1
|
Zheng J, Xie Y, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Stepwise Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells in Collagen Sponges under Different Microenvironments. Int J Mol Sci 2022; 23:ijms23126406. [PMID: 35742851 PMCID: PMC9223568 DOI: 10.3390/ijms23126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Biomimetic microenvironments are important for controlling stem cell functions. In this study, different microenvironmental conditions were investigated for the stepwise control of proliferation and chondrogenic differentiation of human bone-marrow-derived mesenchymal stem cells (hMSCs). The hMSCs were first cultured in collagen porous sponges and then embedded with or without collagen hydrogels for continual culture under different culture conditions. The different influences of collagen sponges, collagen hydrogels, and induction factors were investigated. The collagen sponges were beneficial for cell proliferation. The collagen sponges also promoted chondrogenic differentiation during culture in chondrogenic medium, which was superior to the effect of collagen sponges embedded with hydrogels without loading of induction factors. However, collagen sponges embedded with collagen hydrogels and loaded with induction factors had the same level of promotive effect on chondrogenic differentiation as collagen sponges during in vitro culture in chondrogenic medium and showed the highest promotive effect during in vivo subcutaneous implantation. The combination of collagen sponges with collagen hydrogels and induction factors could provide a platform for cell proliferation at an early stage and subsequent chondrogenic differentiation at a late stage. The results provide useful information for the chondrogenic differentiation of stem cells and cartilage tissue engineering.
Collapse
Affiliation(s)
- Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yan Xie
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan;
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (J.Z.); (Y.X.); (T.Y.); (N.K.)
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Correspondence: ; Tel.: +81-29-860-4496
| |
Collapse
|
2
|
You R, Wang L, Liu L, Wang Y, Han K, Lin H, Wang Y, Raftery D, Guan YQ. Probing cell metabolism on insulin like growth factor(IGF)-1/tumor necrosis factor(TNF)-α and chargeable polymers co-immobilized conjugates. J Tissue Eng Regen Med 2021; 15:256-268. [PMID: 33462987 DOI: 10.1002/term.3174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/08/2022]
Abstract
Cell culturing on different synthetic biomaterials would reprogram cell metabolism for adaption to their living conditions because such alterations in cell metabolism were necessary for cellular functions on them. Here we used metabolomics to uncover metabolic changes when liver cells were cultured on insulin-like growth factor (IGF)/tumor necrosis factor-α (TNF-α) and chargeable polymers co-modified biomaterials with the aim to explain their modulating effects on cell metabolism. The results showed that cell metabolism on IGF-1/TNF-α co-immobilized conjugates was significantly regulated according to their scatterings on the score plot of principal component analysis. Specifically, cell metabolisms were reprogrammed to the higher level of pyrimidine metabolism, β-alanine metabolism, and pantothenate and CoA biosynthesis, and the lower level of methionine salvage pathway in order to promote cell growth on IGF/TNF-α co-modified surface. Furthermore, cell senescence on PSt-PAAm-IGF/TNF-α surface was delayed through the regulation of branch amino acid metabolism and AMPK signal pathway. The research showed that metabolomics had great potential to uncover the molecular interaction between biomaterials and seeded cells, and provide the insights about cell metabolic reprogramming on IGF/TNF-α co-modified conjugates for cell growth.
Collapse
Affiliation(s)
- Rong You
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Lanqing Wang
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yuanjian Wang
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Kaibin Han
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Haiting Lin
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yibei Wang
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | | | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
3
|
Tseng SJ, Wu CC, Cheng CH, Lin JC. Studies of surface grafted collagen and transforming growth factor β1 combined with cyclic stretching as a dual chemical and physical stimuli approach for rat adipose-derived stem cells (rADSCs) chondrogenesis differentiation. J Mech Behav Biomed Mater 2020; 112:104062. [PMID: 32891975 DOI: 10.1016/j.jmbbm.2020.104062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
The adipose-derived stem cell has been used in various regenerative medicine research due to its multiple differentiation capabilities. Developing a stable and quick approach for the differentiation of stem cells is a critical issue in tissue regenerative field. In this investigation, rat adipose-derived stem cells (rADSCs) were seeded onto the type I collagen/transforming growth factor β1 (TGF-β1) immobilized polydimethylsiloxane (PDMS) substrate and then combined with short term dynamic stretching stimulation (intermittent or continuous stretching for 6 h) to induce the rADSCs chondrogenesis differentiation using the induction medium without growth factors added in vitro. Via regulating the extracellular chemical- and mechano-receptors of the cultured rADSCs, the chondrogenic differentiation was examined. After 72 h of static culture, proteoglycan secretion was noted on the surfaces modified by collagen with or without TGF-β1. After different stretching stimulations, significant proteoglycan secretion was noted on the surface modified by both collagen and collagen/TGF-β1, especially after the intermittent stretching culturing. Nonetheless, genetic expression of the chondrogenic markers: SOX-9, Col2a1, and aggrecan, instead, were dependent upon the surface grafted layer and the stretching mode utilized. These findings suggested that the surface chemical characteristics and external mechanical stimulation could synergistically affect the efficacy of chondrogenic differentiation of rADSCs.
Collapse
Affiliation(s)
- Shen-Jui Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Hui Cheng
- Department of Pediatrics, College of Medicine, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Lerman MJ, Smith BT, Gerald AG, Santoro M, Fookes JA, Mikos AG, Fisher JP. Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation. Tissue Eng Part C Methods 2020; 26:118-131. [PMID: 31971874 PMCID: PMC7041340 DOI: 10.1089/ten.tec.2019.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
As 3D printing becomes more common and the technique is used to build culture platforms, it is imperative to develop surface treatments for specific responses. The advantages of aminating and oxidizing polystyrene (PS) for human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation are investigated. We find that ammonia (NH3) plasma incorporates amines while oxygen plasma adds carbonyl and carboxylate groups. Across 2D, 3D, and 3D dynamic culture, we find that the NH3- treated surfaces encouraged cell proliferation. Our results show that the NH3-treated scaffold was the only treatment allowing dynamic proliferation of hMSCs with little evidence of osteogenic differentiation. With osteogenic media, particularly in 3D culture, we find the NH3 treatment encouraged greater and earlier expression of RUNX2 and ALP. The NH3-treated PS scaffolds support hMSC proliferation without spontaneous osteogenic differentiation in static and dynamic culture. This work provides an opportunity for further investigations into shear profiling and coculture within the developed culture system toward developing a bone marrow niche model.
Collapse
Affiliation(s)
- Max J. Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Brandon T. Smith
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Bioengineering, MS-142 BioScience Research Collaborative, Rice University, Houston, Texas
| | - Anushka G. Gerald
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - James A. Fookes
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Antonios G. Mikos
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Bioengineering, MS-142 BioScience Research Collaborative, Rice University, Houston, Texas
| | - John P. Fisher
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
5
|
Effects of a Non-Thermal Atmospheric Pressure Plasma Jet with Different Gas Sources and Modes of Treatment on the Fate of Human Mesenchymal Stem Cells. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite numerous attempts to use human mesenchymal stem cells (hMSCs) in the field of tissue engineering, the control of their differentiation remains challenging. Here, we investigated possible applications of a non-thermal atmospheric pressure plasma jet (NTAPPJ) to control the differentiation of hMSCs. An air- or nitrogen-based NTAPPJ was applied to hMSCs in culture media, either directly or by media treatment in which the cells were plated after the medium was exposed to the NTAPPJ. The durations of exposure were 1, 2, and 4 min, and the control was not exposed to the NTAPPJ. The initial attachment of the cells was assessed by a water-soluble tetrazolium assay, and the gene expression in the cells was assessed through reverse-transcription polymerase chain reaction and immunofluorescence staining. The results showed that the gene expression in the hMSCs was generally increased by the NTAPPJ exposure, but the enhancement was dependent on the conditions of the exposure, such as the source of the gas and the treatment method used. These results were attributed to the chemicals in the extracellular environment and the reactive oxygen species generated by the plasma. Hence, it was concluded that by applying the best conditions for the NTAPPJ exposure of hMSCs, the control of hMSC differentiation was possible, and therefore, exposure to an NTAPPJ is a promising method for tissue engineering.
Collapse
|
6
|
Casanova MR, Alves da Silva M, Costa-Pinto AR, Reis RL, Martins A, Neves NM. Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1169-1178. [DOI: 10.1016/j.msec.2019.01.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 12/10/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
|
7
|
Chen Y, Wang J, Zhu X, Chen X, Yang X, Zhang K, Fan Y, Zhang X. The directional migration and differentiation of mesenchymal stem cells toward vascular endothelial cells stimulated by biphasic calcium phosphate ceramic. Regen Biomater 2018; 5:129-139. [PMID: 29977596 PMCID: PMC6007427 DOI: 10.1093/rb/rbx028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Osteoinductivity of porous calcium phosphate (CaP) ceramics has been widely investigated and confirmed, and it might be attributed to the rapid formation of the vascular networks after in vivo implantation of the ceramics. In this study, to explore the vascularization mechanism within the CaP ceramics, the migration and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) under the stimulation of porous biphasic calcium phosphate (BCP) ceramic with excellent osteoinductivity were systematically investigated. The results indicated that the directional migration of BMSCs toward BCP ceramic occurred when evaluated by using a transwell model, and the BMSCs migration was enhanced by the seeded macrophages on the ceramic in advance. Besides, by directly culturing BMSCs on BCP ceramic discs under both in vitro and in vivo physiological environment, it was found that the differentiation of BMSCs toward vascular endothelial cells (VECs) happened under the stimulation of BCP ceramic, as was confirmed by the up-regulated gene expressions and protein secretions of VECs-related characteristic factors, including kinase insert domain receptor, von willebrand factor, vascular cell adhesion molecule-1 and cadherin 5 in the BMSCs. This study offered a possibility for explaining the origin of VECs during the rapid vascularization process after in vivo implantation of porous CaP ceramics and could give some useful guidance to reveal the vascularization mechanism of the ceramics.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
8
|
Li B, Gao Y, Guo L, Fan Y, Kawazoe N, Fan H, Zhang X, Chen G. Synthesis of photo-reactive poly (vinyl alcohol) and construction of scaffold-free cartilage like pellets in vitro. Regen Biomater 2018; 5:159-166. [PMID: 29942648 PMCID: PMC6007571 DOI: 10.1093/rb/rby009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
Photo-reactive poly(vinyl alcohol) (PRPVA) was synthesized by introduction of phenyl azido groups into poly(vinyl alcohol) (PVA) and applied for surface modification. PRPVA was grafted onto cell culture plate surface homogeneously or in a micropattern. Human mesenchymal stem cells (hMSCs) cultured on cell culture plate surface and PVA-modified surface showed different behaviors. Cells adhered and spread well on cell culture plate surface, while they did not adhere on PVA-grafted surface at all. When hMSCs were cultured on PVA-micropatterned surface, they formed a cell micropattern. Cells formed pellets after cultured on PVA homogeneously modified surface in chondrogenic induction medium for 2 weeks. The pellets were positively stained by hematoxylin/eosin, safranin-O/fast green and toluidin blue, and they were also stained brown by Type II collagen and proteoglycan immunohistological staining. Real-time PCR analysis was conducted to investigate the expression of colI, colII, colX, aggrecan and sox9 mRNA. Results of gene expression were in agreement with those of histological and immunohistological observations. These results indicated that hMSCs cultured on PVA-modified surface performed chondrogenic differentiation, and it was possible to construct scaffold-free cartilage like pellets with PVA-modified surface in vitro.
Collapse
Affiliation(s)
- Bao Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China.,Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
9
|
Guo L, Fan Y, Kawazoe N, Fan H, Zhang X, Chen G. Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. J Mater Chem B 2018; 6:1018-1025. [DOI: 10.1039/c7tb03165c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Micropatterned surface with different surface chemistries was fabricated for the direct comparison of their effect on the behaviors of hMSCs and to avoid any batch to batch variations during cell culture.
Collapse
Affiliation(s)
- Likun Guo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
- Research Center for Functional Materials
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Tsukuba
- Japan
| |
Collapse
|
10
|
Photoimmobilization of zwitterionic polymers on surfaces to reduce cell adhesion. J Colloid Interface Sci 2017; 500:294-303. [DOI: 10.1016/j.jcis.2017.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/23/2023]
|
11
|
Li S, Kuddannaya S, Chuah YJ, Bao J, Zhang Y, Wang D. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci 2017; 5:2056-2067. [DOI: 10.1039/c7bm00134g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To decipher specific cell responses to diverse and complex in vivo signals, it is essential to emulate specific surface chemicals, extra cellular matrix (ECM) components and topographical signals through reliable and easily reproducible in vitro systems.
Collapse
Affiliation(s)
- Sisi Li
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shreyas Kuddannaya
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jingnan Bao
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yilei Zhang
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Dongan Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
12
|
Najafabadi MM, Bayati V, Orazizadeh M, Hashemitabar M, Absalan F. Impact of Cell Density on Differentiation Efficiency of Rat Adipose-derived Stem Cells into Schwann-like Cells. Int J Stem Cells 2016; 9:213-220. [PMID: 27788569 PMCID: PMC5155717 DOI: 10.15283/ijsc16031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 01/20/2023] Open
Abstract
Background and Objectives Schwann-like (SC-like) cells induced from adipose-derived stem cells (ASCs) may be one of the ideal alternative cell sources for obtaining Schwann cells (SCs). They can be used for treating peripheral nerve injuries. Co-culture with SCs or exposure to glial growth factors are commonly used for differentiation of ASCs to SC-like cells. However, the effect of initial cell density as an inductive factor on the differentiation potential of ASCs into the SC-like cells has not been yet investigated. Methods and Results ASCs were harvested from rat and characterized. The cells were seeded into the culture flasks at three different initial cell densities i.e. 2×103, 4×103 and 8×103 cells/cm2 an overnight and differentiated toward SC-like cells using glial growth factors. After two weeks, the differentiation rate of ASCs to SC-like cells at different densities was assessed by immunofluorescence, fluorescence-activated cell sorting analysis and real time RT-PCR. Expression of the typical SCs markers, S-100 proteins and glial fibrillary acidic protein (GFAP) protein, was observed in all cell densities groups although the number of S100-positive and GFAP-positive cells, and the expression of p75NTR mRNA, another SC marker, were significantly higher at the density of 8×103 cells/cm2 when compared with the other cell densities groups (p<0.001). Conclusions The results suggest that the higher differentiation rate of ASCs to SC-like cells can be obtained at initial cell density of 8×103 cells/cm2, possibly via increased cell-cell interaction and cell density-dependent influence of glial growth factors.
Collapse
Affiliation(s)
- Mahtab Maghzi Najafabadi
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Forouzan Absalan
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Yang R, Wu L, Chen J, Chen W, Zhang L, Zhang L, You R, Yin L, Li CH, Guan YQ. Effects of Differentiation and Antisenescence from BMSCs to Hepatocy-Like Cells of the PAAm-IGF-1/TNF-α Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26638-26647. [PMID: 27668443 DOI: 10.1021/acsami.6b10377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aiming at the cells' differentiation phenomenon and senescence problem in liver tissue engineering, this work is designed to synthesize three different chargeable polymers (polypropylene acid (PAAc), polyethylene glycol (PEG), and polypropylene amine (PAAm)) coimmobilized by the insulin-like growth factor 1 (IGF-1) and tumor necrosis factor-α (TNF-α). We explore the hepatocyte differentiation effect and the antisenecence effect of PSt-PAAm-IGF-1/TNF-α biomaterial which was selected from the three different chargeable polymers in bone marrow mesenchymal stem cells (BMSCs). Our work will establish a model for studying the biochemical molecular regulation mechanism and signal transduction pathway of cell senescence in liver tissue engineering, which provide a molecular basis for developing biomaterials for liver tissue engineering.
Collapse
Affiliation(s)
- Runcai Yang
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Lifang Wu
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Jiehong Chen
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Wuya Chen
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Lin Zhang
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Li Zhang
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Rong You
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Liang Yin
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University , Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University , Guangzhou 510631, China
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| |
Collapse
|
14
|
Chen M, Xu L, Zhou Y, Zhang Y, Lang M, Ye Z, Tan WS. Poly(ε-caprolactone)-based substrates bearing pendant small chemical groups as a platform for systemic investigation of chondrogenesis. Cell Prolif 2016; 49:512-22. [PMID: 27364032 DOI: 10.1111/cpr.12272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Physiochemical properties of biomaterials play critical roles in dictating types of cell behaviour. In this study, a series of poly(ε-caprolactone) (PCL)-derived polymers bearing different small chemical groups was employed as a platform to evaluate chondrogenesis of different cell types. MATERIALS AND METHODS Thin films were prepared by spin-coating PCL derivatives. Rabbit articular chondrocytes (rACs) and rabbit bone marrow-derived mesenchymal stem cells (rMSCs) were seeded on to the films, and cell adhesion, proliferation, extracellular matrix production and gene expression were evaluated. RESULTS The presence of hydrophilic groups (-NH2 , -COOH, -OH and -C=O) promoted adhesion and proliferation of primary rACs and rMSCs. On these polymeric films, chondrogenesis of primary rACs depended on culture time. For passaged cells, re-differentiation was induced on these films by chondrogenic induction, but less for cells of passage 5 compared to passage 3. While films with hydrophilic groups favoured chondrocytic gene expression of both types of passaged cells, production of glycosaminoglycans (GAG) was similar for those of passage 3 on all films, and PCL-CH3 film better supported GAG production for cells of passage 5. Under chondrogenic conditions, rMSCs were more efficient at GAG production on PCL and PCL-NH2 films. CONCLUSIONS This study demonstrates that different cells displayed distinct responses to substrate surface chemistry, implying that cell-biomaterial interactions can be developmental stage dependent. This provides a novel perspective for developing biomaterials for cartilage regeneration.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lei Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Zhang L, Cai W, Chen WY, Zhang L, Hu K, Guan YQ. Synthesis of AzPhchitosan-bifenthrin-PVC to protect cables against termites. Carbohydr Polym 2016; 139:50-60. [DOI: 10.1016/j.carbpol.2015.11.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/28/2015] [Accepted: 11/28/2015] [Indexed: 11/27/2022]
|
16
|
HOSHIBA T, TANAKA M. Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research. ANAL SCI 2016; 32:1151-1158. [DOI: 10.2116/analsci.32.1151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takashi HOSHIBA
- Frontier Center for Organic Materials, Yamagata University
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science
| | - Masaru TANAKA
- Frontier Center for Organic Materials, Yamagata University
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
17
|
Goldshmid R, Cohen S, Shachaf Y, Kupershmit I, Sarig-Nadir O, Seliktar D, Wechsler R. Steric Interference of Adhesion Supports In-Vitro Chondrogenesis of Mesenchymal Stem Cells on Hydrogels for Cartilage Repair. Sci Rep 2015; 5:12607. [PMID: 26411496 PMCID: PMC4585928 DOI: 10.1038/srep12607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/11/2015] [Indexed: 02/02/2023] Open
Abstract
Recent studies suggest the presence of cell adhesion motifs found in structural proteins can inhibit chondrogenesis. In this context, the current study aims to determine if a polyethylene glycol (PEG)-modified fibrinogen matrix could support better chondrogenesis of human bone marrow mesenchymal stem cells (BM-MSC) based on steric interference of adhesion, when compared to a natural fibrin matrix. Hydrogels used as substrates for two-dimensional (2D) BM-MSC cultures under chondrogenic conditions were made from cross-linked PEG-fibrinogen (PF) and compared to thrombin-activated fibrin. Cell morphology, protein expression, DNA and sulfated proteoglycan (GAG) content were correlated to substrate properties such as stiffness and adhesiveness. Cell aggregation and chondrogenic markers, including collagen II and aggrecan, were observed on all PF substrates but not on fibrin. Shielding fibrinogen's adhesion domains and increasing stiffness of the material are likely contributing factors that cause the BM-MSCs to display a more chondrogenic phenotype. One composition of PF corresponding to GelrinC™--a product cleared in the EU for cartilage repair--was found to be optimal for supporting chondrogenic differentiation of BM-MSC while minimizing hypertrophy (collagen X). These findings suggest that semi-synthetic biomaterials based on ECM proteins can be designed to favourably affect BM-MSC towards repair processes involving chondrogenesis.
Collapse
Affiliation(s)
- Revital Goldshmid
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | - Dror Seliktar
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
18
|
Chen YC, Chen RN, Jhan HJ, Liu DZ, Ho HO, Mao Y, Kohn J, Sheu MT. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering. Tissue Eng Part C Methods 2015; 21:971-86. [PMID: 25919905 DOI: 10.1089/ten.tec.2015.0036] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair.
Collapse
Affiliation(s)
- Ying-Chen Chen
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Ray-Neng Chen
- 2 Department of Cosmetics Applications and Management, Mackay Junior College of Medicine , Nursing, and Management, Taipei, Taiwan
| | - Hua-Jing Jhan
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Der-Zen Liu
- 3 Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University , Taipei, Taiwan .,4 Center for General Education, Hsuan Chuang University , Hsinchu, Taiwan
| | - Hsiu-O Ho
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Yong Mao
- 5 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joachim Kohn
- 5 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,6 Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | - Ming-Thau Sheu
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan .,7 Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital , Taipei, Taiwan
| |
Collapse
|
19
|
Zhan X, Guan YQ. Design of magnetic nanoparticles for hepatocellular carcinoma treatment using the control mechanisms of the cell internal nucleus and external membrane. J Mater Chem B 2015; 3:4191-4204. [PMID: 32262296 DOI: 10.1039/c5tb00514k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticle drugs and relevant treatment technologies have achieved widespread attention in recent years. Hepatocellular carcinoma (HCC) remains a challenging malignancy of worldwide importance since it is one of the worst malignant tumors. In this study, magnetic Fe3O4 nanoparticles are prepared via a co-precipitation reaction with self-assembled surface monolayers of oleic acid molecules. For synthesizing the nanoparticle anti-tumor drug used against HCC, the liquid photo-immobilization method is used to bond the photoactive N-isopropylacrylamide derivative (NIPAm-AA) onto the oleic acid monolayer for subsequently embedding doxorubicin, photoactive tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ), and folic acid (FOL). We investigate how the nanoparticle drug inhibits the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. Remarkably, our characterizations show that the nanoparticle drug demonstrates much higher anticancer efficacy (94.7%) in vitro than previously reported drugs. It is revealed that the programmed cell death induced by the drug is mainly oncosis, a new programmed cell death pathway, different from earlier proposed mechanisms. This oncosis mechanism is also confirmed in the other two hepatocellular carcinoma cells (BEL-7402 and Huh-7). This study may be helpful for developing a new type of nanoparticle drug capable of assuring molecular control of both the cell inner nucleus and outer membrane as a means to enormously increase the drug efficacy in human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiuyu Zhan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|
20
|
Zhao C, Lu X, Zanden C, Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater 2015; 10:015019. [DOI: 10.1088/1748-6041/10/1/015019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Inagaki Y, Kitamura N, Kurokawa T, Tanaka Y, Gong JP, Yasuda K, Tohyama H. Effects of culture on PAMPS/PDMAAm double-network gel on chondrogenic differentiation of mouse C3H10T1/2 cells: in vitro experimental study. BMC Musculoskelet Disord 2014; 15:320. [PMID: 25262146 PMCID: PMC4190488 DOI: 10.1186/1471-2474-15-320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Recently, several animal studies have found that spontaneous hyaline cartilage regeneration can be induced in vivo within a large osteochondral defect by implanting a synthetic double-network (DN) hydrogel, which is composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and poly-(N,N’-dimethyl acrylamide) (PDMAAm), at the bottom of the defect. However, the effect of hydrogel on hyaline cartilage regeneration remains unexplained. The purpose of this study was to investigate the chondrogenic differentiation of C3H10T1/2 cells on PAMPS/PDMAAm DN gel. Methods C3H10T1/2 cells of 1.0 × 105 were cultured on PAMPS/PDMAAm DN gel in polystyrene tissue culture dishes or directly on polystyrene tissue culture dishes. We compared cultured cells on PAMPS/PDMAAm DN gel with those on polystyrene dishes by morphology using phase-contrast microscopy, mRNA expression of aggrecan, type I collagen, type II collagen, Sox 9 and osteocalcin using real-time RT-PCR, and local expression of type II collagen using immunocytochemistry. Results C3H10T1/2 cells cultured on the PAMPS/PDMAAm DN gels formed focal adhesions, aggregated rapidly and developed into large nodules within 7 days, while the cells cultured on the polystyrene surface did not. The mRNA levels of aggrecan, type I collagen, type II collagen, Sox 9 and osteocalcin were significantly greater in cells cultured on the PAMPS/PDMAAm DN gel than in those cultured on polystyrene dishes. In addition, C3H10T1/2 cells cultured on PAMPS/PDMAAm DN gel expressed more type II collagen at the protein level when compared with cells cultured on polystyrene dishes. Conclusions The present study showed that PAMPS/PDMAAm DN gel enhanced chondrogenesis of C3H10T1/2 cells, which are functionally similar to mesenchymal stem cells. This suggests that mesenchymal stem cells from the bone marrow contribute to spontaneous hyaline cartilage regeneration in vivo in large osteochondral defects after implantation of PAMPS/PDMAAm DN gels. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-320) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Harukazu Tohyama
- Department of Sports Medicine and Joint Surgery, Graduate School of Medicine, Hokkaido University, Kita-15 Nishi-7, Sapporo 060-8638, Japan.
| |
Collapse
|
22
|
Guan YQ, Zheng Z, Huang Z, Li Z, Niu S, Liu JM. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization. Sci Rep 2014; 4:4990. [PMID: 24845203 PMCID: PMC4028896 DOI: 10.1038/srep04990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 04/28/2014] [Indexed: 11/08/2022] Open
Abstract
Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacology
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Cycle Checkpoints/drug effects
- Cell Survival/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Carriers
- Drug Delivery Systems
- Folic Acid/chemistry
- Folic Acid/pharmacology
- HeLa Cells
- Hematinics/chemistry
- Hematinics/pharmacology
- Humans
- Interferon-gamma/chemistry
- Interferon-gamma/pharmacology
- Light
- Magnetite Nanoparticles
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oleic Acid/chemistry
- Oleic Acid/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Necrosis Factor-alpha/chemistry
- Tumor Necrosis Factor-alpha/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yan-Qing Guan
- Institute for Advanced Materials and School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhe Zheng
- Institute for Advanced Materials and School of Life Science, South China Normal University, Guangzhou 510631, China
- These authors contributed equally to this work
| | - Zheng Huang
- Institute for Advanced Materials and School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhibin Li
- Institute for Advanced Materials and School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shuiqin Niu
- Institute for Advanced Materials and School of Life Science, South China Normal University, Guangzhou 510631, China
- These authors contributed equally to this work
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
- Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
23
|
Heo Y, Park SH, Seo SY, Yun JY, Ito Y, Son TI. Preparation and in vivo evaluation of photo-cured O-carboxymethyl chitosan micro-particle for controlled drug delivery. Macromol Res 2014. [DOI: 10.1007/s13233-014-2079-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Poly(Vinyl Alcohol)-Micropatterned Surfaces for Manipulation of Mesenchymal Stem Cell Functions. Methods Cell Biol 2014; 119:17-33. [DOI: 10.1016/b978-0-12-416742-1.00002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
25
|
Rashidi H, Yang J, Shakesheff KM. Surface engineering of synthetic polymer materials for tissue engineering and regenerative medicine applications. Biomater Sci 2014; 2:1318-1331. [DOI: 10.1039/c3bm60330j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
When using polymer materials as scaffolds for tissue engineering or regenerative medicine applications the initial, and often lasting, interaction between cells and the material areviasurfaces.
Collapse
Affiliation(s)
- Hassan Rashidi
- Wolfson Centre for Stem Cells
- Tissue Engineering and Modelling
- Division of Drug Delivery and Tissue Engineering
- School of Pharmacy
- University of Nottingham
| | - Jing Yang
- Wolfson Centre for Stem Cells
- Tissue Engineering and Modelling
- Division of Drug Delivery and Tissue Engineering
- School of Pharmacy
- University of Nottingham
| | - Kevin M. Shakesheff
- Wolfson Centre for Stem Cells
- Tissue Engineering and Modelling
- Division of Drug Delivery and Tissue Engineering
- School of Pharmacy
- University of Nottingham
| |
Collapse
|
26
|
The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system. Biomaterials 2013; 34:9352-64. [DOI: 10.1016/j.biomaterials.2013.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/17/2013] [Indexed: 01/24/2023]
|
27
|
Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, Cheng MH, Chu IM. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med 2013; 10:E485-E496. [PMID: 24668937 DOI: 10.1002/term.1846] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/29/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Chondrocytes (CH) and bone marrow stem cells (BMSCs) are sources that can be used in cartilage tissue engineering. Co-culture of CHs and BMSCs is a promising strategy for promoting chondrogenic differentiation. In this study, articular CHs and BMSCs were encapsulated in PCL-PEG-PCL photocrosslinked hydrogels for 4 weeks. Various ratios of CH:BMSC co-cultures were investigated to identify the optimal ratio for cartilage formation. The results thus obtained revealed that co-culturing CHs and BMSCs in hydrogels provides an appropriate in vitro microenvironment for chondrogenic differentiation and cartilage matrix production. Co-culture with a 1:4 CH:BMSC ratio significantly increased the synthesis of GAGs and collagen. In vivo cartilage regeneration was evaluated using a co-culture system in rabbit models. The co-culture system exhibited a hyaline chondrocyte phenotype with excellent regeneration, resembling the morphology of native cartilage. This finding suggests that the co-culture of these two cell types promotes cartilage regeneration and that the system, including the hydrogel scaffold, has potential in cartilage tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chao-Yin Ko
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Kuan-Lin Ku
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Shu-Rui Yang
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China.,Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan, Republic of China
| | - Tsai-Yu Lin
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Taiwan, Republic of China
| | - Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Yu-Shiang Peng
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China
| | - Ming-Huei Cheng
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taiwan, Republic of China
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Taiwan, Republic of China.
| |
Collapse
|
28
|
Sivakumar PM, Zhou D, Son TI, Ito Y. Design and Synthesis of Photoreactive Polymers for Biomedical Applications. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
29
|
Wang X, Song W, Kawazoe N, Chen G. The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces. J Biomed Mater Res A 2013; 101:3388-95. [DOI: 10.1002/jbm.a.34645] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 01/16/2013] [Accepted: 02/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Xinlong Wang
- Tissue Regeneration Materials Unit; International Center for Materials Nanoarchitectonics; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Wei Song
- Tissue Regeneration Materials Unit; International Center for Materials Nanoarchitectonics; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit; International Center for Materials Nanoarchitectonics; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit; International Center for Materials Nanoarchitectonics; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
30
|
Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates. Acta Biomater 2013; 9:6041-51. [PMID: 23237986 PMCID: PMC3594746 DOI: 10.1016/j.actbio.2012.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis.
Collapse
|
31
|
Kaivosoja E, Barreto G, Levón K, Virtanen S, Ainola M, Konttinen YT. Chemical and physical properties of regenerative medicine materials controlling stem cell fate. Ann Med 2012; 44:635-50. [PMID: 21568670 DOI: 10.3109/07853890.2011.573805] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine is a multidisciplinary field utilizing the potential of stem cells and the regenerative capability of the body to restore, maintain, or enhance tissue and organ functions. Stem cells are unspecialized cells that can self-renew but also differentiate into several somatic cells when subjected the appropriate environmental cues. The ability to reliably direct stem cell fate would provide tremendous potential for basic research and clinical therapies. Proper tissue function and regeneration rely on the spatial and temporal control of biophysical and biochemical cues, including soluble molecules, cell-cell contacts, cell-extracellular matrix contacts, and physical forces. The mechanisms involved remain poorly understood. This review focuses on the stem cell-extracellular matrix interactions by summarizing the observations of the effects of material variables (such as overall architecture, surface topography, charge, ζ-potential, surface energy, and elastic modulus) on the stem cell fate. It also deals with the mechanisms underlying the effects of these extrinsic, material variables. Insight in the environmental interactions of the stem cells is crucial for the development of new material-based approaches for cell culture experiments and future experimental and clinical regenerative medicine applications.
Collapse
Affiliation(s)
- Emilia Kaivosoja
- Department of Medicine, Institute of Clinical Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Shao HJ, Ho CC, Lee YT, Chen CS, Wang JH, Young TH. Chondrogenesis of human bone marrow mesenchymal cells by transforming growth factors β1 through cell shape changes on controlled biomaterials. J Biomed Mater Res A 2012; 100:3344-52. [PMID: 22733694 DOI: 10.1002/jbm.a.34291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 05/11/2012] [Accepted: 05/18/2012] [Indexed: 01/16/2023]
Abstract
The phenotypic responses of human bone marrow mesenchymal cells (hBMSCs) on different ratio of chitosan/polycaprolactone (PCL) blends were investigated in this study. The results showed that hBMSCs existed different morphology on chitosan/PCL blends due to the different adhesion characteristic of cell on neat PCL and neat chitosan. Interestingly, comparing to hBMSCs on neat PCL, hBMSCs aggregated to form spheroid and to express ascendant trend of transforming growth factor β1, collagen type II, collagen type X, and Sox9 mRNA on the chitosan/PCL blended substrates with the decrease of PCL content. To confirm chondrogenesis of hBMSCs with spheroid on test substrates, Alcian Blue and Safranin O staining were used to detect the cartilaginous extracellular matrix (ECM). It revealed hBMSCs with spheroid on neat chitosan and 10 wt % PCL did turn to chondrogenic differentiation and synthesize cartilaginous ECM. Therefore, these findings provided new insights into the role of chitosan/PCL blended material could mediate the endogenous gene expression of hBMSCs to alter the phenotypic behavior through mediating the cell shape.
Collapse
Affiliation(s)
- Hung-Jen Shao
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
33
|
Guan YQ, Li Z, Yang A, Huang Z, Zheng Z, Zhang L, Li L, Liu JM. Cell cycle arrest and apoptosis of OVCAR-3 and MCF-7 cells induced by co-immobilized TNF-α plus IFN-γ on polystyrene and the role of p53 activation. Biomaterials 2012; 33:6162-71. [PMID: 22682938 DOI: 10.1016/j.biomaterials.2012.05.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/17/2012] [Indexed: 01/24/2023]
Abstract
The aim of this study is to reveal the biological mechanism for high anti-cancer efficiency of co-immobilized TNF-α plus IFN-γ polymeric drug (co-immobilized drug) in mediating two gynecologic cancer cell lines: MCF-7 and OVCAR-3. The co-immobilized drug is prepared by mixing 10 ng/ml TNF-α plus 10 ng/ml IFN-γ which are then photo-immobilized onto cell culture polystyrene plates. The drug compositions and microstructures are characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The MCF-7 and OVCAR-3 cell cycle arrest and programmed cell death are checked by flow cytometry, and the expression of p53 is probed by immunofluorescence staining. The phosphorylation sites of the p53 regulation and the apoptosis key protein expressions of caspase 3, 8 and 9 are detected by western blot assay. Our data show that, in case of short treatment time (48 h) at low cytokine concentrations (20 ng/ml), the co-immobilized drug demonstrates visible effects in comparison with the treatment using TNF-α plus IFN-γ freely attached on the polymeric plate (free drug). It is revealed that the co-immobilized drug leads to significant cell arrest in the S phase or G(1) and G(2) phase and offer high efficiency in mediating a caspase-dependent apoptosis via p53 transcriptional regulation. Moreover, upon the treatment by the co-immobilized drug, the two gynecologic cancer cell lines show different phosphorylation sites of p53 and then different caspase-dependent apoptosis pathways. The present work sheds deep insights into the p53 regulation mechanism responsible for the high anti-cancer efficiency of the co-immobilized TNF-α plus IFN-γ polymeric drug against MCF-7 and OVCAR-3.
Collapse
Affiliation(s)
- Yan-Qing Guan
- School of Life Science and Institute for Advanced Materials, South China Normal University, Guangzhou 510631, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Chieh HF, Su FC, Lin SC, Shen MR, Liao JD. Migration patterns and cell functions of adipose-derived stromal cells on self-assembled monolayers with different functional groups. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2012; 24:94-117. [PMID: 23566314 DOI: 10.1163/156856212x626208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Microenvironments provide cues to stem cells and induce signals to direct their fate. With a view toward further understanding the correlation between surface chemistry and cell functions of stem cells, adipose-derived stromal cells (ADSCs) and self-assembled monolayers terminated with four different functional groups (-CH3, -NH2, -COOH and -OH) were used to assess cell adhesion, migration and differentiation potential in short-term incubation. Quantitative time-lapse microscopic analysis revealed that migration speed and patterns were strongly regulated by surface chemistry. ADSCs showed a mesenchymal migration pattern on the -COOH-modified surface. In contrast, cells on the -CH3-modified surface displayed an amoeboid-like migration pattern. Cell-migration speeds on the chemically-modified surfaces followed the sequence (by tail-groups): -CH3>-COOH>-OH>-NH2. After 1 day of incubation, ADSCs showed a round compact shape and adipogenic differentiation potential on the -CH3-modified surface. The round compact shape and extremely different migration pattern of ADSCs on -CH3 surfaces were attributed to the lower amount of exposed cell-binding domains of adsorbed proteins. ADSCs exhibited spindle-like shape and higher Collagen II expression on the -COOH-modified surface and well-spread morphology and higher Runx2 expression were observed on the -NH2- and -OH-modified surfaces. Surface chemistry presented a strong influence on cell functions of ADSCs, including cell adhesion, migration and mRNA expression in short-term incubation.
Collapse
Affiliation(s)
- Hsiao-Feng Chieh
- Department of Materials Science and Engineering , National Cheng Kung University, 1 University Road, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Sun GW, Fujii M, Matsunaga T. Functional interaction between mesenchymal stem cells and spiral ligament fibrocytes. J Neurosci Res 2012; 90:1713-22. [DOI: 10.1002/jnr.23067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 01/15/2023]
|
36
|
Poly(2-acrylamido-2-methylpropanesulfonic acid) gel induces articular cartilage regeneration in vivo: Comparisons of the induction ability between single- and double-network gels. J Biomed Mater Res A 2012; 100:2244-51. [DOI: 10.1002/jbm.a.34165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/16/2012] [Accepted: 03/01/2012] [Indexed: 11/07/2022]
|
37
|
Guan YQ, Zheng Z, Li Z, Liu JM. Cell death in HeLa mediated by thermoplastic polyurethane with co-immobilized IFN-γ plus TNF-α. Acta Biomater 2012; 8:1348-56. [PMID: 22154859 DOI: 10.1016/j.actbio.2011.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/11/2011] [Accepted: 11/21/2011] [Indexed: 12/23/2022]
Abstract
In order to prohibit the toxicity of free IFN-γ plus TNF-α in treating human cervical cancer HeLa cells, two kinds of thermoplastic polyurethane (polyester/polyether) biomaterials with co-immobilized IFN-γ plus TNF-α on the surfaces are prepared. The programmed cell death of HeLa induced by these biomaterials is investigated. The surface modification of these biomaterials with co-immobilized IFN-γ plus TNF-α is performed by the photo-immobilization method, and the surface structures are characterized by various techniques. The cell morphology, cell mortality, cell cycle arrest, and functional status of caspases, upon the treatment by these biomaterials, are characterized. The results show that the as-prepared biomaterials have high inhibition activity against the growth of HeLa cells. The HeLa cells mediated by the two kinds of biomaterials are mainly arrested in the G(1) phase, while those cells mediated directly by free IFN-γ plus TNF-α are mainly arrested in the S phase. It is suggested that the programmed cell death mechanism induced by these two kinds of biomaterials is both caspase-dependent and caspase-independent. Our data provide the knowledge of microscopic surface structures and cell biology basis for synthesizing the thermoplastic polyurethane biomaterials with co-immobilized IFN-γ plus TNF-α, which are promising for novel therapeutics (e.g. drug cup) design for cervical cancer patients.
Collapse
Affiliation(s)
- Yan-Qing Guan
- School of Life Science and Institute for Advanced Materials, South China Normal University, Guangzhou 510631, China
| | | | | | | |
Collapse
|
38
|
Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behavior. J Colloid Interface Sci 2012; 368:64-9. [DOI: 10.1016/j.jcis.2011.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 11/16/2022]
|
39
|
Wei Song, Hongxu Lu, Kawazoe N, Guoping Chen. Gradient patterning and differentiation of mesenchymal stem cells on micropatterned polymer surface. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511406327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A micropatterned surface with different area ratios of cell-adhesive to nonadhesive surfaces was prepared by micropatterning poly(vinyl alcohol) on a polystyrene plate using photolithography. A gradient pattern of mesenchymal stem cells of different cell densities was generated by culturing the cells on a micropatterned surface. The effects of the cell density gradient on cell functions such as proliferation and differentiation were investigated. Cells seeded at a low density proliferated faster than cells seeded at a high density. Although mesenchymal stem cells seeded at both low and high densities showed osteogenic differentiation, the higher cell seeding density could initiate osteogenic differentiation at a faster rate than the low cell density. And high cell density was required to induce chondrogenic differentiation.
Collapse
Affiliation(s)
- Wei Song
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hongxu Lu
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan,
| |
Collapse
|
40
|
Song W, Lu H, Kawazoe N, Chen G. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6155-62. [PMID: 21486006 DOI: 10.1021/la200487w] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Micropatterned surfaces are very useful to control cell microenvironment and investigate the physical effects on cell function. In this study, poly(vinyl alcohol) (PVA) micropatterns on polystyrene cell-culture plates were prepared using UV photolithography. Cell adhesive polystyrene geometries of triangle, square, pentagon, hexagon, and circle were surrounded by cell nonadhesive PVA to manipulate cell shapes. These different geometries had the same small surface areas for cell spreading. Human mesenchymal stem cells (MSCs) were cultured on the micropatterned surface, and the effect of cell geometry on adipogenic differentiation was investigated. MSCs adhered to the geometric micropatterns and formed arrays of single cell with different shapes. The distribution patterns of actin filaments were similar among these cell shapes and remolded during adipogenesis. The adipogenic differentiation potential of MSCs was similar on the small size triangular, square, pentagonal, hexagonal, and circular geometries according to lipid vacuoles staining. This simple micropatterning technique using photoreactive molecules will be useful for creating micropatterns of arbitrary design on an organic surface, and cell functions can be directly and systematically compared on a single surface without external factors resulting from separate cell culture and coating method.
Collapse
Affiliation(s)
- Wei Song
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | |
Collapse
|
41
|
Guan YQ, Chen JM, Li ZB, Feng QL, Liu JM. Immobilisation of bifenthrin for termite control. PEST MANAGEMENT SCIENCE 2011; 67:244-251. [PMID: 21104824 DOI: 10.1002/ps.2065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Termites are worldwide pests causing considerable damage to agriculture, forestry and buildings. While various approaches have been tried to eliminate termite populations, the relevant toxicants are associated with certain risks to the environment and human health. RESULTS In this study, to combine the merits of effective chemical control by bifenthrin and a drug photoimmobilisation technique, silk fibroin was used as a carrier to embed bifenthrin, which was then photoactively immobilised by ultraviolet treatment on the surface of wood (cellulose). The immobilised bifenthrin embedded in the photoactive silk fibroin was characterised by Fourier transform infrared spectroscopy (FTIR), ultraviolet absorption spectroscopy (UV), fluorescence measurement and CHN analysis. The surface structures and biological activity were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA) and bioassays respectively. CONCLUSIONS The results indicate that the embedded and immobilised bifenthrin has been very well protected from free release and has a long-term stability allowing slow release with a high efficiency against termites at a low dose of 1.25 µg cm(-2). This study provides a novel and environmentally benign technique for termite control by photoimmobilising silk-fibroin-embedded bifenthrin on the surface of materials that are otherwise easily attacked by termites.
Collapse
Affiliation(s)
- Yan-Qing Guan
- School of Life Science and MOE Key Laboratory of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | | | | | |
Collapse
|
42
|
Baek EJ, You J, Kim MS, Lee SY, Cho SJ, Kim E, Kim HO. Enhanced Production of Red Blood Cells in Suspension by Electrostatic Interactions with Culture Plates. Tissue Eng Part C Methods 2010; 16:1325-34. [DOI: 10.1089/ten.tec.2009.0785] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Eun Jung Baek
- Department of Laboratory Medicine, College of Medicine, CHA University, Seoul, Korea
| | - Jungmok You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Min Sun Kim
- Department of Laboratory Medicine, College of Medicine, CHA University, Seoul, Korea
| | - So-Young Lee
- Department of Laboratory Medicine, College of Medicine, CHA University, Seoul, Korea
| | - Seong-Je Cho
- Department of Materials Science and Engineering, KAIST, Daejeon, Korea
- 3CRO, Inc. Seoul, Korea
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, College of Medicine, Yonsei University, Seoul, Korea
| |
Collapse
|
43
|
Guan YQ, Li Z, Liu JM. Death signal transduction induced by co-immobilized TNF-α plus IFN-γ and the development of polymeric anti-cancer drugs. Biomaterials 2010; 31:9074-85. [DOI: 10.1016/j.biomaterials.2010.08.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/19/2010] [Indexed: 01/22/2023]
|
44
|
Jin M, Cuntai Z, Shen H, Guoqiang W, Xiaoqing Q. Use of rats mesenchymal stem cells modified with mHCN2 gene to create biologic pacemakers. ACTA ACUST UNITED AC 2010; 30:447-52. [DOI: 10.1007/s11596-010-0447-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Indexed: 01/19/2023]
|
45
|
Chemical and Physical Modifications of Biomaterial Surfaces to Control Adhesion of Cells. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-8790-4_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
A photoimmobilizable sulfobetaine-based polymer for a nonbiofouling surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2010; 30:316-322. [DOI: 10.1016/j.msec.2009.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
|
47
|
Functional Biomaterials for Controlling Stem Cell Differentiation. STUDIES IN MECHANOBIOLOGY, TISSUE ENGINEERING AND BIOMATERIALS 2010. [DOI: 10.1007/8415_2010_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Lu H, Guo L, Kawazoe N, Tateishi T, Chen G. Effects of poly(L-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:577-89. [PMID: 19323877 DOI: 10.1163/156856209x426402] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microenvironments, composed of many kinds of cytokines and growth factors plus extracellular matrices with diverse electrostatic properties, play key roles in controlling cell functions in vivo. In this study, three kinds of water-soluble polymers, positively charged poly(L-lysine) (PLL), negatively charged poly(acrylic acid) (PAAc) and neutral poly(ethylene glycol) (PEG), were compared based on their effects on the adhesion, spread, proliferation and chondrogenic differentiation of human mesenchymal stem cells (MSCs). The MSCs were seeded and cultured in the presence of polymers of different concentrations applied by methods using coating, mixing or covering. The effects of the water-soluble polymers depended on their electrostatic properties and method of application. The methods were in the order of coating, mixing and covering in terms of high to low influence. A low concentration of PLL promoted MSC adhesion, spread, proliferation and chondrogenic differentiation, while a high concentration of PLL was toxic. The PEG-coated surface facilitated cell aggregation and spheroid formation by inhibiting cell adhesion. A high concentration of mixed PEG (10 microg/ml) promoted cell proliferation in serum-free medium. PAAc showed no obvious effects on MSC adhesion, spread, proliferation, or chondrogenic differentiation.
Collapse
Affiliation(s)
- Hongxu Lu
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | |
Collapse
|
49
|
Lu H, Guo L, Wozniak MJ, Kawazoe N, Tateishi T, Zhang X, Chen G. Effect of cell density on adipogenic differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2009; 381:322-7. [DOI: 10.1016/j.bbrc.2009.01.174] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
You J, Heo JS, Lee J, Kim HS, Kim HO, Kim E. A Fluorescent Polymer for Patterning of Mesenchymal Stem Cells. Macromolecules 2009. [DOI: 10.1021/ma802722q] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jungmok You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Cell Therapy Center, Severance Hospital, College of Medicine, Yonsei University, and Department of Laboratory Medicine, College of Medicine, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - June Seok Heo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Cell Therapy Center, Severance Hospital, College of Medicine, Yonsei University, and Department of Laboratory Medicine, College of Medicine, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Jiyea Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Cell Therapy Center, Severance Hospital, College of Medicine, Yonsei University, and Department of Laboratory Medicine, College of Medicine, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Han-Soo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Cell Therapy Center, Severance Hospital, College of Medicine, Yonsei University, and Department of Laboratory Medicine, College of Medicine, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Hyun Ok Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Cell Therapy Center, Severance Hospital, College of Medicine, Yonsei University, and Department of Laboratory Medicine, College of Medicine, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | - Eunkyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Cell Therapy Center, Severance Hospital, College of Medicine, Yonsei University, and Department of Laboratory Medicine, College of Medicine, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| |
Collapse
|