1
|
Gu Z, He Y, Xiang H, Qin Q, Cao X, Jiang K, Zhang H, Li Y. Self-healing injectable multifunctional hydrogels for intervertebral disc disease. Mater Today Bio 2025; 32:101655. [PMID: 40166378 PMCID: PMC11957681 DOI: 10.1016/j.mtbio.2025.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Intervertebral disc degeneration (IVDD) is increasingly prevalent in aging societies and poses a significant health challenge. Due to the limited blood supply to the disc, oral medications and systemic treatments are often ineffective. Consequently, localized injection therapies, which deliver therapeutic agents directly to the degenerated disc, have emerged as more efficient. Self-healing injectable hydrogels are particularly promising due to their potential for minimally invasive delivery, precise implantation, and targeted drug release into hard-to-reach tissue sites, including those requiring prolonged healing. Their dynamic viscoelastic properties accurately replicate the mechanical environment of the natural nucleus pulposus, providing cells with an adaptive biomimetic microenvironment. This review will initially discuss the anatomy and pathophysiology of intervertebral discs, current treatments, and their limitations. Subsequently, we conduct bibliometric analysis to explore the research hotspots and trends in applying injectable hydrogel technology to treat IVDD. It will then explore the promising features of injectable hydrogels in biomedical applications such as drug, protein, cells and gene delivery, tissue engineering and regenerative medicine. We discuss the construction mechanisms of injectable hydrogels via physical interactions, chemical and biological crosslinkers, and discuss the selection of biomaterials and fabrication methods for developing novel hydrogels for IVD tissue engineering. The article concludes with future perspectives on the application of injectable hydrogels in this field.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Orthopedics, Affiliated Guang'an District People's Hospital of North Sichuan Medical College, Guang'an County, 638000, PR China
| | - Yi He
- Department of Orthopedics, Affiliated Nanbu People's Hospital of North Sichuan Medical College, Nanbu County, Nanchong, 637000, PR China
| | - Honglin Xiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Qiwei Qin
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Xinna Cao
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Ke Jiang
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| | - Haoshaqiang Zhang
- Department of Orthopedics Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91, Tianchi Road, Tianshan District, Urumqi, 830001, PR China
| | - Yuling Li
- Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Institute of Nanomedicine Innovation and Translational Research, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
2
|
Zhu M, Jiang S, Li X, Zhong W, Cao W, Luo Q, Wu A, Wu G, Zhang Q. TP8, A Novel Chondroinductive Peptide, Significantly Promoted Neo-Cartilage Repair without Activating Bone Formation. Adv Healthc Mater 2025; 14:e2401752. [PMID: 39690790 PMCID: PMC11874676 DOI: 10.1002/adhm.202401752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/16/2024] [Indexed: 12/19/2024]
Abstract
The repair of large cartilage defects remains highly challenging in the fields of orthopedics and oral and maxillofacial surgery. A chondroinductive agent is promising to activate endogenous mesenchymal stem cells (MSCs) so as to facilitate cartilage regeneration. In this study, we analyze the crystallographic data of the critical binding domain of transforming growth factor β3 (TGF-β3) with its type II receptor and successfully develop a novel chondroinductive peptide - TGF-β3-derived peptide No. 8 (TP8) that can induce an ectopic cartilage formation without obvious bone formation. TP8 shows a comparable capacity as TGF-β3 in enhancing glycosaminoglycans (GAGs) and proteoglycans (PGs) secretion in the micromass of bone marrow MSCs (BMSCs) and promoting the expression of chondrogenic markers in comparison with the Control group. TP8 induces a significantly higher expression of the SRY-box transcription factor 9 (Sox9) gene than TGF-β3. Moreover, TP8 significantly upregulates the phosphorylation of Smad1/5 but not MAPK/JNK or Smad 2/3. The knockdown of low-density lipoprotein receptor (LDLR) -related protein-1 (Lrp1), a transmembrane endocytosis receptor, nullifies the TP8-induced Sox9 expression. In the critical-size cartilage defects in rabbit medial femoral condyles, TP8 can induce neo-cartilage formation with a significantly thicker deep zone in comparison with the TGF-β3 and Control. These findings suggest a promising application potential of TP8 in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdam Movement SciencesAmsterdam1081 LAthe Netherlands
| | - Siqing Jiang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Xingyang Li
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Wenchao Zhong
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
- Department of Human GeneticsAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HZNetherlands
- Department of Clinical ChemistryAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdam1081 HVNetherlands
- Amsterdam Movement SciencesTissue Function and RegenerationAmsterdam1081 HVNetherlands
| | - Wei Cao
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Qianting Luo
- Department of maxillofacial surgeryJiangmen Central HospitalJiangmen529030China
| | - Antong Wu
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| | - Gang Wu
- Savid School of StomatologyHangzhou Medical CollegeHangzhou311399China
| | - Qingbin Zhang
- Department of Temporomandibular JointSchool and Hospital of StomatologyGuangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhou Medical UniversityGuangzhou510180China
| |
Collapse
|
3
|
Puiggalí-Jou A, Hui I, Baldi L, Frischknecht R, Asadikorayem M, Janiak J, Chansoria P, McCabe MC, Stoddart MJ, Hansen KC, Christman KL, Zenobi-Wong M. Biofabrication of anisotropic articular cartilage based on decellularized extracellular matrix. Biofabrication 2025; 17:015044. [PMID: 39757574 DOI: 10.1088/1758-5090/ad9cc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability. This study proposes a rapid light-based bioprinting method using a tyrosine-based crosslinking mechanism, which does not require chemical modifications of dECM and thereby preserves its structure and bioactivity. Combining this resin with Filamented Light (FLight) biofabrication enables the creation of cellular, porous, and anisotropic dECM scaffolds composed of aligned microfilaments. Specifically, we focus on the effects of various biopolymer compositions (i.e. hyaluronic acid, collagen I, and dECM) and inner architecture (i.e. bulk light vs FLight) on immune response and cell morphology, and we investigate their influence on nascent ECM production and long-term tissue maturation. Our findings highlight the importance of FLight scaffolds in directing collagen deposition resembling articular cartilage structure and promoting construct maturation, and they emphasize the superiority of biological-rich dECM over single-component materials for engineering articular cartilage, thereby offering new avenues for the development of effective cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Isabel Hui
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Lucrezia Baldi
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Rea Frischknecht
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Jakub Janiak
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz 7270, Switzerland
- Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, United States of America
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California at San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, United States of America
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Liao HJ, Chen HT, Chang CH. Peptides for Targeting Chondrogenic Induction and Cartilage Regeneration in Osteoarthritis. Cartilage 2024:19476035241276406. [PMID: 39291443 PMCID: PMC11556548 DOI: 10.1177/19476035241276406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
OBJECTS Osteoarthritis (OA) is a widespread degenerative joint condition commonly occurring in older adults. Currently, no disease-modifying drugs are available, and safety concerns associated with commonly used traditional medications have been identified. In this review, a significant portion of research in this field is concentrated on cartilage, aiming to discover methods to halt cartilage breakdown or facilitate cartilage repair. METHODS Researchers have mainly investigated the cartilage, seeking methods to promote its repair. This review focuses on peptide-based molecules known for their ability to selectively bind to growth factor cytokines and components of the cartilage extracellular matrix. RESULTS Chondroinductive peptides, synthetically producible, boast superior reproducibility, stability, modifiability, and yield efficiency over natural biomaterials. This review outlines a chondroinductive peptide design, molecular mechanisms, and their application in cartilage tissue engineering and also compares their efficacy in chondrogenesis in vitro and in vivo. CONCLUSIONS In this paper, we will summarize the application of peptides engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both and discuss additional possibilities for peptides. This review article provides an overview of our current understanding of chondroinductive peptides for treating OA-affected cartilage and explores the delivery systems used for regeneration. These advancements may hold promise for enhancing or even replacing current treatment methodologies.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City
| | - Hui-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan
| |
Collapse
|
5
|
Chen C, Xiong K, Li K, Zhou B, Cheng J, Zhu B, Zheng L, Zhao J. Identification of key genes involved in collagen hydrogel-induced chondrogenic differentiation of mesenchymal stem cells through transcriptome analysis: the role of m6A modification. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:43. [PMID: 39073623 PMCID: PMC11286723 DOI: 10.1007/s10856-024-06801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/16/2024] [Indexed: 07/30/2024]
Abstract
Collagen hydrogel has been shown promise as an inducer for chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), contributing to the repair of cartilage defects. However, the precise molecular mechanism underlying this phenomenon remains poorly elucidated. Here, we induced chondrogenic differentiation of BMSCs using collagen hydrogel and identified 4451 differentially expressed genes (DEGs) through transcriptomic sequencing. Our analysis revealed that DEGs were enriched in the focal adhesion pathway, with a notable decrease in expression levels in the collagen hydrogel group compared to the control group. Protein-protein interaction network analysis suggested that actinin alpha 1 (ACTN1) and actinin alpha 4 (ACTN4), two proteins also involved in cytoskeletal recombination, may be crucial in collagen hydrogel-induced chondrogenic differentiation of BMSCs. Additionally, we found that N6-methyladenosine RNA methylation (m6A) modification was involved in collagen hydrogel-mediated chondrogenic differentiation, with fat mass and obesity-associated protein (FTO) implicated in regulating the expression of ACTN1 and ACTN4. These findings suggest that collagen hydrogel might regulate focal adhesion and actin cytoskeletal signaling pathways through down-regulation of ACTN1 and ACTN4 mRNA via FTO-mediated m6A modification, ultimately driving chondrogenic differentiation of BMSCs. In conclusion, our study provides valuable insights into the molecular mechanisms of collagen hydrogel-induced chondrogenic differentiation of BMSCs, which may aid in developing more effective strategies for cartilage regeneration.
Collapse
Affiliation(s)
- Chaotao Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Kai Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The Third Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530031, China
| | - Kanglu Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
| | - Jianwen Cheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Bo Zhu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China.
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopaedics Trauma and HandSurgery, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- International Joint Laboratory of Ministry of Education for Regeneration of Bone and Soft Tissues, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
6
|
Karakaya E, Gleichauf L, Schöbel L, Hassan A, Soufivand AA, Tessmar J, Budday S, Boccaccini AR, Detsch R. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv 2024; 14:13769-13786. [PMID: 38681843 PMCID: PMC11046382 DOI: 10.1039/d3ra08394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/16/2024] [Indexed: 05/01/2024] Open
Abstract
Alginate (ALG) and its oxidised form alginate-dialdehyde (ADA) are highly attractive materials for hydrogels used in 3D bioprinting as well as drop-on-demand (DoD) approaches. However, both polymers need to be modified using cell-adhesive peptide sequences, to obtain bioinks exhibiting promising cell-material interactions. Our study explores the modification of ALG- and ADA-based bioinks with the adhesive peptides YIGSR (derived from laminin), RRETEWA (derived from fibronectin) and IKVAV (derived from laminin) for 3D bioprinting. Two coupling methods, carbodiimide and Schiff base reactions, were employed to modify the polymers with peptides. Analytical techniques, including FTIR and NMR were used to assess the chemical composition, revealing challenges in confirming the presence of peptides. The modified bioinks exhibited decreased stability, viscosity, and stiffness, particularly-ADA-based bioinks in contrast to ALG. Sterile hydrogel capsules or droplets were produced using a manual manufacturing process and DoD printing. NIH/3T3 cell spreading analysis showed enhanced cell spreading in carbodiimide-modified ADA, Schiff base-modified ADA, and PEG-Mal-modified ADA. The carbodiimide coupling of peptides worked for ADA, however the same was not observed for ALG. Finally, a novel mixture of all used peptides was evaluated regarding synergistic effects on cell spreading which was found to be effective, showing higher aspect ratios compared to the single peptide coupled hydrogels in all cases. The study suggests potential applications of these modified bioinks in 3D bioprinting approaches and highlights the importance of peptide selection as well as their combination for improved cell-material interactions.
Collapse
Affiliation(s)
- Emine Karakaya
- Department of Material Science and Engineering, Institute for Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Luisa Gleichauf
- Department of Material Science and Engineering, Institute for Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Lisa Schöbel
- Department of Material Science and Engineering, Institute for Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Ahmed Hassan
- Department of Material Science and Engineering, Institute for Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Anahita Ahmadi Soufivand
- Department of Mechanical Engineering, Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-University Erlangen-Nuremberg Germany
| | - Joerg Tessmar
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-University Erlangen-Nuremberg Germany
| | - Aldo R Boccaccini
- Department of Material Science and Engineering, Institute for Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Rainer Detsch
- Department of Material Science and Engineering, Institute for Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg Germany
| |
Collapse
|
7
|
Han Q, He J, Bai L, Huang Y, Chen B, Li Z, Xu M, Liu Q, Wang S, Wen N, Zhang J, Guo B, Yin Z. Injectable Bioadhesive Photocrosslinkable Hydrogels with Sustained Release of Kartogenin to Promote Chondrogenic Differentiation and Partial-Thickness Cartilage Defects Repair. Adv Healthc Mater 2024; 13:e2303255. [PMID: 38253413 DOI: 10.1002/adhm.202303255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.
Collapse
Affiliation(s)
- Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Baolin Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
8
|
Kim S, Kim C, Lee K. Hydrogels as filler materials. HYDROGELS FOR TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2024:413-432. [DOI: 10.1016/b978-0-12-823948-3.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Arslan AK, Aydoğdu A, Tolunay T, Basat Ç, Bircan R, Demirbilek M. The effect of alginate scaffolds on bone healing in defects formed with drilling model in rat femur diaphysis. J Biomed Mater Res B Appl Biomater 2023; 111:1299-1308. [PMID: 36786191 DOI: 10.1002/jbm.b.35233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/08/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
Alginate (ALG) is a biocompatible and biodegradable polymer. Mechanical weakness is one of the main problems for the alginate-based scaffolds. Various plasticizer additives or modifications tested to improve the mechanical properties. In the presented study, ALG plasticized with triacetin (TA), and tributyl citrate (TBC) than tested on bone healing. In the presented study, the alginate modified with triacetin or tributyl citrate. In-vitro, and in-vivo efficiency of the scaffolds tested on bone tissue regeneration. Scaffolds fabricated by solvent casting, and physicochemical characterizations performed. Monocytes (THP-1) cultured with scaffolds, and macrophage-released cytokines was determined. In-vivo efficacy of the scaffolds was tested in the rat drill hole model. Alginate and tributyl citrate-modified scaffolds have no cytotoxic effect on osteoblastic cells (MC-3T3). Tributyl citrate modification increased tumor necrosis factor-alpha (TNF-alpha) level but did not increase interleukin -1 beta (IL-1 beta) level. In vivo studies showed that osteoblastic growth was significant in alginate and triacetin-modified scaffolds. However, the best values for osteoclastic activity and osteoid tissue formation seen in the triacetin modification. The results demonstrated that the modified alginate scaffolds were more successful than non-modified alginate scaffolds and can used as long-term bone repairing treatments.
Collapse
Affiliation(s)
- Arslan Kagan Arslan
- Department of Orthopedics and Traumatology, Yıldırım Beyazıt University, Yenimahalle Education and Research Hospital, Ankara, Turkey
| | - Ali Aydoğdu
- Faculty of Medicine, Hitit University, Çorum, Turkey
| | - Tolga Tolunay
- Faculty of Medicine, Department of Orthopedics and Traumatology, Gazi University, Ankara, Turkey
| | - Çağdaş Basat
- Faculty of Medicine, Department of Orthopedics and Traumatology, Ahi Evran University, Kırşehir, Turkey
| | - Resul Bircan
- Faculty of Medicine, Department of Orthopedics and Traumatology, Gazi University, Ankara, Turkey
| | - Murat Demirbilek
- Biology Department, Ankara Hacı Bayram Veli University, Ankara, Turkey
| |
Collapse
|
10
|
Harati J, Tao X, Shahsavarani H, Du P, Galluzzi M, Liu K, Zhang Z, Shaw P, Shokrgozar MA, Pan H, Wang PY. Polydopamine-Mediated Protein Adsorption Alters the Epigenetic Status and Differentiation of Primary Human Adipose-Derived Stem Cells (hASCs). Front Bioeng Biotechnol 2022; 10:934179. [PMID: 36032703 PMCID: PMC9399727 DOI: 10.3389/fbioe.2022.934179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Polydopamine (PDA) is a biocompatible cell-adhesive polymer with versatile applications in biomedical devices. Previous studies have shown that PDA coating could improve cell adhesion and differentiation of human mesenchymal stem cells (hMSCs). However, there is still a knowledge gap in the effect of PDA-mediated protein adsorption on the epigenetic status of MSCs. This work used gelatin-coated cell culture surfaces with and without PDA underlayer (Gel and PDA-Gel) to culture and differentiate primary human adipose-derived stem cells (hASCs). The properties of these two substrates were significantly different, which, in combination with a variation in extracellular matrix (ECM) protein bioactivity, regulated cell adhesion and migration. hASCs reduced focal adhesions by downregulating the expression of integrins such as αV, α1, α2, and β1 on the PDA-Gel compared to the Gel substrate. Interestingly, the ratio of H3K27me3 to H3K27me3+H3K4me3 was decreased, but this only occurred for upregulation of AGG and BMP4 genes during chondrogenic differentiation. This result implies that the PDA-Gel surface positively affects the chondrogenic, but not adipogenic and osteogenic, differentiation. In conclusion, for the first time, this study demonstrates the sequential effects of PDA coating on the biophysical property of adsorbed protein and then focal adhesions and differentiation of hMSCs through epigenetic regulation. This study sheds light on PDA-mediated mechanotransduction.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Mohammad Ali Shokrgozar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Peng-Yuan Wang, ; Haobo Pan,
| |
Collapse
|
11
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Wang S, Yang L, Cai B, Liu F, Hou Y, Zheng H, Cheng F, Zhang H, Wang L, Wang X, Lv Q, Kong L, Lee KB, Zhang Q. Injectable hybrid inorganic nanoscaffold-templated rapid stem cell assembly for cartilage repair. Natl Sci Rev 2022; 9:nwac037. [PMID: 35419207 PMCID: PMC8998491 DOI: 10.1093/nsr/nwac037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Cartilage injuries are often devastating and most cannot be cured because of the intrinsically low regenerative capacity of cartilage tissues. Although stem cell therapy has shown enormous potential for cartilage repair, the therapeutic outcome has been restricted by low survival rates and poor chondrocyte differentiation in vivo. Here, we report an injectable hybrid inorganic (IHI) nanoscaffold that facilitates fast assembly, enhances survival, and regulates chondrogenic differentiation of stem cells. IHI nanoscaffolds that strongly bind to extracellular matrix (ECM) proteins assemble stem cells through synergistic three-dimensional (3D) cell-cell and cell-matrix interactions, creating a favourable physical microenvironment for stem cell survival and differentiation in vitro and in vivo. Additionally, chondrogenic factors can be loaded into nanoscaffolds with a high capacity, which allows deep, homogenous drug delivery into assembled 3D stem cell-derived tissues for effective control over the soluble microenvironment of stem cells. The developed IHI nanoscaffolds that assemble with stem cells are injectable. They also scavenge reactive oxygen species and timely biodegrade for proper integration into injured cartilage tissues. Implantation of stem cell-assembled IHI nanoscaffolds into injured cartilage results in accelerated tissue regeneration and functional recovery. By establishing our IHI nanoscaffold-templated 3D stem cell assembly method, we provide a promising approach to better overcome the inhibitory microenvironment associated with cartilage injuries and to advance current stem cell-based tissue engineering.
Collapse
Affiliation(s)
- Shenqiang Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bolei Cai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Fuwei Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hua Zheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Fang Cheng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hepeng Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Le Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiaoyi Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Qianxin Lv
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
- Xi’an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
13
|
Aprile P, Whelan IT, Sathy BN, Carroll SF, Kelly DJ. Soft Hydrogel Environments that Facilitate Cell Spreading and Aggregation Preferentially Support Chondrogenesis of Adult Stem Cells. Macromol Biosci 2022; 22:e2100365. [PMID: 35171524 DOI: 10.1002/mabi.202100365] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a promising cell type for treating damaged and diseased synovial joints. The therapeutic potential of MSCs will be facilitated by the engineering of biomaterial environments capable of directing their fate. Here we explored the interplay between matrix elasticity and cell morphology in regulating the chondrogenic differentiation of MSCs when seeded onto or encapsulated within hydrogels made of interpenetrating networks (IPN) of alginate and collagen type I. This IPN system enabled the independent control of substrate stiffness (in 2D and in 3D) and cell morphology (3D only). In a 2D culture environment, the expression of chondrogenic markers SOX9, ACAN and COL2 increased on a soft substrate, which correlated with increased SMAD2/3 nuclear localization, enhanced MSCs condensation and the formation of larger cellular aggregates. The encapsulation of spread MSCs within a soft IPN dramatically increased the expression of cartilage-specific genes, which was linked to higher levels of cellular condensation and nuclear SMAD2/3 localization. Surprisingly, cells forced to adopt a more rounded morphology within the same soft IPNs expressed higher levels of the osteogenic markers RUNX2 and COL1. The insight provided by this study suggests that a mechanobiology informed approach to biomaterial development will be integral to the development of successful cartilage tissue engineering strategies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paola Aprile
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Ian T Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Binulal N Sathy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,Centre for Nanoscience and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Simon F Carroll
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.,CÚRAM Center for Research in Medical Devices, National University of Ireland, Galway, Ireland.,The Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Trinity College Dublin, Ireland
| |
Collapse
|
14
|
Koh RH, Kim J, Kim SHL, Hwang NS. RGD-incorporated biomimetic cryogels for hyaline cartilage regeneration. Biomed Mater 2022; 17:024106. [PMID: 35114659 DOI: 10.1088/1748-605x/ac51b7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
Maintaining the integrity of articular cartilage is paramount to joint health and function. Under constant mechanical stress, articular cartilage is prone to injury that often extends to the underlying subchondral bone. In this study, we incorporated arginine-aspartate-glycine (RGD) peptide into chondroitin sulfate-based cryogel for hyaline cartilage regeneration. Known to promote cell adhesion and proliferation, RGD peptide is a double-edged sword for cartilage regeneration. Depending on the peptide availability in the microenvironment, RGD may aid in redifferentiation of dedifferentiated chondrocytes by mimicking physiological cell-matrix interaction or inhibit chondrogenic phenotype via excessive cell spreading. Here, we observed an increase in chondrogenic phenotype with RGD concentration. The group containing the highest RGD concentration (3 mM; RGD group) experienced a 24-fold increase inCOL2expression in the 1st week ofin vitroculture and formed native cartilage-resembling ectopic tissuein vivo. No sign of dedifferentiation (COL1) was observed in all groups. Within the concentration range tested (0-3 mM RGD), RGD promotes chondrocyte redifferentiation after monolayer expansion and thus, formation of hyaline cartilage tissue.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
15
|
Choi S, Ahn H, Kim S. Tyrosinase‐mediated hydrogel crosslinking for tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.51887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumi Choi
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| | - Hyerin Ahn
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| | - Su‐Hwan Kim
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| |
Collapse
|
16
|
Patra S, Singh M, Wasnik K, Pareek D, Gupta PS, Mukherjee S, Paik P. Polymeric Nanoparticle Based Diagnosis and Nanomedicine for Treatment and Development of Vaccines for Cerebral Malaria: A Review on Recent Advancement. ACS APPLIED BIO MATERIALS 2021; 4:7342-7365. [PMID: 35006689 DOI: 10.1021/acsabm.1c00635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral malaria occurs due to Plasmodium falciparum infection, which causes 228 million infections and 450,000 deaths worldwide every year. African people are mostly affected with nearly 91% cases, of which 86% are pregnant women and infants. India and Brazil are the other two countries severely suffering from malaria endemicity. Commonly used drugs have severe side effects, and unfortunately no suitable vaccine is available in the market today. In this line, this review is focused on polymeric nanomaterials and nanocapsules that can be used for the development of effective diagnostic strategies, nanomedicines, and vaccines in the management of cerebral malaria. Further, this review will help scientists and medical professionals by updating the status on the development stages of polymeric nanoparticle based diagnostics, nanomedicines, and vaccines and strategies to eradicate cerebral malaria. In addition to this, the predominant focus of this review is antimalarial agents based on polymer nanomedicines that are currently in the preclinical and clinical trial stages, and potential developments are suggested as well. This review further will have an important social and commercial impact worldwide for the development of polymeric nanomedicines and strategies for the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Monika Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
17
|
Loebel C, Kwon MY, Wang C, Han L, Mauck RL, Burdick JA. Metabolic Labeling to Probe the Spatiotemporal Accumulation of Matrix at the Chondrocyte-Hydrogel Interface. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909802. [PMID: 34211359 PMCID: PMC8240476 DOI: 10.1002/adfm.201909802] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/03/2020] [Indexed: 06/13/2023]
Abstract
Hydrogels are engineered with biochemical and biophysical signals to recreate aspects of the native microenvironment and to control cellular functions such as differentiation and matrix deposition. This deposited matrix accumulates within the pericellular space and likely affects the interactions between encapsulated cells and the engineered hydrogel; however, there has been little work to study the spatiotemporal evolution of matrix at this interface. To address this, metabolic labeling is employed to visualize the temporal and spatial positioning of nascent proteins and proteoglycans deposited by chondrocytes. Within covalently crosslinked hyaluronic acid hydrogels, chondrocytes deposit nascent proteins and proteoglycans in the pericellular space within 1 d after encapsulation. The accumulation of this matrix, as measured by an increase in matrix thickness during culture, depends on the initial hydrogel crosslink density with decreased thicknesses for more crosslinked hydrogels. Encapsulated fluorescent beads are used to monitor the hydrogel location and indicate that the emerging nascent matrix physically displaces the hydrogel from the cell membrane with extended culture. These findings suggest that secreted matrix increasingly masks the presentation of engineered hydrogel cues and may have implications for the design of hydrogels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Claudia Loebel
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Mi Y Kwon
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems Drexel University 3141 Chestnut Street, Bossone 718, Philadelphia, PA 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 718, Philadelphia, PA 19104, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Jahangir S, Eglin D, Pötter N, Khozaei Ravari M, Stoddart MJ, Samadikuchaksaraei A, Alini M, Baghaban Eslaminejad M, Safa M. Inhibition of hypertrophy and improving chondrocyte differentiation by MMP-13 inhibitor small molecule encapsulated in alginate-chondroitin sulfate-platelet lysate hydrogel. Stem Cell Res Ther 2020; 11:436. [PMID: 33036643 PMCID: PMC7545577 DOI: 10.1186/s13287-020-01930-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells are a promising cell source for chondrogenic differentiation and have been widely used in several preclinical and clinical studies. However, they are prone to an unwanted differentiation process towards hypertrophy that limits their therapeutic efficacy. Matrix metallopeptidase 13 (MMP-13) is a well-known factor regulated during this undesirable event. MMP-13 is a collagen degrading enzyme, which is also highly expressed in the hypertrophic zone of the growth plate and in OA cartilage. Accordingly, we investigated the effect of MMP-13 inhibition on MSC hypertrophy. METHODS In this study, 5-bromoindole-2-carboxylic acid (BICA) was used as an inhibitory agent for MMP-13 expression. After identifying its optimal concentration, BICA was mixed into a hydrogel and the release rate was studied. To prepare the ideal hydrogel, chondroitin sulfate (CS) and platelet lysate (PL) were mixed with sodium alginate (Alg) at concentrations selected based on synergistic mechanical and rheometric properties. Then, four hydrogels were prepared by combining alginate (1.5%w/v) and/or CS (1%w/v) and/or PL (20%v/v). The chondrogenic potential and progression to hypertrophy of human bone marrow-derived mesenchymal stem cell (hBM-MSC)-loaded hydrogels were investigated under free swelling and mechanical loading conditions, in the presence and absence of BICA. RESULTS Viability of hBM-MSCs seeded in the four hydrogels was similar. qRT-PCR revealed that BICA could successfully inhibit MMP-13 expression, which led to an inhibition of Coll X and induction of Coll-II, in both free swelling and loading conditions. The GAG deposition was higher in the group combining BICA and mechanical stimulation. CONCLUSIONS It is concluded that BICA inhibition of MMP-13 reduces MSC hypertrophy during chondrogenesis.
Collapse
Affiliation(s)
- Shahrbanoo Jahangir
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Naomi Pötter
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
- Department of orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center Albert-Ludwigs University, Albert-Ludwigs University of Freiburg, Freiburg im Breisgau, Germany
| | - Mojtaba Khozaei Ravari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Martin J Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
- Department of orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center Albert-Ludwigs University, Albert-Ludwigs University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Samadikuchaksaraei
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| | - Mohammadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Majid Safa
- Department of Tissue engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Lim KS, Abinzano F, Nuñez Bernal P, Sanchez AA, Atienza-Roca P, Otto IA, Peiffer QC, Matsusaki M, Woodfield TBF, Malda J, Levato R. One-Step Photoactivation of a Dual-Functionalized Bioink as Cell Carrier and Cartilage-Binding Glue for Chondral Regeneration. Adv Healthc Mater 2020; 9:e1901792. [PMID: 32324342 PMCID: PMC7116266 DOI: 10.1002/adhm.201901792] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Cartilage defects can result in pain, disability, and osteoarthritis. Hydrogels providing a chondroregeneration-permissive environment are often mechanically weak and display poor lateral integration into the surrounding cartilage. This study develops a visible-light responsive gelatin ink with enhanced interactions with the native tissue, and potential for intraoperative bioprinting. A dual-functionalized tyramine and methacryloyl gelatin (GelMA-Tyr) is synthesized. Photo-crosslinking of both groups is triggered in a single photoexposure by cell-compatible visible light in presence of tris(2,2'-bipyridyl)dichlororuthenium(II) and sodium persulfate as initiators. Neo-cartilage formation from embedded chondroprogenitor cells is demonstrated in vitro, and the hydrogel is successfully applied as bioink for extrusion-printing. Visible light in situ crosslinking in cartilage defects results in no damage to the surrounding tissue, in contrast to the native chondrocyte death caused by UV light (365-400 nm range), commonly used in biofabrication. Tyramine-binding to proteins in native cartilage leads to a 15-fold increment in the adhesive strength of the bioglue compared to pristine GelMA. Enhanced adhesion is observed also when the ink is extruded as printable filaments into the defect. Visible-light reactive GelMA-Tyr bioinks can act as orthobiologic carriers for in situ cartilage repair, providing a permissive environment for chondrogenesis, and establishing safe lateral integration into chondral defects.
Collapse
Affiliation(s)
- Khoon S. Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Florencia Abinzano
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Ane Albillos Sanchez
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Pau Atienza-Roca
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Iris A. Otto
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Quentin C. Peiffer
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
| | - Michiya Matsusaki
- Department of Applied Chemistry Graduate School of Engineering
Osaka University 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tim B. F. Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE)
Group and Medical Technologies Centre of Research Excellence (MedTech
CoRE)
- Department of Orthopaedic Surgery and Musculoskeletal Medicine
University of Otago Christchurch 2 Riccarton Ave, Christchurch 8140, New
Zealand
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
- Department of Clinical Sciences Faculty of Veterinary Medicine
Utrecht University Yalelaan 1, Utrecht 3584 CL, The Netherlands
| | - Riccardo Levato
- Levato Department of Orthopaedics and Regenerative Medicine Center
University Medical Center Utrecht Utrecht University Heidelberglaan 100,
Utrecht 3584 CX, The Netherlands
- Department of Clinical Sciences Faculty of Veterinary Medicine
Utrecht University Yalelaan 1, Utrecht 3584 CL, The Netherlands
| |
Collapse
|
20
|
Biosynthesis, characterization and evaluation of the supportive properties and biocompatibility of DBM nanoparticles on a tissue-engineered nerve conduit from decellularized sciatic nerve. Regen Ther 2020; 14:315-321. [PMID: 32467828 PMCID: PMC7243182 DOI: 10.1016/j.reth.2020.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the supporting effects of nano-demineralized bone matrix on the cultivation of Wharton's jelly stem cells on acellularized nerve scaffold. Demineralized bone matrix nanoparticles were prepared and characterized by several experiments. Decellularized sciatic nerve scaffolds were prepared and their efficiency was evaluated using histological stainings and biomechanical testing. Results of histological staining indicated that the integrity of the extra cellular matrix components was preserved. Also, the growth and viability of WJSCs on the scaffolds were significantly higher in DBM nanoparticle groups. We conclude that supportive properties of nano-DBM groups showed better cell viability and a suitable microenvironment for proliferation, retention, and adhesion of cells compared with other groups.
Collapse
|
21
|
Chung JHY, Kade JC, Jeiranikhameneh A, Ruberu K, Mukherjee P, Yue Z, Wallace GG. 3D hybrid printing platform for auricular cartilage reconstruction. Biomed Phys Eng Express 2020; 6:035003. [DOI: 10.1088/2057-1976/ab54a7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Zhong J, Yang Y, Liao L, Zhang C. Matrix stiffness-regulated cellular functions under different dimensionalities. Biomater Sci 2020; 8:2734-2755. [DOI: 10.1039/c9bm01809c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microenvironments that cells encounter with in vitro.
Collapse
Affiliation(s)
- Jiajun Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yuexiong Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liqiong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Biomaterials Research Center
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
| | - Chao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instruments (Sun Yat-sen University)
- School of Biomedical Engineering
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
23
|
Lewicki J, Bergman J, Kerins C, Hermanson O. Optimization of 3D bioprinting of human neuroblastoma cells using sodium alginate hydrogel. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.bprint.2019.e00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
24
|
Song EK, Jeon J, Jang DG, Kim HE, Sim HJ, Kwon KY, Medina-Ruiz S, Jang HJ, Lee AR, Rho JG, Lee HS, Kim SJ, Park CY, Myung K, Kim W, Kwon T, Yang S, Park TJ. ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci Transl Med 2019; 10:10/462/eaam7486. [PMID: 30305454 DOI: 10.1126/scitranslmed.aam7486] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/20/2018] [Indexed: 11/02/2022]
Abstract
Developing and mature chondrocytes constantly interact with and remodel the surrounding extracellular matrix (ECM). Recent research indicates that integrin-ECM interaction is differentially regulated during cartilage formation (chondrogenesis). Integrin signaling is also a key source of the catabolic reactions responsible for joint destruction in both rheumatoid arthritis and osteoarthritis. However, we do not understand how chondrocytes dynamically regulate integrin signaling in such an ECM-rich environment. Here, we found that developing chondrocytes express integrin-β-like 1 (Itgbl1) at specific stages, inhibiting integrin signaling and promoting chondrogenesis. Unlike cytosolic integrin inhibitors, ITGBL1 is secreted and physically interacts with integrins to down-regulate activity. We observed that Itgbl1 expression was strongly reduced in the damaged articular cartilage of patients with osteoarthritis (OA). Ectopic expression of Itgbl1 protected joint cartilage against OA development in the destabilization of the medial meniscus-induced OA mouse model. Our results reveal ITGBL1 signaling as an underlying mechanism of protection against destructive cartilage disorders and suggest the potential therapeutic utility of targeting ITGBL1 to modulate integrin signaling in human disease.
Collapse
Affiliation(s)
- Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jimin Jeon
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ha Eun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keun Yeong Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ah Reum Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Young Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea. .,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials 2019; 210:105-115. [DOI: 10.1016/j.biomaterials.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
|
26
|
Arya N, Forget A, Sarem M, Shastri VP. RGDSP functionalized carboxylated agarose as extrudable carriers for chondrocyte delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:103-111. [DOI: 10.1016/j.msec.2019.01.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/11/2018] [Accepted: 01/20/2019] [Indexed: 01/23/2023]
|
27
|
Mahzoon S, Detamore MS. Chondroinductive Peptides: Drawing Inspirations from Cell–Matrix Interactions. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:249-257. [DOI: 10.1089/ten.teb.2018.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Salma Mahzoon
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
28
|
Farokhi M, Jonidi Shariatzadeh F, Solouk A, Mirzadeh H. Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1562924] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
29
|
Aisenbrey EA, Bryant SJ. The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials 2018; 190-191:51-62. [PMID: 30391802 DOI: 10.1016/j.biomaterials.2018.10.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 01/29/2023]
Abstract
Mesenchymal stem cells (MSCs) are promising for cartilage regeneration, but readily undergo terminal differentiation. The aim of this study was two-fold: a) investigate physiochemical cues from a cartilage-mimetic hydrogel under dynamic compressive loading on MSC chondrogenesis and hypertrophy and b) identify whether Smad signaling and p38 MAPK signaling mediate hypertrophy during MSC chondrogenesis. Human MSCs were encapsulated in photoclickable poly(ethylene glycol) hydrogels containing chondroitin sulfate and RGD, cultured under dynamic compressive loading or free swelling for three weeks, and evaluated by qPCR and immunohistochemistry. Loading inhibited hypertrophy in the cartilage-mimetic hydrogel indicated by a reduction in pSmad 1/5/8, Runx2, and collagen X proteins, while maintaining chondrogenesis by pSmad 2/3 and collagen II proteins. Inhibiting pSmad 1/5/8 under free swelling culture significantly reduced collagen X protein, similar to the loading condition. Chondroitin sulfate was necessary for load-inhibited hypertrophy and correlated with enhanced S100A4 expression, which is downstream of the osmotic responsive transcription factor NFAT5. Inhibiting p38 MAPK under loading reduced S100A4 expression, and upregulated Runx2 and collagen X protein. Findings from this study indicate that chondroitin sulfate with dynamic loading create physiochemical cues that support MSC chondrogenesis and attenuate hypertrophy through Smad 1/5/8 inhibition and p38 MAPK upregulation.
Collapse
Affiliation(s)
- Elizabeth A Aisenbrey
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0596, USA; BioFrontiers Institute, University of Colorado, Boulder, CO 80309-0596, USA; Material Science and Engineering Program, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
30
|
Becerra-Bayona SM, Guiza-Arguello VR, Russell B, Höök M, Hahn MS. Influence of collagen-based integrin α 1 and α 2 mediated signaling on human mesenchymal stem cell osteogenesis in three dimensional contexts. J Biomed Mater Res A 2018; 106:2594-2604. [PMID: 29761640 PMCID: PMC7147932 DOI: 10.1002/jbm.a.36451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023]
Abstract
Collagen I interactions with integrins α1 and α2 are known to support human mesenchymal stem cell (hMSC) osteogenesis. Nonetheless, elucidating the relative impact of specific integrin interactions has proven challenging, in part due to the complexity of native collagen. In the present work, we employed two collagen-mimetic proteins-Scl2-2 and Scl2-3- to compare the osteogenic effects of integrin α1 versus α2 signaling. Scl2-2 and Scl2-3 were both derived from Scl2-1, a triple helical protein lacking known cell adhesion, cytokine binding, and matrix metalloproteinase sites. However, Scl2-2 and Scl2-3 were each engineered to display distinct collagen-based cell adhesion motifs: GFPGER (binding integrins α1 and α2 ) or GFPGEN (binding only integrin α1 ), respectively. hMSCs were cultured within poly(ethylene glycol) (PEG) hydrogels containing either Scl2-2 or Scl2-3 for 2 weeks. PEG-Scl2-2 gels were associated with increased hMSC osterix expression, osteopontin production, and calcium deposition relative to PEG-Scl2-3 gels. These data indicate that integrin α2 signaling may have an increased osteogenic effect relative to integrin α1 . Since p38 is activated by integrin α2 but not by integrin α1 , hMSCs were further cultured in PEG-Scl2-2 hydrogels in the presence of a p38 inhibitor. Results suggest that p38 activity may play a key role in collagen-supported hMSC osteogenesis. This knowledge can be used toward the rational design of scaffolds which intrinsically promote hMSC osteogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2594-2604, 2018.
Collapse
Affiliation(s)
- Silvia M Becerra-Bayona
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Viviana R Guiza-Arguello
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
| | - Brooke Russell
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas, 77030-3303
| | - Magnus Höök
- Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas, 77030-3303
| | - Mariah S Hahn
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180
| |
Collapse
|
31
|
Hao Y, Song J, Ravikrishnan A, Dicker KT, Fowler EW, Zerdoum AB, Li Y, Zhang H, Rajasekaran AK, Fox JM, Jia X. Rapid Bioorthogonal Chemistry Enables in Situ Modulation of the Stem Cell Behavior in 3D without External Triggers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26016-26027. [PMID: 30015482 PMCID: PMC6214352 DOI: 10.1021/acsami.8b07632] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chemical modification of engineered microenvironments surrounding living cells represents a means for directing cellular behaviors through cell-matrix interactions. Presented here is a temporally controlled method for modulating the properties of biomimetic, synthetic extracellular matrices (ECM) during live cell culture employing the rapid, bioorthogonal tetrazine ligation with trans-cyclooctene (TCO) dienophiles. This approach is diffusion-controlled, cytocompatible, and does not rely on light, catalysts, or other external triggers. Human bone-marrow-derived mesenchymal stem cells (hMSCs) were initially entrapped in a hydrogel prepared using hyaluronic acid carrying sulfhydryl groups (HA-SH) and a hydrophilic polymer bearing both acrylate and tetrazine groups (POM-AT). Inclusion of a matrix metalloprotease (MMP)-degradable peptidic cross-linker enabled hMSC-mediated remodeling of the synthetic environment. The resultant network displayed dangling tetrazine groups for subsequent conjugation with TCO derivatives. Two days later, the stiffness of the matrix was increased by adding chemically modified HA carrying multiple copies of TCO (HA-TCO) to the hMSC growth media surrounding the cell-laden gel construct. In response, cells developed small processes radially around the cell body without a significant alteration of the overall shape. By contrast, modification of the 3D matrix with a TCO-tagged cell-adhesive motif caused the resident cells to undergo significant actin polymerization, changing from a rounded shape to spindle morphology with long cellular processes. After additional 7 days of culture in the growth media, quantitative analysis showed that, at the mRNA level, RGD tagging upregulated cellular expression of MMP1, but downregulated the expression of collagen I/III and tenascin C. RGD tagging, however, was not sufficient to induce the classic osteoblastic, chondrogenic, adipogenic, or fibroblastic/myofibroblastic differentiation. The modular approach allows facile manipulation of synthetic ECM to modulate cell behavior, thus potentially applicable to the engineering of functional tissues or tissue models.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jiyeon Song
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Anitha Ravikrishnan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kevin T. Dicker
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Yi Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | - Joseph M. Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
32
|
Kwon MY, Vega SL, Gramlich WM, Kim M, Mauck RL, Burdick JA. Dose and Timing of N-Cadherin Mimetic Peptides Regulate MSC Chondrogenesis within Hydrogels. Adv Healthc Mater 2018; 7:e1701199. [PMID: 29359863 DOI: 10.1002/adhm.201701199] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/04/2017] [Indexed: 12/23/2022]
Abstract
The transmembrane glycoprotein N-cadherin (NCad) mediates cell-cell interactions found during mesenchymal condensation and chondrogenesis. Here, NCad-derived peptides (i.e., HAV) are incorporated into hyaluronic acid (HA) hydrogels with encapsulated mesenchymal stem cells (MSCs). Since the dose and timing of NCad signaling are dynamic, HAV peptide presentation is tuned via alterations in peptide concentration and incorporation of an ADAM10-cleavable domain between the hydrogel and the HAV motif, respectively. HA hydrogels functionalized with HAV result in dose-dependent increases in early chondrogenesis of encapsulated MSCs and resultant cartilage matrix production. For example, type II collagen and glycosaminoglycan production increase ≈9- and 2-fold with the highest dose of HAV (i.e., 2 × 10-3 m), respectively, when compared to unmodified hydrogels, while incorporation of an efficient ADAM10-cleavable domain between the HAV peptide and hydrogel abolishes increases in chondrogenesis and matrix production. Treatment with a small-molecule ADAM10 inhibitor restores the functional effect of the HAV peptide, indicating that timing and duration of HAV peptide presentation is crucial for robust chondrogenesis. This study demonstrates a nuanced approach to the biofunctionalization of hydrogels to better emulate the complex cell microenvironment during embryogenesis toward stem-cell-based cartilage production.
Collapse
Affiliation(s)
- Mi Y. Kwon
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
| | - Sebastián L. Vega
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
| | | | - Minwook Kim
- Department of Orthopedic Surgery University of Pennsylvania Perelman School of Medicine Philadelphia PA 19104 USA
| | - Robert L. Mauck
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
- Department of Orthopedic Surgery University of Pennsylvania Perelman School of Medicine Philadelphia PA 19104 USA
| | - Jason A. Burdick
- Department of Bioengineering University of Pennsylvania 240 Skirkanich Hall, 210 S. 33rd St Philadelphia PA 19104 USA
| |
Collapse
|
33
|
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel. Acta Biomater 2018; 70:110-119. [PMID: 29410241 DOI: 10.1016/j.actbio.2018.01.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/30/2022]
Abstract
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. STATEMENT OF SIGNIFICANCE Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function.
Collapse
|
34
|
Vega SL, Kwon MY, Song KH, Wang C, Mauck RL, Han L, Burdick JA. Combinatorial hydrogels with biochemical gradients for screening 3D cellular microenvironments. Nat Commun 2018; 9:614. [PMID: 29426836 PMCID: PMC5807520 DOI: 10.1038/s41467-018-03021-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/12/2018] [Indexed: 11/10/2022] Open
Abstract
3D microenvironmental parameters control cell behavior, but can be challenging to investigate over a wide range of conditions. Here, a combinatorial hydrogel platform is developed that uses light-mediated thiol-norbornene chemistry to encapsulate cells within hydrogels with biochemical gradients made by spatially varied light exposure. Specifically, mesenchymal stem cells are photoencapsulated in norbornene-modified hyaluronic acid hydrogels functionalized with gradients (0-5 mM) of peptides that mimic cell-cell or cell-matrix interactions, either as single or orthogonal gradients. Chondrogenesis varied spatially in these hydrogels based on the local biochemical formulation, as indicated by Sox9 and aggrecan expression levels. From 100 combinations investigated, discrete hydrogels are formulated and early gene expression and long-term cartilage-specific matrix production are assayed and found to be consistent with screening predictions. This platform is a scalable, high-throughput technique that enables the screening of the effects of multiple biochemical signals on 3D cell behavior.
Collapse
Affiliation(s)
- Sebastián L Vega
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mi Y Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kwang Hoon Song
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Iranpour S, Mahdavi-Shahri N, Miri R, Hasanzadeh H, Bidkhori HR, Naderi-Meshkin H, Zahabi E, Matin MM. Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications. Cell Tissue Bank 2018; 19:357-371. [PMID: 29313189 DOI: 10.1007/s10561-017-9680-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Human amniotic membrane (HAM) has been widely used as a natural scaffold in tissue engineering due to many of its unique biological properties such as providing growth factors, cytokines and tissue inhibitors of metalloproteinases. This study aimed at finding the most suitable and supportive layer of HAM as a delivery system for autologous or allogeneic cell transplantation. Three different layers of HAM were examined including basement membrane, epithelial and stromal layers. In order to prepare the basement membrane, de-epithelialization was performed using 0.5 M NaOH and its efficiency was investigated by histological stainings, DNA quantification, biomechanical testing and electron microscopy. Adipose-derived stromal cells (ASCs) and a human immortalized keratinocyte cell line (HaCaT) were seeded on the three different layers of HAM and cultured for 3 weeks. The potential of the three different layers of HAM to support the attachment and viability of cells were then monitored by histology, electron microscopy and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, mechanical strengths of the basement membrane were assessed before and after cell culture. The results indicated that the integrity of extra cellular matrix (ECM) components was preserved after de-epithelialization and resulted in producing an intact basement amniotic membrane (BAM). Moreover, all three layers of HAM could support the attachment and proliferation of cells with no visible cytotoxic effects. However, the growth and viability of both cell types on the BAM were significantly higher than the other two layers. We conclude that growth stimulating effectors of BAM and its increased mechanical strength after culturing of ASCs, besides lack of immunogenicity make it an ideal model for delivering allogeneic cells and tissue engineering applications.
Collapse
Affiliation(s)
- Sonia Iranpour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasser Mahdavi-Shahri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Raheleh Miri
- Research Center for HIV/AIDS, HTLV and Viral Hepatitis, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran
| | - Ehsan Zahabi
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cells and Regenerative Medicine Research Group, ACECR-Khorasan Razavi Branch, Mashhad, Iran. .,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
36
|
Kudva AK, Luyten FP, Patterson J. RGD-functionalized polyethylene glycol hydrogels support proliferation and in vitro chondrogenesis of human periosteum-derived cells. J Biomed Mater Res A 2017; 106:33-42. [PMID: 28875574 DOI: 10.1002/jbm.a.36208] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/11/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
The combination of progenitor cells with appropriate scaffolds and in vitro culture regimes is a promising area of research in bone and cartilage tissue engineering. Mesenchymal stem cells (MSCs), when encapsulated within hydrogels composed of the necessary cues and/or preconditioned using suitable culture conditions, have been shown to differentiate into bone or cartilage. Here, we utilized human periosteum-derived cells (hPDCs), a progenitor cell population with MSC characteristics, paired with protease-degradable, functionalized polyethylene glycol (PEG) hydrogels to create tissue-engineered constructs. The objective of this study was to investigate the effects of scaffold composition, exploring the addition of the cell-binding motif Arginine-Glycine-Aspartic Acid (RGD), in combination with various in vitro culture conditions on the proliferation, chondrogenic gene expression, and matrix production of encapsulated hPDCs. In growth medium, the hPDCs in the RGD-functionalized hydrogels maintained high levels of viability and demonstrated an enhanced proliferation when compared with hPDCs in non-functionalized hydrogels. Additionally, the RGD-containing hydrogels promoted higher glycosaminoglycan (GAG) synthesis and chondrogenic gene expression of the encapsulated hPDCs, as opposed to the non-functionalized constructs, when cultured in two different chondrogenic media. These results demonstrate the potential of hPDCs in combination with enzymatically degradable PEG hydrogels functionalized with adhesion ligands for cartilage regenerative applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 33-42, 2018.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, Leuven, 3001, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Box 2450, Leuven, 3001, Belgium.,Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Box 813, Leuven, 3000, Belgium
| |
Collapse
|
37
|
Li J, Li X, Zhang J, Kawazoe N, Chen G. Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density. Adv Healthc Mater 2017; 6. [PMID: 28489328 DOI: 10.1002/adhm.201700317] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/01/2017] [Indexed: 11/10/2022]
Abstract
Nanostructured materials have drawn a broad attention for their applications in biomedical fields. Ligand-modified nanomaterials can well mimic the dynamic extracellular matrix (ECM) microenvironments to regulate cell functions and fates. Herein, ECM mimetic gold nanoparticles (Au NPs) with tunable surface arginine-glycine-aspartate (RGD) density are designed and synthesized to induce the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The biomimetic Au NPs with an average size of 40 nm shows good biocompatibility without affecting the cell proliferation in the studied concentration range. The RGD motifs on Au NPs surface facilitate cellular uptake of NPs into monolayer hMSCs through integrin-mediated endocytosis. The biomimetic NPs have a promotive effect on cartilaginous matrix production and marker gene expression in cell pellet culture, especially for the biomimetic Au NPs with high surface RGD density. This study provides a novel strategy for fabricating biomimetic NPs to regulate cell differentiation, which holds great potentials in tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Jingchao Li
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Xiaomeng Li
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Jing Zhang
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Guoping Chen
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
38
|
Hesse E, Freudenberg U, Niemietz T, Greth C, Weisser M, Hagmann S, Binner M, Werner C, Richter W. Peptide-functionalized starPEG/heparin hydrogels direct mitogenicity, cell morphology and cartilage matrix distribution in vitro and in vivo. J Tissue Eng Regen Med 2017; 12:229-239. [PMID: 28083992 DOI: 10.1002/term.2404] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/12/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Cell-based tissue engineering is a promising approach for treating cartilage lesions, but available strategies still provide a distinct composition of the extracellular matrix and an inferior mechanical property compared to native cartilage. To achieve fully functional tissue replacement more rationally designed biomaterials may be needed, introducing bioactive molecules which modulate cell behavior and guide tissue regeneration. This study aimed at exploring the impact of cell-instructive, adhesion-binding (GCWGGRGDSP called RGD) and collagen-binding (CKLER/CWYRGRL) peptides, incorporated in a tunable, matrixmetalloprotease (MMP)-responsive multi-arm poly(ethylene glycol) (starPEG)/heparin hydrogel on cartilage regeneration parameters in vitro and in vivo. MMP-responsive-starPEG-conjugates with cysteine termini and heparin-maleimide, optionally pre-functionalized with RGD, CKLER, CWYRGRL or control peptides, were cross-linked by Michael type addition to embed and grow mesenchymal stromal cells (MSC) or chondrocytes. While starPEG/heparin-hydrogel strongly supported chondrogenesis of MSC according to COL2A1, BGN and ACAN induction, MMP-degradability enhanced cell viability and proliferation. RGD-modification of the gels promoted cell spreading with intense cell network formation without negative effects on chondrogenesis. However, CKLER and CWYRGRL were unable to enhance the collagen content of constructs. RGD-modification allowed more even collagen type II distribution by chondrocytes throughout the MMP-responsive constructs, especially in vivo. Collectively, peptide-instruction via heparin-enriched MMP-degradable starPEG allowed adjustment of self-renewal, cell morphology and cartilage matrix distribution in order to guide MSC and chondrocyte-based cartilage regeneration towards an improved outcome. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eliane Hesse
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Centre of Biomaterials Dresden (MBC), Dresden University of Technology, Centre for Regenerative Therapies Dresden (CRTD), Germany
| | - Thomas Niemietz
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Germany
| | - Carina Greth
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Germany
| | - Melanie Weisser
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Germany
| | - Sébastien Hagmann
- Centre for Orthopaedic and Trauma Surgery, Orthopaedic University Hospital Heidelberg, Germany
| | - Marcus Binner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Centre of Biomaterials Dresden (MBC), Dresden University of Technology, Centre for Regenerative Therapies Dresden (CRTD), Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Centre of Biomaterials Dresden (MBC), Dresden University of Technology, Centre for Regenerative Therapies Dresden (CRTD), Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Germany
| |
Collapse
|
39
|
Camarero-Espinosa S, Cooper-White J. Tailoring biomaterial scaffolds for osteochondral repair. Int J Pharm 2017; 523:476-489. [DOI: 10.1016/j.ijpharm.2016.10.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022]
|
40
|
Lee JW, An H, Lee KY. Introduction of N-cadherin-binding motif to alginate hydrogels for controlled stem cell differentiation. Colloids Surf B Biointerfaces 2017; 155:229-237. [PMID: 28432956 DOI: 10.1016/j.colsurfb.2017.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023]
Abstract
Control of stem cell fate and phenotype using biomimetic synthetic extracellular matrices (ECMs) is an important tissue engineering approach. Many studies have focused on improving cell-matrix interactions. However, proper control of cell-cell interactions using synthetic ECMs could be critical for tissue engineering, especially with undifferentiated stem cells. In this study, alginate hydrogels were modified with a peptide derived from the low-density lipoprotein receptor-related protein 5 (LRP5), which is known to bind to N-cadherin, as a cell-cell interaction motif. In vitro changes in the morphology and differentiation of mouse bone marrow stromal cells (D1 stem cells) cultured in LRP5-alginate hydrogels were investigated. LRP5-alginate gels successfully induced stem cell aggregation and enhanced chondrogenic differentiation of D1 stem cells, compared to RGD-alginate gels, at low cell density. This approach to tailoring synthetic biomimetic ECMs using cell-cell interaction motifs may be critical in tissue engineering approaches using stem cells.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoseok An
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
41
|
Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 2017; 51:75-88. [PMID: 28087486 PMCID: PMC5360098 DOI: 10.1016/j.actbio.2017.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. Statement of Significance Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A Parmar
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Christopher D Spicer
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M Stevens
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
42
|
Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 2017; 166:31-44. [PMID: 28385238 DOI: 10.1016/j.carbpol.2017.02.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/21/2022]
Abstract
In the present study, we developed a biomimetic injectable hydrogel system based on hyaluronic acid-adipic dihydrazide and the oligopeptide G4RGDS-grafted oxidized pectin, in which their hydrazide and aldehyde-derivatives enable covalent hydrazone crosslinking of polysaccharides. The hydrazone crosslinking strategy is simple, while circumventing toxicity, making this injectable system feasible, minimally invasive and easily translatable for regenerative purposes. By varying their weight ratios, the physicochemical properties of the mechanically stable hydrogel system were easily adjustable. Additionally, the preliminary studies demonstrated that chondrocyte behavior was dependent on HA/pectin composition and the presence of integrin binding moieties. Specifically, the incorporation of a certain amount of G4RGDS oligopeptide into HA/pectin-based hydrogels could serve as a biologically active microenvironment that supported chondrocyte phenotype and facilitated chondrogenesis. Furthermore, the hydrogel system exhibited acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable multicomponent hydrogel presented here is expected to be useful biomaterial scaffold for cartilage tissue regeneration.
Collapse
|
43
|
Nguyen MK, McMillan A, Huynh CT, Schapira DS, Alsberg E. Photocrosslinkable, biodegradable hydrogels with controlled cell adhesivity for prolonged siRNA delivery to hMSCs to enhance their osteogenic differentiation. J Mater Chem B 2017; 5:485-495. [PMID: 28652917 PMCID: PMC5482539 DOI: 10.1039/c6tb01739h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photocrosslinked, biodegradable hydrogels have been extensively investigated for biomedical applications, including drug delivery and tissue engineering. Here, dextran (DEX) was chemically modified with mono(2-acryloyloxyethyl) succinate (MAES) via an esterification reaction, resulting in macromers that could be photocrosslinked to form hydrolytically degradable hydrogels. Hydrogel swelling ratio and degradation rate were controlled by varying the degree of MAES modification. Thiolated cell adhesion peptides (GRGDSPC) were conjugated to acrylated dextran via thiol-acrylate reaction to regulate the interactions of human mesenchymal stem cells (hMSCs) with the photocrosslinkable hydrogels. The hydrogels permitted sustained release of short interfering RNA (siRNA) over 7 weeks and were cytocompatible with hMSCs. Sustained presentation of siRNA from these photocrosslinked DEX hydrogels enhanced the osteogenic differentiation of encapsulated hMSCs. These DEX hydrogels with tunable siRNA delivery and cell adhesive properties may provide an excellent platform for bioactive molecule delivery and tissue regeneration applications.
Collapse
Affiliation(s)
- Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
| | - Alexandra McMillan
- Department of Pathology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
| | - Cong Truc Huynh
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
| | - Daniel S Schapira
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
- Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
- National Center for Regenerative Medicine, Division of General Medical Sciences, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106
| |
Collapse
|
44
|
Wang YL, Lin SP, Nelli SR, Zhan FK, Cheng H, Lai TS, Yeh MY, Lin HC, Hung SC. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells. Macromol Biosci 2016; 17. [PMID: 27792283 DOI: 10.1002/mabi.201600192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/27/2016] [Indexed: 01/02/2023]
Abstract
Fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Fmoc-FF) and Fmoc-arginine-glycine--aspartate (Fmoc-RGD) peptides self-assemble to form a 3D network of supramolecular hydrogel (Fmoc-FF/Fmoc-RGD), which provides a nanofibrous network that uniquely presents bioactive ligands at the fiber surface for cell attachment. In the present study, mesenchymal stem cells (MSCs) in Fmoc-FF/Fmoc-RGD hydrogel increase in proliferation and survival compared to those in Fmoc-FF/Fmoc-RGE hydrogel. Moreover, MSCs encapsulated in Fmoc-FF/Fmoc-RGD hydrogel and induced in each defined induction medium undergo in vitro osteogenic, adipogenic, and chondrogenic differentiation. For in vivo differentiation, MSCs encapsulated in hydrogel are induced in each defined medium for one week, followed by injection into gelatin sponges and transplantation into immunodeficient mice for four weeks. MSCs in Fmoc-FF/Fmoc-RGD hydrogel increase in differentiation into osteogenic, adipogenic, and chondrogenic differentiation, compared to those in Fmoc-FF/Fmoc-RGE hydrogel. This study concludes that nanofibers formed by the self-assembly of Fmoc-FF and Fmoc-RGD are suitable for the attachment, proliferation, and multi-differentiation of MSCs, and can be applied in musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Yung-Li Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shih-Pei Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Srinivasa Rao Nelli
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Fu-Kai Zhan
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsun Cheng
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Tsung-Sheng Lai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Mei-Yu Yeh
- Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, 40447, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research and Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
45
|
Cai B, Huang Z, Wu Z, Wang L, Yin G, Gao F. Fabrication of RGD-conjugated Gd(OH) 3:Eu nanorods with enhancement of magnetic resonance, luminescence imaging and in vivo tumor targeting. Dalton Trans 2016; 45:14063-14070. [PMID: 27711720 DOI: 10.1039/c6dt02304e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of multimodal probes with magnetic resonance imaging (MRI) and intraoperative fluorescence imaging is the most challenging task in the field of tumor diagnosis. Herein, a simple one-pot hydrothermal method is used to prepare Eu-doped Gd(OH)3 nanorods (Gd(OH)3:Eu NRs) with good fluorescence and the longitudinal relaxivity r1 value of 4.78 (Gd mM s-1). After dual-functionalized maleimide-polyethylene glycol-succinimide (Mal-PEG-NHS) macromolecules are coated on the surface of Gd(OH)3:Eu NRs (PEG-NRs), the results of a lower degradation ratio in newborn calf serum (NCS), reactive oxygen species (ROS) generation in L929 cells and the hemolytic rate of PEG-NRs show their good cyto-compatibility and longer blood circulation time. Moreover, the actively tumor-targeting properties are endowed to NRs through the conjugation of cyclic arginine-glycine-aspartic acid (cRGD) (denoted RGD-NRs). The bio-distributions of RGD-NRs in tumor-bearing nude mice via tail-vein injection indicate that RGD-NRs are specifically taken-up by gliomas. The tests of in vivo T1-weighted MR imaging via tail-vein injection confirm that RGD-NRs possess a higher positive signal-enhancement ability in gliomas. Besides, the better luminescence imaging of living cells under a fluorescence microscope and the clear in vivo fluorescence imaging further confirm the targeting properties and better in vivo optical imaging behavior of RGD-NRs.
Collapse
Affiliation(s)
- Bianyun Cai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhi Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lei Wang
- Molecular Imaging Center, Department of Radiology, West China Hospital of Sichuan University, China.
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Fabao Gao
- Molecular Imaging Center, Department of Radiology, West China Hospital of Sichuan University, China.
| |
Collapse
|
46
|
Park H, Kim D, Lee KY. Interaction-tailored cell aggregates in alginate hydrogels for enhanced chondrogenic differentiation. J Biomed Mater Res A 2016; 105:42-50. [PMID: 27529335 DOI: 10.1002/jbm.a.35865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Controlling cell-matrix interactions is critical when transferring cells into the body using a scaffold, which can be elaborately tailored to successfully engineer the desired tissue. In this study, ATDC5 cells were encapsulated within alginate hydrogels and their chondrogenic differentiation was investigated in vitro. Cell-matrix interactions were introduced using RGD peptides, which improved the viability of encapsulated cells and enhanced the formation of condensed structures similar to a chondrogenic nodule. When N-cadherin of ATDC5 cells was blocked, the encapsulated cells did not form an aggregate, and chondrogenic differentiation could not be induced. Preformed cell aggregates with defined cell numbers in RGD-modified alginate gels retained adequate N-cadherin-mediated cell-cell interactions and increased chondrogenic marker gene expression, compared with the homogeneously dispersed cells in the gels. This approach may be useful to promote chondrogenesis with relatively few cells if they are encapsulated into a scaffold as a form of aggregates. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 42-50, 2017.
Collapse
Affiliation(s)
- Honghyun Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Doyun Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
47
|
Aleksander-Konert E, Paduszyński P, Zajdel A, Dzierżewicz Z, Wilczok A. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Cell Mol Biol Lett 2016; 21:11. [PMID: 28536614 PMCID: PMC5415830 DOI: 10.1186/s11658-016-0016-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023] Open
Abstract
Background In this study, we evaluated the usefulness of two commercially available hyaluronic acid-based hydrogels, HyStem and HyStem-C, for the cultivation of Wharton’s jelly mesenchymal stem cells (WJ-MSCs) and their differentiation towards chondrocytes. Methods The WJ-MSCs were isolated from umbilical cord Wharton’s jelly using the explant method and their immunophenotype was evaluated via flow cytometry analysis. According to the criteria established by the International Society for Cellular Therapy, they were true MSCs. We assessed the ability of the WJ-MSCs and chondrocytes to grow in three-dimensional hydrogels and their metabolic activity. Chondrogenesis of WJ-MSCs in the hydrogels was determined using alcian blue and safranin O staining and real-time PCR evaluation of gene expression in the extracellular matrixes: collagen type I, II, III and aggrecan. Results Chondrocytes and WJ-MSCs cultured in the HyStem and HyStem-C hydrogels adopted spherical shapes, which are characteristic for encapsulated cells. The average viability of the WJ-MSCs and chondrocytes in the HyStem hydrogels was approximately 67 % when compared with the viability in 2D culture. Alcian blue and safranin O staining revealed intensive production of proteoglycans by the cells in the HyStem hydrogels. Increased expression of collagen type II and aggrecan in the WJ-MSCs cultured in the HyStem hydrogel in the presence of chondrogenic medium showed that under these conditions, the cells have a high capacity to differentiate towards chondrocytes. The relatively high viability of WJ-MSCs and chondrocytes in both HyStem hydrogels suggests the possibility of their use for chondrogenesis. Conlusions The results indicate that WJ-MSCs have some degree of chondrogenic potential in HyStem and HyStem-C hydrogels, showing promise for the engineering of damaged articular cartilage.
Collapse
Affiliation(s)
- Ewelina Aleksander-Konert
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Piotr Paduszyński
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Alicja Zajdel
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Zofia Dzierżewicz
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland.,Department of Health Care, Silesian Medical College, ul. Mickiewicza 29, 40-085 Katowice, Poland
| | - Adam Wilczok
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
48
|
Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 2016; 35:410-24. [PMID: 24646368 DOI: 10.3109/07388551.2014.889079] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.
Collapse
Affiliation(s)
- Elena Geta Popa
- a 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark , Guimarães , Portugal and
| | | | | |
Collapse
|
49
|
Aisenbrey EA, Bryant SJ. Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel. J Mater Chem B 2016; 4:3562-3574. [PMID: 27499854 PMCID: PMC4972607 DOI: 10.1039/c6tb00006a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering. One of the challenges with using this cell type is the default pathway is terminal differentiation, a hypertrophic phenotype and precursor to endochondral ossification. We hypothesized that a synthetic hydrogel consisting of extracellular matrix (ECM) analogs derived from cartilage when combined with dynamic loading provides physiochemical cues for achieving a stable chondrogenic phenotype. Hydrogels were formed from crosslinked poly(ethylyene glycol) as the base chemistry and to which (meth)acrylate functionalized ECM analogs of RGD (cell adhesion peptide) and chondroitin sulfate (ChS, a negatively charged glycosaminoglycan) were introduced. Bone-marrow derived hMSCs from three donors were encapsulated in the hydrogels and cultured under free swelling conditions or under dynamic com pressive loading with 2.5 ng/ml TGF-β3. hMSC differentiation was assessed by quantitative PCR and immunohistochemistry. Nine hydrogel formulations were initially screened containing 0, 0.1 or 1mM RGD and 0, 1 or 2wt% ChS. After 21 days, the 1% ChS and 0.1 mM RGD hydrogel had the highest collagen II gene expression, but this was accompanied by high collagen X gene expression. At the protein level, collagen II was detected in all formulations with ECM analogs, but minimally detectable in the hydrogel without ECM analogs. Collagen X protein was present in all formulations. The 0.1 mM RGD and 1% ChS formulation was selected and subjected to five loading regimes: no loading, 5% strain 0.3Hz (1.5%/s), 10% strain 0.3 Hz (3%/s), 5% strain 1 Hz (5%/s), and 10% strain 1Hz (10%/s). After 21 days, ~70-90% of cells stained positive for collagen II protein regardless of the culture condition. On the contrary, only ~20-30% of cells stained positive for collagen X protein under 3 and 5%/s loading conditions, which was accompanied by minimal staining for RunX2. The other culture conditions had more cells staining positive for collagen X (40-60%) and was accompanied by positive staining for RunX2. In summary, a cartilage-like biomimetic hydrogel supports chondrogenesis of hMSCs, but dynamic loading only under select strain rates is able to inhibit hypertrophy.
Collapse
Affiliation(s)
- E A Aisenbrey
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| | - S J Bryant
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| |
Collapse
|
50
|
Rodenas-Rochina J, Kelly DJ, Gómez Ribelles JL, Lebourg M. Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/3/035005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|