1
|
Krasilnikova O, Yakimova A, Ivanov S, Atiakshin D, Kostin AA, Sosin D, Shegay P, Kaprin AD, Klabukov I. Gene-Activated Materials in Regenerative Dentistry: Narrative Review of Technology and Study Results. Int J Mol Sci 2023; 24:16250. [PMID: 38003439 PMCID: PMC10671237 DOI: 10.3390/ijms242216250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment of a wide variety of defects in the oral and maxillofacial regions requires the use of innovative approaches to achieve best outcomes. One of the promising directions is the use of gene-activated materials (GAMs) that represent a combination of tissue engineering and gene therapy. This approach implies that biocompatible materials will be enriched with gene-carrying vectors and implanted into the defect site resulting in transfection of the recipient's cells and secretion of encoded therapeutic protein in situ. GAMs may be presented in various designs depending on the type of material, encoded protein, vector, and way of connecting the vector and the material. Thus, it is possible to choose the most suitable GAM design for the treatment of a particular pathology. The use of plasmids for delivery of therapeutic genes is of particular interest. In the present review, we aimed to delineate the principle of work and various designs of plasmid-based GAMs and to highlight results of experimental and clinical studies devoted to the treatment of periodontitis, jaw bone defects, teeth avulsion, and other pathologies in the oral and maxillofacial regions.
Collapse
Affiliation(s)
- Olga Krasilnikova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Anna Yakimova
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukov St. 10, 249031 Obninsk, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Centre—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Zhukov St. 10, 249031 Obninsk, Russia
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey A. Kostin
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| |
Collapse
|
2
|
Bealer E, Crumley K, Clough D, King J, Behrend M, Annulis C, Li F, Soleimanpour S, Shea LD. Extrahepatic transplantation of 3D cultured stem cell-derived islet organoids on microporous scaffolds. Biomater Sci 2023; 11:3645-3655. [PMID: 37017294 PMCID: PMC10192035 DOI: 10.1039/d3bm00217a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Stem cell differentiation methods have been developed to produce cells capable of insulin secretion which are showing promise in clinical trials for treatment of type-1 diabetes. Nevertheless, opportunities remain to improve cell maturation and function. Three-dimensional (3D) culture has demonstrated improved differentiation and metabolic function in organoid systems, with biomaterial scaffolds employed to direct cell assembly and facilitate cell-cell contacts. Herein, we investigate 3D culture of human stem cell-derived islet organoids, with 3D culture initiated at the pancreatic progenitor, endocrine progenitor, or immature β-cell stage. Clusters formed by reaggregation of immature β-cells could be readily seeded into the microporous poly(lactide-co-glycolide) scaffold, with control over cell number. Culture of islet organoids on scaffolds at the early to mid-stage beta cell progenitors had improved in vitro glucose stimulated insulin secretion relative to organoids formed at the pancreatic progenitor stage. Reaggregated islet organoids were transplanted into the peritoneal fat of streptozotocin-induced diabetic mice, which resulted in reduced blood glucose levels and the presence of systemic human C-peptide. In conclusion, 3D cell culture supports development of islet organoids as indicated by insulin secretion in vitro and supports transplantation to extrahepatic sites that leads to a reduction of hyperglycemia in vivo.
Collapse
Affiliation(s)
- Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Kelly Crumley
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Daniel Clough
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Jessica King
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Maya Behrend
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Connor Annulis
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Feiran Li
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
| | - Scott Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Medicine Service, Endocrinology and Metabolism Section, VA Ann Arbor Health Care System, Ann Arbor, MI, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109, USA.
- Department of Surgery, University of Michigan, USA
| |
Collapse
|
3
|
Jakus A, Geisendorfer N, Lewis P, Shah R. 3D-printing porosity: A new approach to creating elevated porosity materials and structures. Acta Biomater 2018; 72:94-109. [PMID: 29601901 DOI: 10.1016/j.actbio.2018.03.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/23/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. STATEMENT OF SIGNIFICANCE Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer structures are almost entirely porous and contain very little solid material, but the maintain their 3D-printed form and are highly compatible with adult human stem cells, are mechanically robust enough to use in surgical manipulations, and can be filled with and act as carriers for biologically active liquids and gels. We can also extend this process to three-dimensionally printing other porous materials, such as graphene, metals, and even ceramics.
Collapse
|
4
|
Liu P, Sun L, Liu P, Yu W, Zhang Q, Zhang W, Ma J, Liu P, Shen J. Surface modification of porous PLGA scaffolds with plasma for preventing dimensional shrinkage and promoting scaffold–cell/tissue interactions. J Mater Chem B 2018; 6:7605-7613. [DOI: 10.1039/c8tb02374c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An effective strategy for simultaneously tackling the dimensional shrinkage of a highly porous PLGA scaffold and improving the scaffold–tissue integration.
Collapse
Affiliation(s)
- Peiming Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases
- Nanjing Medical University
- Nanjing 210029
- P. R. China
| | - Pingying Liu
- School of Materials Science and Engineering
- Jingdezhen Ceramic Institute
- Jingdezhen 333403
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Wenqian Yu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Qianhui Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Weibing Zhang
- Jiangsu Key Laboratory of Oral Diseases
- Nanjing Medical University
- Nanjing 210029
- P. R. China
| | - Jing Ma
- School of Chemistry and Chemical Engineering
- Key Laboratory of Mesoscopic Chemistry of MOE
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|
5
|
Germershaus O, Nultsch K. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
6
|
Hydrogels to modulate lentivirus delivery in vivo from microporous tissue engineering scaffolds. Drug Deliv Transl Res 2015; 1:91-101. [PMID: 22229129 DOI: 10.1007/s13346-010-0011-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Numerous strategies to induce tissue regeneration employ scaffolds to create space and present biological cues that promote development. In this report, microporous scaffolds that provide structural support were filled with hydrogels to regulate cell adhesion and migration and were investigated as delivery vehicles for gene therapy vectors in vivo. Porous scaffolds were filled with either lentivirus-entrapped collagen or fibrin hydrogels, both of which support cell adhesion yet have varied rates for degradation and cell infiltration. Empty scaffolds and alginate hydrogels were employed as controls, with the latter not supporting cell infiltration. Hydrogel-filled scaffolds retained the lentivirus more effectively than empty scaffolds, and transgene expression was observed for all scaffold conditions. Empty and fibrin-filled scaffolds had maximal transgene expression in vivo, followed by collagen and alginate, with similar levels. Transduced macrophages and dendritic cells were initially present at the scaffold boundary and adjacent tissue and within the scaffold at later time points for all but the alginate condition. At days 3 and 7, expression was also imaged throughout the spleen and thymus, which may result from cell migration from the implant. These studies demonstrate that hydrogels can modulate gene delivery from scaffolds used in cell transplantation and regenerative medicine.
Collapse
|
7
|
Hlavaty KA, Gibly RF, Zhang X, Rives CB, Graham JG, Lowe WL, Luo X, Shea LD. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. Am J Transplant 2014; 14:1523-32. [PMID: 24909237 PMCID: PMC4232190 DOI: 10.1111/ajt.12742] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant.
Collapse
Affiliation(s)
- K. A. Hlavaty
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - R. F. Gibly
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Integrated Graduate Program, Northwestern University, Chicago, IL
| | - X. Zhang
- Department of Surgery, Division of Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - C. B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - J. G. Graham
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Integrated Graduate Program, Northwestern University, Chicago, IL
| | - W. L. Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - X. Luo
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - L. D. Shea
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| |
Collapse
|
8
|
Kim J, Li WA, Sands W, Mooney DJ. Effect of pore structure of macroporous poly(lactide-co-glycolide) scaffolds on the in vivo enrichment of dendritic cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8505-12. [PMID: 24844318 PMCID: PMC4056860 DOI: 10.1021/am501376n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The in vivo enrichment of dendritic cells (DCs) in implanted macroporous scaffolds is an emerging strategy to modulate the adaptive immune system. The pore architecture is potentially one of the key factors in controlling enrichment of DCs. However, there have been few studies examining the effects of scaffold pore structure on in vivo DC enrichment. Here we present the effects of surface porosity, pore size, and pore volume of macroporous poly(lactide-co-glycolide) (PLG) scaffolds encapsulating granulocyte macrophage colony-stimulating factor (GM-CSF), an inflammatory chemoattractant, on the in vivo enrichment of DCs. Although in vitro cell seeding studies using PLG scaffolds without GM-CSF showed higher cell infiltration in scaffolds with higher surface porosity, in vivo results revealed higher DC enrichment in GM-CSF loaded PLG scaffolds with lower surface porosity despite a similar level of GM-CSF released. The diminished compressive modulus of high surface porosity scaffolds compared to low surface porosity scaffolds lead to the significant shrinkage of these scaffolds in vivo, suggesting that the mechanical strength of scaffolds was critical to maintain a porous structure in vivo for accumulating DCs. The pore volume was also found to be important in total number of recruited cells and DCs in vivo. Varying the pore size significantly impacted the total number of cells, but similar numbers of DCs were found as long as the pore size was above 10-32 μm. Collectively, these results suggested that one can modulate in vivo enrichment of DCs by altering the pore architecture and mechanical properties of PLG scaffolds.
Collapse
Affiliation(s)
- Jaeyun Kim
- School
of Engineering and Applied Sciences and Wyss Institute
for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 01238, United States
- School
of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Weiwei Aileen Li
- School
of Engineering and Applied Sciences and Wyss Institute
for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 01238, United States
| | - Warren Sands
- School
of Engineering and Applied Sciences and Wyss Institute
for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 01238, United States
- Feinberg
School of Medicine, Northwestern University, Chicago, Illinois 60610, United States
| | - David J. Mooney
- School
of Engineering and Applied Sciences and Wyss Institute
for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 01238, United States
- D. J. Mooney. E-mail: . Tel.: 617-384-9624. Fax: 617-495-9837
| |
Collapse
|
9
|
Gower RM, Boehler RM, Azarin SM, Ricci CF, Leonard JN, Shea LD. Modulation of leukocyte infiltration and phenotype in microporous tissue engineering scaffolds via vector induced IL-10 expression. Biomaterials 2013; 35:2024-31. [PMID: 24309498 DOI: 10.1016/j.biomaterials.2013.11.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
Abstract
Biomaterial scaffolds are central to many tissue engineering strategies as they create a space for tissue growth and provide a support for cell adhesion and migration. However, biomaterial implantation results in unavoidable injury resulting in an inflammatory response, which can impair integration with the host and tissue regeneration. Toward the goal of reducing inflammation, we investigated the hypothesis that a lentiviral gene therapy-based approach to localized and sustained IL-10 expression at a scaffold could modulate the number, relative proportions, and cytokine production of infiltrating leukocyte populations. Flow cytometry was used to quantify infiltration of six leukocyte populations for 21 days following implantation of PLG scaffolds into intraperitoneal fat. Leukocytes with innate immune functions (i.e., macrophages, dendritic cells, neutrophils) were most prevalent at early time points, while T lymphocytes became prevalent by day 14. Reporter gene delivery indicated that transgene expression persisted at the scaffold for up to 28 days and macrophages were the most common leukocyte transduced, while transduced dendritic cells expressed the greatest levels of transgene. IL-10 delivery decreased leukocyte infiltration by 50% relative to controls, increased macrophage IL-10 expression, and decreased macrophage, dendritic cell, and CD4 T cell IFN-γ expression. Thus, IL-10 gene delivery significantly decreased inflammation following scaffold implant into the intraperitoneal fat, in part by modulating cytokine expression of infiltrating leukocytes.
Collapse
Affiliation(s)
- R Michael Gower
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Ryan M Boehler
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Samira M Azarin
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Christine F Ricci
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA
| | - Lonnie D Shea
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL, USA.
| |
Collapse
|
10
|
Biomolecule delivery to engineer the cellular microenvironment for regenerative medicine. Ann Biomed Eng 2013; 42:1557-72. [PMID: 24170072 DOI: 10.1007/s10439-013-0932-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022]
Abstract
To realize the potential of regenerative medicine, controlling the delivery of biomolecules in the cellular microenvironment is important as these factors control cell fate. Controlled delivery for tissue engineering and regenerative medicine often requires bioengineered materials and cells capable of spatiotemporal modulation of biomolecule release and presentation. This review discusses biomolecule delivery from the outside of the cell inwards through the delivery of soluble and insoluble biomolecules as well as from the inside of the cell outwards through gene transfer. Ex vivo and in vivo therapeutic strategies are discussed, as well as combination delivery of biomolecules, scaffolds, and cells. Various applications in regenerative medicine are highlighted including bone tissue engineering and wound healing.
Collapse
|
11
|
Gower RM, Shea LD. Biomaterial Scaffolds for Controlled, Localized Gene Delivery of Regenerative Factors. Adv Wound Care (New Rochelle) 2013; 2:100-106. [PMID: 24527333 DOI: 10.1089/wound.2011.0325] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/12/2022] Open
Abstract
SIGNIFICANCE Biomaterials play central roles in tissue regeneration by maintaining a space for tissue growth and facilitating its integration with the host. The regenerative capacity of materials can be enhanced through delivery of factors that promote tissue formation. Gene delivery is a versatile strategy to obtain sustained production of tissue inductive factors. Biomaterial scaffolds capable of gene delivery have been shown to induce transgene expression and tissue growth. CRITICAL ISSUES The widespread application of biomaterial scaffold systems requires identifying the design principles for the material and vectors that modulate transgene expression temporally and spatially. These technologies and others will ultimately enable spatial and temporal control over expression to recreate the cellular organization and gene expression required for formation of complex tissues. RECENT ADVANCES The design parameters for the biomaterials and vectors that modulate the extent and duration of transgene expression and the distribution of transgene-expressing cells within and around the injury are emerging. The cellular interactions with the biomaterial, such as adhesion or migration rate, can influence expression. Furthermore, modulating the interaction between the vector and biomaterial can control vector release while minimizing the exposure to harsh processing conditions. FUTURE DIRECTIONS Biomaterial scaffolds that deliver genes encoding for regenerative factors may provide a platform for regenerating complex tissues such as skin, blood vessels, and nerves. Biomaterials capable of localized gene delivery can synergistically target multiple cell processes and will have application to the regeneration of many tissues, with great promise for clinical therapies.
Collapse
Affiliation(s)
- Robert Michael Gower
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| |
Collapse
|
12
|
Choi SJ, Oh SH, Kim IG, Chun SY, Lee JY, Lee JH. Functional recovery of urethra by plasmid DNA-loaded injectable agent for the treatment of urinary incontinence. Biomaterials 2013; 34:4766-76. [PMID: 23545290 DOI: 10.1016/j.biomaterials.2013.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/15/2013] [Indexed: 02/08/2023]
Abstract
Stress urinary incontinence (SUI) is an embarrassing problem affecting a large number of women and interfering with their quality of life. The injury or weakness of urethral supporting tissues by childbirth and aging has been considered as key factors in the development of the SUI. In this study, plasmid DNA (pDNA; encoding for bFGF) complex-loaded poly(DL-lactic-co-glycolic acid) (PLGA)/Pluronic F127 mixture dispersed with polycaprolactone (PCL) microspheres was prepared as an injectable bioactive bulking agent that may provide bulking effect (by PCL microspheres) and allow stimulation of the defect tissues around urethra (by synthesis of bFGF from cells or tissues transfected by the pDNA complex) for the effective treatment of SUI. From in vitro experiments, the pDNA complex incorporated in the bulking agent was released in a sustained manner over 84 days (≥80% of the initial loading amount). The pDNA complex was effectively transfected into fibroblasts and the cells were continuously producing the target protein, bFGF. From the in vivo study using hairless mice and Sprague-Dawley rats, it was confirmed that the pDNA complex released from the bulking agent is transfected into surrounding cells/tissue, and the cells/tissues synthesize sufficient bFGF to regenerate smooth muscle with biological function around the urethra. Basis on these results, the pDNA (encoding for bFGF) complex-loaded PLGA/Pluronic F127 mixture dispersed with PCL microspheres can be a promising bioactive bulking agent system for the fundamental cure of SUI.
Collapse
Affiliation(s)
- Soo Jung Choi
- Department of Advanced Materials, Hannam University, Yuseong Gu, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Gibly RF, Zhang X, Lowe WL, Shea LD. Porous scaffolds support extrahepatic human islet transplantation, engraftment, and function in mice. Cell Transplant 2013; 22:811-9. [PMID: 22507300 PMCID: PMC3701739 DOI: 10.3727/096368912x636966] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Islet transplantation as a therapy or cure for type 1 diabetes has significant promise but has been limited by islet mass requirements and long-term graft failure. The intrahepatic and intravascular site may be responsible for significant loss of transplanted islets. Nonencapsulating biomaterial scaffolds provide a strategy for architecturally defining and modulating extrahepatic sites beyond the endogenous milieu to enhance islet survival and function. We utilized scaffolds to transplant human islets into the intraperitoneal fat of immunodeficient mice. A smaller human islet mass than previously reported reversed murine diabetes and restored glycemic control at human blood glucose levels. Graft function was highly dependent on the islet number transplanted and directly correlated to islet viability, as determined by the ATP-to-DNA ratio. Islets engrafted and revascularized in host tissue, and glucose tolerance testing indicated performance equivalent to healthy mice. Addition of extracellular matrix, specifically collagen IV, to scaffold surfaces improved graft function compared to serum-supplemented media. Porous scaffolds can facilitate efficient human islet transplantation and provide a platform for modulating the islet microenvironment, in ways not possible with current clinical strategies, to enhance islet engraftment and function.
Collapse
Affiliation(s)
- Romie F. Gibly
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Integrated Graduate Program, Northwestern University, Chicago, IL, USA
| | - Xiaomin Zhang
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - William L. Lowe
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Department of Medicine, Northwestern University, Chicago, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Lonnie D. Shea
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
14
|
Kovtun A, Neumann S, Neumeier M, Urch H, Heumann R, Gepp MM, Wallat K, Koeller M, Zimmermann H, Epple M. Nanoparticle-Mediated Gene Transfer From Electrophoretically Coated Metal Surfaces. J Phys Chem B 2012; 117:1550-5. [DOI: 10.1021/jp303448v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Kovtun
- Inorganic Chemistry and Center
for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Sebastian Neumann
- Chair of Biochemistry, Faculty
of Chemistry and Biochemistry, University of Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | - Manuel Neumeier
- Inorganic Chemistry and Center
for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Henning Urch
- Inorganic Chemistry and Center
for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Rolf Heumann
- Chair of Biochemistry, Faculty
of Chemistry and Biochemistry, University of Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | - Michael M. Gepp
- Fraunhofer Institute for Biomedical
Engineering (IBMT) and Chair for Molecular and Cellular Biotechnology, University of Saarbruecken, Ensheimer Strasse 48, 66386
St. Ingbert, Germany
| | - Katrin Wallat
- Inorganic Chemistry and Center
for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Manfred Koeller
- Bergmannsheil University Hospital/Surgical
Research, Ruhr-University of Bochum, 44789
Bochum, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical
Engineering (IBMT) and Chair for Molecular and Cellular Biotechnology, University of Saarbruecken, Ensheimer Strasse 48, 66386
St. Ingbert, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center
for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
15
|
He CX, Zhang TY, Miao PH, Hu ZJ, Han M, Tabata Y, Hu YL, Gao JQ. TGF-β1 gene-engineered mesenchymal stem cells induce rat cartilage regeneration using nonviral gene vector. Biotechnol Appl Biochem 2012; 59:163-9. [PMID: 23586825 DOI: 10.1002/bab.1001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/10/2012] [Indexed: 12/23/2022]
Abstract
This study evaluated the potential of utilizing transfected pTGFβ-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-β1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-β1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-β1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-β1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-β1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-β1-gene engineered MSCs can induce cartilage regeneration in vivo.
Collapse
Affiliation(s)
- Cai-Xia He
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gibly RF, Graham JG, Luo X, Lowe WL, Hering BJ, Shea LD. Advancing islet transplantation: from engraftment to the immune response. Diabetologia 2011; 54:2494-505. [PMID: 21830149 PMCID: PMC3193607 DOI: 10.1007/s00125-011-2243-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/21/2011] [Indexed: 12/11/2022]
Abstract
The promise and progress of islet transplantation for treating type 1 diabetes has been challenged by obstacles to patient accessibility and long-term graft function that may be overcome by integrating emerging technologies in biomaterials, drug delivery and immunomodulation. The hepatic microenvironment and traditional systemic immunosuppression stress the vulnerable islets and contribute to the limited success of transplantation. Locally delivering extracellular matrix proteins and trophic factors can enhance transplantation at extrahepatic sites by promoting islet engraftment, revascularisation and long-term function while avoiding unintended systemic effects. Cell- and cytokine-based therapies for immune cell recruitment and reprogramming can inhibit local and systemic immune system activation that normally attacks transplanted islets. Combined with antigen-specific immunotherapies, states of operational tolerance may be achievable, reducing or eliminating the long-term pharmaceutical burden. Integration of these technologies to enhance engraftment and combat rejection may help to advance the therapeutic efficacy and availability of islet transplantation.
Collapse
Affiliation(s)
- R. F. Gibly
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Integrated Graduate Program, Northwestern University, Chicago, IL, USA
| | - J. G. Graham
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Integrated Graduate Program, Northwestern University, Chicago, IL, USA
| | - X. Luo
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - W. L. Lowe
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - B. J. Hering
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | - L. D. Shea
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd/E136, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
17
|
Gibly RF, Zhang X, Graham ML, Hering BJ, Kaufman DB, Lowe WL, Shea LD. Extrahepatic islet transplantation with microporous polymer scaffolds in syngeneic mouse and allogeneic porcine models. Biomaterials 2011; 32:9677-84. [PMID: 21959005 DOI: 10.1016/j.biomaterials.2011.08.084] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/31/2011] [Indexed: 02/03/2023]
Abstract
Intraportal transplantation of islets has successfully treated select patients with type 1 diabetes. However, intravascular infusion and the intrahepatic site contribute to significant early and late islet loss, yet a clinical alternative has remained elusive. We investigated non-encapsulating, porous, biodegradable polymer scaffolds as a vehicle for islet transplantation into extrahepatic sites, using syngeneic mouse and allogeneic porcine models. Scaffold architecture was modified to enhance cell infiltration leading to revascularization of the islets with minimal inflammatory response. In the diabetic mouse model, 125 islets seeded on scaffolds implanted into the epididymal fat pad restored normoglycemia within an average of 1.95 days and transplantation of only 75 islets required 12.1 days. Increasing the pore size to increase islet-islet interactions did not significantly impact islet function. The porcine model was used to investigate early islet engraftment. Increasing the islet seeding density led to a greater mass of engrafted islets, though the efficiency of islet survival decreased. Transplantation into the porcine omentum provided greater islet engraftment than the gastric submucosa. These results demonstrate scaffolds support murine islet transplantation with high efficiency, and feasibility studies in large animals support continued pre-clinical studies with scaffolds as a platform to control the transplant microenvironment.
Collapse
Affiliation(s)
- Romie F Gibly
- Institute of Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
De Laporte L, des Rieux A, Tuinstra HM, Zelivyanskaya ML, De Clerck NM, Postnov AA, Préat V, Shea LD. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury. J Biomed Mater Res A 2011; 98:372-82. [PMID: 21630429 DOI: 10.1002/jbm.a.33112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/18/2010] [Accepted: 01/13/2011] [Indexed: 12/12/2022]
Abstract
The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Oh SH, Kim TH, Jang SH, Im GI, Lee JH. Hydrophilized 3D porous scaffold for effective plasmid DNA delivery. J Biomed Mater Res A 2011; 97:441-50. [PMID: 21484988 DOI: 10.1002/jbm.a.33079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/10/2010] [Accepted: 02/10/2011] [Indexed: 11/06/2022]
Abstract
In this study, hydrophilic PLGA/Pluronic F127 scaffolds loaded with a pDNA/PEI-PEG complex were prepared to estimate their potential use as a polymeric matrix for pDNA delivery. The scaffold was fabricated by a novel precipitation/particulate leaching method. The prepared pDNA/PEI-PEG complex-loaded PLGA/Pluronic F127 scaffold exhibited a highly porous (porosity, 93-95%) and open pore structure, as well as hydrophilicity, which can provide the good environment for cell adhesion and growth. The pDNA/PEI-PEG complexes were efficiently loaded into the PLGA/Pluronic F127 scaffold and continuously released from the scaffolds up to ~90% of the initial loading amount over a period of 8 wk, which may lead to continuous gene transfection into human bone marrow mesenchymal stem cells (hBMMSCs). From the in vitro cell culture in the scaffolds for transfection, it was observed that the pDNA/PEI-PEG complex-loaded hydrophilic PLGA/Pluronic F127 scaffold has a higher transfection efficiency of the pDNA/PEI-PEG complexes into hBMMSCs than the hydrophobic PLGA ones. The cell viability associated with the pDNA/PEI-PEG complexes released from the PLGA/Pluronic F127 scaffold was not significantly different from that of the PLGA/Pluronic F127 scaffold without pDNA, indicating its low cytotoxicity, probably due to the sustained release of the pDNA/PEI-PEG complex from the scaffolds. From these results, we could suggest that the pDNA/PEI-PEG complex-loaded hydrophilic PLGA/Pluronic F127 scaffold can be an effective gene delivery system for 3D tissue formation.
Collapse
Affiliation(s)
- Se Heang Oh
- Department of Advanced Materials, Hannam University, 461-6 Jeonmin Dong, Yuseong Gu, Daejeon 305-811, Korea
| | | | | | | | | |
Collapse
|
20
|
Kheradmand T, Wang S, Gibly RF, Zhang X, Holland S, Tasch J, Graham JG, Kaufman DB, Miller SD, Shea LD, Luo X. Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials 2011; 32:4517-24. [PMID: 21458857 DOI: 10.1016/j.biomaterials.2011.03.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 03/04/2011] [Indexed: 01/02/2023]
Abstract
Allogeneic islet cell transplantation is a promising treatment for human type 1 diabetes. Currently, human islets are transplanted via intra-portal infusions. While successful, it leads to significant early islet attrition from instant blood-mediated inflammatory reaction. An extra-hepatic site was established by transplanting islet-loaded microporous poly(lactide-co-glycolide) (PLG) scaffolds into the epididymal fat pad in syngeneic islet transplant models. This study examined this technology in allogeneic islet transplantation and determined whether transplant tolerance could be effectively induced to protect PLG scaffold transplanted allogeneic islets. The efficacy of an established tolerance induction strategy using donor splenocytes treated with ethylcarbodiimide(ECDI) was tested. ECDI-fixed donor splenocytes were infused 7 days before and 1 day after islet transplantation. Immediate normoglycemia was restored, and treated mice maintained indefinite normoglycemia whereas untreated mice rejected islet grafts within 20 days of transplantation. Interestingly, efficacy of tolerance induction was superior in PLG scaffold compared with intra-portal transplanted islets. Protection of PLG scaffold islet allografts was associated with several mechanisms of immune regulation. In summary, PLG scaffolds can serve as an alternative delivery system for islet transplantation that does not impair tolerance induction. This approach of combining tolerance induction with scaffold islet transplantation has potential therapeutic implications for human islet transplantation.
Collapse
Affiliation(s)
- Taba Kheradmand
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
des Rieux A, Ucakar B, Mupendwa BPK, Colau D, Feron O, Carmeliet P, Préat V. 3D systems delivering VEGF to promote angiogenesis for tissue engineering. J Control Release 2011; 150:272-8. [DOI: 10.1016/j.jconrel.2010.11.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/23/2010] [Accepted: 11/28/2010] [Indexed: 01/08/2023]
|
22
|
Formulation and characterization of naked DNA and complexed DNA loaded polymer films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Shin S, Salvay DM, Shea LD. Lentivirus delivery by adsorption to tissue engineering scaffolds. J Biomed Mater Res A 2010; 93:1252-9. [PMID: 19827108 DOI: 10.1002/jbm.a.32619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomaterial scaffolds capable of localized gene delivery are being investigated for numerous regenerative medicine applications and as model systems for fundamental studies of tissue formation. In this manuscript, we investigate the delivery of lentivirus from a tissue engineering scaffold using a surface immobilization strategy. Poly(lactide-co-glycolide) (PLG) was employed as the biomaterial for delivery, which has been widely used for a number of tissue engineering applications. The virus was immobilized by freezing and subsequent lyophilization of the virus with the scaffold. The presence of sucrose during freezing and lyophilization maintained the activity of the lentivirus, and was similar to an adenovirus control. Collagen and fibronectin were investigated for their ability to enhance surface immobilization. Fibronectin modestly increased binding and transduction of the adenovirus, yet did not significantly impact the lentivirus delivery. Most of the immobilized lentivirus was released from the scaffold within 24 h. In vivo implantation of the scaffolds yielded transgene expression that persisted for at least 4 weeks. These findings indicate the potential for delivering lentivirus from tissue engineering scaffolds using a surface immobilization strategy. To our knowledge, this report is the first to investigate lentivirus delivery from porous tissue engineering scaffolds. Delivery of lentiviral vectors from PLG scaffolds could provide an efficient and versatile gene delivery system for use with in vitro and in vivo models of tissue formation, and ultimately for therapeutic applications.
Collapse
Affiliation(s)
- Seungjin Shin
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road E156, Evanston, Illinois 60208-3120, USA
| | | | | |
Collapse
|
24
|
Sustained release of complexed DNA from films: Study of bioactivity and intracellular tracking. Biointerphases 2010; 5:FA69-77. [DOI: 10.1116/1.3493692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
De Laporte L, Huang A, Ducommun MM, Zelivyanska ML, Aviles MO, Adler AF, Shea LD. Patterned transgene expression in multiple-channel bridges after spinal cord injury. Acta Biomater 2010; 6:2889-97. [PMID: 20167291 DOI: 10.1016/j.actbio.2010.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 01/08/2023]
Abstract
Patterning of gene delivery on sub-millimeter length scales within tissue engineering scaffolds is fundamental to recreating the complex architectures of tissues. Surface-mediated delivery of lipoplexes mixed with fibronectin was investigated to pattern vectors within 250 microm channels in poly(lactide-co-glycolide) (PLG) bridges. Initial studies performed in vitro on PLG surfaces indicated that a DNA density of 0.07 microg mm(-2) inside each channel with a weight ratio of DNA to fibronectin of 1:20 maximized the number of transfected cells and the levels of transgene expression. Patterned vectors encoding for nerve growth factor (NGF) resulted in localized neurite extension within the channel. Translation to three-dimensional multiple-channel bridges enabled patterned transfection of different vectors throughout the channels for DNA:fibronectin ratios of 1:4 and multiple DNA depositions, with a large increase of neural cell bodies and neurite extension for delivery of DNA encoding for NGF. In vivo, the immobilization of non-viral vectors within the channels resulted in localized transfection within the pore structure of the bridge immediately around the channels of the bridge containing DNA. This surface immobilization strategy enables patterned gene delivery in vitro and in vivo on length scales of hundreds of microns and may find utility in strategies aimed at regenerating tissues with complex architectures.
Collapse
|
26
|
Salvay DM, Zelivyanskaya M, Shea LD. Gene delivery by surface immobilization of plasmid to tissue-engineering scaffolds. Gene Ther 2010; 17:1134-41. [PMID: 20485383 PMCID: PMC2927809 DOI: 10.1038/gt.2010.79] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biomaterial scaffolds that serve as vehicles for gene delivery to promote expression of inductive factors have numerous regenerative medicine applications. In this report, we investigate plasmid delivery from biomaterial scaffolds using a surface immobilization strategy. Porous scaffolds were fabricated from poly(D,L-lactide-co-glycolide) (PLG), and plasmids were immobilized by drying. In vitro plasmid release indicated that the majority (>70%) of adsorbed plasmids were released within 24 h and >98% within 3 days; however, in vivo implantation of the scaffolds at the subcutaneous site yielded transgene expression that persisted for at least 28 weeks and was localized to the site of implantation. Histological analysis of DNA-adsorbed scaffolds indicated that macrophages at the scaffold were transfected in the first 2 weeks after implantation, whereas muscle cells adjacent to the implant primarily expressed the transgene at 4 weeks. In addition to localized gene expression, a secreted protein (human factor IX) was retained at the implant site and not available systemically after 3 days, indicating minimal off-target effects. These findings show that surface immobilization of plasmid onto microporous PLG scaffolds can produce localized and long-term gene expression in vivo, which may be used to enhance the bioactivity of scaffolds used for regenerative medicine.
Collapse
Affiliation(s)
- D M Salvay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208-3120, USA
| | | | | |
Collapse
|
27
|
Avilés MO, Lin CH, Zelivyanskaya M, Graham JG, Boehler RM, Messersmith PB, Shea LD. The contribution of plasmid design and release to in vivo gene expression following delivery from cationic polymer modified scaffolds. Biomaterials 2009; 31:1140-7. [PMID: 19892398 DOI: 10.1016/j.biomaterials.2009.10.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 10/14/2009] [Indexed: 12/16/2022]
Abstract
Tissue engineering scaffolds capable of gene delivery can provide a structure that supports tissue formation while also inducing the expression of inductive factors. Sustained release strategies are hypothesized to maintain elevated plasmid concentrations locally that can enhance gene transfer. In this report, we investigate the relationship between plasmid release kinetics and the extent and duration of transgene expression. Scaffolds were fabricated from polymer microspheres modified with cationic polymers (polyethylenimine, poly(L-lysine), poly(allylamine hydrochloride), polydiallyldimethylammonium) or polydopamine (PD), with PD enhancing incorporation and slowing release. In vivo implantation of scaffolds into the peritoneal fat pad had no significant changes in the level and duration of transgene expression between PD and unmodified scaffolds. Control studies with plasmid dried onto scaffolds, which exhibited a rapid release, and scaffolds with extended leaching to reduce initial quantities released had similar levels and duration of expression. Changing the plasmid design, from a cytomegalovirus (CMV) to an ubiquitin C (UbC) promoter substantially altered the duration of expression. These studies suggest that the initial dose released and vector design affect the extent and duration of transgene expression, which may be sustained over several weeks, potentially leading to numerous applications in cell transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Misael O Avilés
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ozkan S, Kalyon DM, Yu X, McKelvey CA, Lowinger M. Multifunctional protein-encapsulated polycaprolactone scaffolds: fabrication and in vitro assessment for tissue engineering. Biomaterials 2009; 30:4336-47. [PMID: 19481253 DOI: 10.1016/j.biomaterials.2009.04.050] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/28/2009] [Indexed: 11/16/2022]
Abstract
Here we demonstrate the use of a twin screw extrusion/spiral winding (TSESW) process to generate protein-encapsulated tissue engineering scaffolds. Bovine serum albumin (BSA) was distributed into PCL matrix using both wet and hot melt extrusion methods. The encapsulation efficiency and the time-dependent release rate, as well as the tertiary structure of BSA (via circular dichroism), were investigated as a function of processing method and conditions. Within the relatively narrow processing window of this demonstration study it was determined that the wet extrusion method gave rise to greater stability of the BSA on the basis of circular dichroism data. The rate of proliferation of human fetal osteoblast (hFOB) cells and the rate of mineral deposition were found to be greater for wet extruded scaffolds, presumably due to the important differences in surface topographies (smoother scaffold surfaces upon wet extrusion). Overall, these findings suggest that the twin screw extrusion/spiral winding (TSESW) process offers significant advantages and flexibility in generating a wide variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity, physical and chemical properties and protein concentrations that can be tailored for the specific requirements of each tissue engineering application.
Collapse
Affiliation(s)
- Seher Ozkan
- Chemical, Biomedical and Materials Engineering Department, Stevens Institute of Technology, McLean Chemical Sciences Building, Castle Point St., Hoboken, NJ 07030, USA
| | | | | | | | | |
Collapse
|
29
|
Zhang XQ, Tang H, Hoshi R, De Laporte L, Qiu H, Xu X, Shea LD, Ameer GA. Sustained transgene expression via citric acid-based polyester elastomers. Biomaterials 2009; 30:2632-41. [PMID: 19200593 PMCID: PMC11284631 DOI: 10.1016/j.biomaterials.2009.01.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
Polymeric scaffolds are an important tool in tissue engineering and gene delivery using porous scaffolds can be a viable approach to control tissue response. Herein we describe the use of a biodegradable polyester elastomer, poly(1,8-octanediol-co-citrate) (POC), as a substrate for plasmid immobilization and cellular transfection of colonizing cells. Plasmid (pDNA), either complexed with poly(ethyleneimine) (PEI) forming polyplexes or in its native state, was surface-immobilized onto POC scaffolds via adsorption. Polyplex-containing scaffolds showed higher loading and slower initial rates of release than naked pDNA-containing scaffolds. Seeding of HEK293 cells and porcine aortic smooth muscle cells (PASMC) onto polyplex loaded-scaffolds demonstrated cell proliferation and transfection in vitro up to 12 days, significantly longer relative to bolus transfection. In vivo, transfection was evaluated using the mouse intraperitoneal (IP) fat model. In contrast to the in vitro study, successful long-term transgene delivery was only achieved with the naked pDNA-containing scaffolds. In particular, naked pDNA-containing scaffolds promoted high levels of both luciferase and green fluorescent protein (GFP) expression in vivo for 2 weeks. The results demonstrate that POC scaffolds are a suitable material for substrate-mediated gene delivery. POC scaffolds can potentially support long-term biological cues to mediate tissue formation through non-viral gene delivery.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Huanghui Tang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ryan Hoshi
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hongjin Qiu
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Xiaoyang Xu
- Chemistry Department, Northwestern University, Evanston, IL 60208, USA
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
- Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
30
|
De Laporte L, Yan AL, Shea LD. Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials 2009; 30:2361-8. [PMID: 19144400 DOI: 10.1016/j.biomaterials.2008.12.051] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 12/17/2008] [Indexed: 12/18/2022]
Abstract
Tissue engineering scaffolds with complex geometries can provide an architecture that directs tissue formation. Drug delivery from these scaffolds to promote regeneration is often challenging due to the complex fabrication processes. Surface-mediated DNA delivery from multiple channel bridges was applied to deliver lipoplexes in vivo to the injured spinal cord. The surface properties of the polymer, DNA deposition with or without drying, and the presence of ECM components were investigated. In vitro studies revealed that fibronectin produced greater expression levels and immobilization efficiencies compared with collagen, laminin, and no coating. In addition, lipoplex incubation on ECM-coated PLG increased expression relative to either of the drying methods. Additionally, the incubation method had more homogeneously distributed lipoplexes and a higher number of transfected cells relative to the dried conditions. Translation to three-dimensional bridges led to high levels of transgene expression in vitro. In vivo, lipoplexes immobilized to the bridge produced transgene expression levels in a rat spinal cord hemisection model that were 2-fold greater than naked plasmid. Additionally, expression with lipoplexes persisted for at least three weeks. Surface-mediated delivery can be applied to scaffolds with complex geometries to promote transgene expression in vivo.
Collapse
Affiliation(s)
- Laura De Laporte
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, E156 Evanston, IL 60208-3120, USA.
| | | | | |
Collapse
|