of SKOV3 cells and promote their apoptosis. Our study suggests a good promise for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Shuang Qiao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yongjie Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhou Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Rui Zhang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Song
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiahua Ni
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoxiang Zhang
- Suzhou Origin Medical Technology Company Ltd., Suzhou 215513, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
49
|
Alagawany M, Attia YA, Farag MR, Elnesr SS, Nagadi SA, Shafi ME, Khafaga AF, Ohran H, Alaqil AA, Abd El-Hack ME. The Strategy of Boosting the Immune System Under the COVID-19 Pandemic. Front Vet Sci 2020. [PMID: 33490124 DOI: 10.3389/2ffvets.2020.570748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
The novel coronavirus (SARS-CoV-2) infection (COVID-19) has raised considerable concern on the entire planet. On March 11, 2020, COVID-19 was categorized by the World Health Organization (WHO) as a pandemic infection, and by March 18, 2020, it has spread to 146 countries. The first internal defense line against numerous diseases is personalized immunity. Although it cannot be claimed that personalized nutrition will have an immediate impact on a global pandemic, as the nutritional interventions required a long time to induce beneficial outcomes on immunity development, nutritional strategies are still able to clarify and have a beneficial influence on the interplay between physiology and diet, which could make a positive contribution to the condition in the next period. As such, a specific goal for every practitioner is to evaluate different tests to perceive the status of the patient, such as markers of inflammation, insulin regulation, and nutrient status, and to detect possible imbalances or deficiencies. During the process of disease development, the supplementation and addition of different nutrients and nutraceuticals can influence not only the viral replication but also the cellular mechanisms. It is essential to understand that every patient has its individual needs. Even though many nutrients, nutraceuticals, and drugs have beneficial effects on the immune response and can prevent or ameliorate viral infections, it is essential to detect at what stage in COVID-19 progression the patient is at the moment and decide what kind of nutrition intervention is necessary. Furthermore, understanding the pathogenesis of coronavirus infection is critical to make proper recommendations.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Youssef A Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer A Nagadi
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Husein Ohran
- Department of Physiology, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Abdulaziz A Alaqil
- Department of Animal and Fish Production, King Faisal University, Al-Hufof, Saudi Arabia
| | | |
Collapse
|
50
|
Dorozhkin SV. Functionalized calcium orthophosphates (CaPO 4) and their biomedical applications. J Mater Chem B 2019; 7:7471-7489. [PMID: 31738354 DOI: 10.1039/c9tb01976f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the chemical similarity to natural calcified tissues (bones and teeth) of mammals, calcium orthophosphates (abbreviated as CaPO4) appear to be good biomaterials for creation of artificial bone grafts. However, CaPO4 alone have some restrictions, which limit their biomedical applications. Various ways have been developed to improve the properties of CaPO4 and their functionalization is one of them. Namely, since surfaces always form the interfaces between implanted grafts and surrounding tissues, the state of CaPO4 surfaces plays a crucial role in the survival of bone grafts. Although the biomedically relevant CaPO4 possess the required biocompatible properties, some of their properties could be better. For example, functionalization of CaPO4 to enhance cell attachment and cell material interactions has been developed. In addition, to prepare stable formulations from nanodimensional CaPO4 particles and prevent them from agglomerating, the surfaces of CaPO4 particles are often functionalized by sorption of special chemicals. Furthermore, there are functionalizations in which CaPO4 are exposed to various types of physical treatments. This review summarizes the available knowledge on CaPO4 functionalizations and their biomedical applications.
Collapse
|